
Physics-Based Animation of Characters in Fluids

Member: Wang Sinan, Guo Zebin

Supervisor: Prof. Komura, Taku

Project Background

In recent years, the concept of Metaverse has gained popularity, and character animation in

computer graphics has emerged as a popular and evolving field. Kinematic-based and physics-

based animation are two distinct directions that have gained attention. While significant

progress has been made in fluid simulation, the complexity and real-world significance of this

area call for further exploration. Notably, the work of Stream Function and DayDreamer has

demonstrated the potential of incorporating the stream function into vorticity simulation and

developing a fully differentiable model, respectively. However, there is a lack of notable

integration between these techniques, leaving ample room for future influential work.

Therefore, our proposed final year project is centered around "physical-based character

animation in fluids." Our main objective is to address the challenges associated with vorticity

simulation in fluids by utilizing a differentiable world model trained through supervised

learning. By combining vorticity simulation and a differentiable physical engine, we aim to

take a significant step forward in fluid simulation and establish a new approach to building

physical solvers. Our approach involves developing a discrete physical solver and making it

differentiable using supervised learning. The differentiable world model will enable us to train

characters for more realistic animation purposes. The project aims to deliver a well-developed

differentiable solver capable of simulating various tasks and a few well-trained characters by

the final phase, with the complete differentiable world model expected to be available in

February and the final product delivered in May. The proposed project is highly innovative and

has great potential to advance the current state of fluid simulation and character animation.

Currently, there are open-source codes available online for world models, such as DayDreamer,

which we plan to utilize. Additionally, we have already built a vorticity-based solver that can

handle one-way solid-fluid coupling. The motivation behind this project stems from the

observation that while many people are involved in robotics, their robots typically only interact

with solids. However, fluids play a crucial role in the world, be it water or air. We aspire to

create virtual robotics that can effectively interact with these fluids, recognizing their

importance and potential applications. The proposed project aligns well with the current trend

towards creating more realistic virtual environments, which require advanced fluid simulation

techniques and character animation. By developing a differentiable world model and physical

solver, we aim to contribute to this growing area of research and establish a new approach to

building physical solvers.

Project Objective

We aim to achieve highly realistic visual effects of characters moving within fluids.

Additionally, if feasible, we also aspire to accurately calculate the forces and torques involved,

enabling real-world robots to navigate and interact with fluids effectively.

Project Methodology

Overview of the experiment setup
We will first construct a simulated environment (a vorticity-based physical solver), then ask

the agent to do operations in the virtual space to generate sufficient datasets for future training.

Then, we implement a world model created by model-based reinforcement learning and then

trained by supervised learning which can create differentiable physical engines, handling and

representing solid fluid coupling very well. After that, by using this world model, we can train

our agent in a differentiable manner using some gradient-based optimization methods. Hence,

we will be able to achieve our goal.

Hardware
Our robot is estimated to be trained in Linux Environment, deployed on a Linux computer

locally, enabling better illustrations of graphics. The programming language should be mainly

python, involving popular APIs like Pytorch, TensorFlow and Taichi Lang to accelerate the

speed of computation given the slow computing speed of native python.

Physical-based animation

Physical-based animation is a computational technique that simulates the movement and

behavior of objects and characters in animation using principles of physics. It involves

modeling the physical properties of objects, such as mass, elasticity, and friction, and applying

equations that describe their motion. By considering forces like gravity, collisions, and

constraints, the animation can accurately depict realistic interactions and dynamics. Physical-

based animation algorithms often use numerical methods to solve these equations and update

the positions and velocities of objects over time. This approach creates animations that are

visually convincing, as they reflect the laws of physics and mimic real-world behavior.

Physical Solver
Our physical solver of fluids will be based on vorticity. The initial momentum equation is the

famous Navier–Stokes equations, i.e.,

𝜕𝐮

𝜕𝑡
+ (𝐮 ⋅ ∇)𝐮 = −

1

𝜌
∇𝑝 + 𝜈∇2𝑢

The details of this equation can be found at [1]. However, for a vorticity-based solver, the

equation transforms into another form, based on the fact that

𝜔 = ∇× 𝐮

The transformed equation is called vorticity transport equation

𝐷𝑤

𝐷𝑡
= (𝐰 ⋅ ∇)𝐮+ 𝜈∇2𝑤

Supervised Learning

Supervised learning is a machine learning paradigm where an algorithm learns to make

predictions or decisions by training on a labeled dataset. In this approach, input data is paired

with corresponding output labels, forming a training set. The algorithm iteratively adjusts its

model parameters to minimize the discrepancy between its predictions and the true labels,

typically using techniques like gradient descent. Once trained, the model can generalize to

make accurate predictions on new, unseen data. Supervised learning is widely used in tasks

such as classification (assigning labels to inputs) and regression (predicting numeric values),

making it a fundamental method in data-driven problem solving.

Model-based reinforcement learning
Model-based reinforcement learning is an approach that combines the use of a learned model

of the environment with traditional reinforcement learning techniques. In this framework, the

agent learns a model that approximates the dynamics of the environment, including state

transitions and rewards. This learned model is then used to plan and make decisions, allowing

the agent to explore and learn in a more efficient manner. One of the key advantages of model-

based reinforcement learning is the ability to simulate and explore potential future scenarios

without actually interacting with the environment. By using the learned model, the agent can

simulate different actions and their consequences, enabling it to plan ahead and make more

informed decisions. This planning ability can be especially useful in complex and uncertain

environments, where the agent can use the model to anticipate potential outcomes and choose

actions that maximize long-term rewards. Another benefit of model-based reinforcement

learning is the potential for faster learning and improved sample efficiency. Since the agent can

generate its own training data through simulations, it can learn from a larger amount of data in

a shorter period of time. This can be particularly advantageous in situations where real-world

interactions are time-consuming, expensive, or risky. By learning from simulated experiences,

the agent can iteratively improve its performance and generalize its knowledge to real-world

scenarios. However, model-based reinforcement learning also comes with its own challenges.

One major issue is the accuracy and reliability of the learned model. If the model does not

accurately capture the true dynamics of the environment, the agent's planning and decision -

making may be suboptimal or even incorrect. Additionally, learning an accurate model can be

computationally expensive, especially in complex environments with high-dimensional state

and action spaces. Despite these challenges, model-based reinforcement learning holds great

promise for improving the efficiency and effectiveness of reinforcement learning algorithms.

By leveraging learned models, agents can plan and make decisions in a more informed manner,

leading to faster learning and better overall performance. With ongoing research and

advancements in this field, model-based reinforcement learning has the potential to

revolutionize the way agents learn and adapt in complex and dynamic environments.

Differentiable World Model

A Differentiable World Model refers to a computational model that approximates the dynamics

of an environment and is designed to be differentiable end-to-end. It enables gradient-based

optimization, allowing for efficient and effective training using techniques such as

backpropagation. In the context of reinforcement learning, a differentiable world model is used

to capture the complex relationships between states, actions, and rewards. It provides a

differentiable mapping from the current state and action to the predicted next state and reward.

This enables agents to simulate and explore potential future scenarios without direct interaction

with the environment. The differentiability of the world model is crucial as it allows for

seamless integration with gradient-based optimization algorithms. The model parameters can

be updated using gradients computed through backpropagation, enabling efficient learning and

adaptation from data. To train a differentiable world model, a combination of supervised and

reinforcement learning techniques is typically employed. Initially, the model is trained in a

supervised manner using pairs of states and corresponding next states obtained from real or

simulated interactions. This supervised training helps the model learn the underlying dynamics

of the environment. Once the model is trained, it is incorporated into reinforcement learning

algorithms. The agent uses the differentiable world model to simulate potential future states

and rewards, allowing for efficient planning and decision-making. This approach can

significantly improve sample efficiency, as the agent can learn from simulated experiences

instead of relying solely on real-world interactions. The differentiable world model has various

applications in model-based reinforcement learning. By leveraging the model's differentiability

and optimization capabilities, agents can learn and plan more efficiently, enabling them to

tackle complex and uncertain environments. In summary, a differentiable world model is a

computational model that approximates the dynamics of an environment and is designed to be

differentiable end-to-end. It enables efficient gradient-based optimization, allowing for

effective training and integration with reinforcement learning algorithms. By simulating

potential future scenarios, the differentiable world model improves sample efficiency and

enhances the agent's decision-making capabilities in complex environments.

Project Schedule and Milestones
We plan to first implement a two-way vorticity-based fluid solver based on our current solver

before December, then we will try to implement the world model by Feburary,2024 and use the

following time to train the agents.

Phase Description Timeline

Phase 1: Fluid Solver Implement a two-way

vorticity-based fluid solver

based on the current solver

Before December 2023

Phase 2: World Model Implement the differentiable

world model using the fluid

solver

By February 2024

Phase 3: Training Train agents using the

differentiable world model

February 2024 onwards

Phase 4: Evaluation Evaluate the performance of

trained agents and fine-tune

the model if necessary

March-April 2024

Phase 5: Finalization Finalize the differentiable

world model and deliver the

project

May 2024

References
1. Bridson, R. (2015). Fluid Simulation for Computer Graphics (2nd ed.). A K Peters/CRC

Press. https://doi.org/10.1201/9781315266008

