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Abstract 

The popularity of RPGs has spanned over decades, along with the development in gaming 

technology and growth of the game market. This project aims to develop and deliver a 

third-person 3D fantasy action RPG through a game rework. To achieve this goal, several 

gameplay systems and features will be implemented as objectives, by integrating Unity and 

other applications. Currently, many features have been implemented and the major ones 

are 3D World Editor, AI Music, Quest, RPG Basics, and Save and Load, have been tested 

and deployed successfully. These systems control the game mechanics in different 

scenarios and are the basic framework for future game development. In addition, the 

prologue of our story is created with a wonderful scene and interactable NPCs. Robust 

codebase and meticulous planning in the early stage has bored fruit. Adding content to the 

game now requires minimal effort with our new framework. During the development, 

difficulties on 3D modelling, collaboration, and time have been encountered and mitigated 

respectively. 
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1 Introduction 

This chapter introduces the context behind the project in 4 sections. In Section 1.1, a brief 

background of this project is introduced. In Section 1.2, project rationales are discussed. In 

Section 1.3, the purpose and objectives of this project are listed. In Section 1.4, an outline 

of subsequent chapters is provided. 

1.1 Background 

Role-playing is generally considered one of the most popular game genres, which 

originated from the publication of Dungeon and Dragons (D&D) in 1974 [1]. The term 

role-play often correlates with make-believe, an action of imaging and pretending 

something unreal. In RPGs, players can cast themselves and act as characters in fictional 

settings, based on “the range of imagination” [2] of game developers. 

Over the past few years, there has been a rapid growth in the global gaming market, 

possibly due to pandemic lockdowns [3]. The game market has witnessed great success in 

classic RPG franchises, such as Baldur’s Gate, Monster Hunter, and Dark Souls. For a 

long time, the video game market has been dominated by large publishers and studios, with 

their huge investments in game development and research. But thanks to advances in 

gaming technology, indie game developers are now capable of creating games with good 

quality. 

Various game development tools and software are now ubiquitous and often accessible to 

the public. There are free and yet powerful game engines, such as Unity and Unreal Engine 

5, available on the market. Moreover, AI technologies are now widely employed in game 

development to lower production costs. For instance, content creators can utilize AI to 

write storylines, generate images, and create music for games [4]. 

1.2 Motivation 

As game enthusiasts, the inspiration from RPG masterpieces and the great interest in their 

game design principles are the sources of motivation for this project. This project serves as 

a valuable opportunity for the team to gain hands-on experience in game development, and 

to develop communication and collaboration skills from teamwork. 
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1.3 Objectives 

This project will be a rework and migration of The Road to Castle [5], which is a text-

based fantasy RPG played on Linux terminal. The final deliverable will be a third-person 

3D fantasy action RPG, with implemented gameplay systems and contents. 

The main purpose of this game project is to present a fantasy game world with a captivating 

gaming experience to players. To achieve this, multiple game features and systems will be 

accomplished as the objectives: 

• Develop a flexible, maintainable, and extendable framework from scratch 

• Create a compelling storyline, integrated with tutorials 

• Provide a user-friendly user interface (UI) 

• Design maps with diverse terrains, eco-systems, and weathers 

• Provide an inventory system 

• Design and implement a balanced combat mechanism 

• Allow players to save and load their progress locally and remotely 

• Provide a level system for character development 

• Allow players to design and share their own dungeons via an in-game editor 

1.4 Report Outline 

In Chapter 2, the methodologies of this project will be discussed, including development 

tools, concepts, and techniques to be used and their justifications. Following that, Chapter 

3 introduces the results achieved in this project, as well as the problems encountered with 

mitigations. Finally, there will be a summary of current progress and future work plan in 

Chapter 4.  
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2 Methodology 

In this chapter, software, concepts, and other methods used in this project and their 

justifications are discussed in 8 sections. In Section 2.1, the choices of game engine, IDE, 

and CG software are discussed. In Section 2.2, the project structure and codebase design 

are explained. In Section 2.3, the event-driven design of the game is introduced. In Section 

2.4, the singleton pattern is discussed. In Section 2.5, the physics and projectile motion is 

elaborated. In Section 2.6, player movements such as walking and climbing are discussed. 

In Section 2.7, different useful techniques in Unity are presented. In Section 2.8, 

functionalities of the world editor are presented. In Section 2.9, the updated quest system 

and its API are mentioned. In Section 2.10, an advanced data class for serialization named 

data persistence is discussed. Finally, in Section 2.11, scene-to- scene switching and its 

idea is explained. 

2.1 Development Tools 

2.1.1 Game Engine – Unity 

The game will be made with Unity, a free and user-friendly game engine, which supports 

cross-platform 3D game development with C# scripting. It acts as the platform that loads 

and integrates all gameplay systems and local game contents into a game. 

Unity also serves as the “backbone” for connecting all contents from different software. 

Figure 2.1 below illustrates the concept of such integration between these applications. In 

the figure, empty entities are created in Unity as containers to store scripts, 3D models, and 

animations from IDE and 3D modeler. These entities are later composed into unique game 

objects for different game scenes. 
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Figure 2.1 Conceptual “assembly line” of the project 

Compared with other alternatives like Unreal Engine 5, Unity is more user-friendly in 

terms of its interface and functions, and it is easier to run on small-scale projects. Also, it 

provides some useful built-in systems that could facilitate the development process. 

2.1.2 IDE – Visual Studio Code 

An integrated development environment (IDE) is an application that provides developer 

tools for software development. Visual Studio Code is selected as the IDE, as it provides 

high extensibility with custom extensions to fulfill different requirements. For this project, 

extensions can be installed to support Unity development and debugging on C# scripts. 

2.1.3 3D Modelling and Animation – Blender 

Blender is a free 3D creation software that supports most CG functionalities, such as 

modelling, animation, and rendering. In the project, architectural models, character models, 

and animation can be created in Blender (see Figure 2.2a), and then imported directly to 

Unity (see Figure 2.2b). 

 

(a) 

 

(b) 

Figure 2.2 3D models created in Blender (a) and imported to Unity (b) 

Unity: Entities 

VS Code: C# Scripts Blender: Models & Animations 

Unity: Game Objects 

Unity: Scenes Unity 
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2.2 Codebase Design 

To develop a flexible and extendable gaming framework, a well-organized file structure is 

required. In this project, game contents are modularized and grouped under the standard 

convention [6]. For example, a “Scripts” directory is used to contain all scripts of the game, 

with sub-directories separated by content types. This improves division of work, as team 

members can develop different features simultaneously without interruption. 

In addition, Unity attributes and data container classes have been applied to facilitate the 

development process on game assets. For instance, with “[CreateAssetMenu]” attribute and 

objects inherited from ScriptableObject class in Unity, self-defined assets can then be 

created by simply clicking on the asset menu, instead of repetitive programming, as shown 

in Appendix A. 

For code reuse, inheritance is extensively used in this project. For example, a GameItem 

class has been developed as the superclass for different game items, such as game 

equipment and consumables, to inherit common behaviors. 

2.3 Event-Driven Development 

For games, event-driven design is an architecture that implements the game flow based on 

events, instead of a predetermined series of actions. Events in games are generally the 

inputs from users, such as mouse click and keypress. These events are captured as the 

“triggers” for follow-up actions or other events designed by the developers. 

Such design allows the game to provide prompt and dynamic responses to players 

depending on their behaviors, as well as for system-to-system communications. For 

example, the combat system can notify the quest system whenever the player has made 

progress in quests. Also, different events are independent and are developed separately for 

specific tasks, which facilitate the development and testing process. 

2.4 Singleton Pattern 

A singleton is a globally accessible class that has only one instance at a time. A singleton 

object will not be re-assigned after instantiation. This helps protect variables and values 
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from unexpected behaviors. One example is to create a singleton for user settings to prevent 

them from changing when switching to a new game scene. 

As Unity allows configuration on objects in the editor before the game runs, constant values 

can be assigned to singletons. This prevents repetitive coding and simplifies the 

development process of complicated systems, such as the UI systems. 

2.5 Physics 

To make the game more immersive, simulations on physics such as gravity and collision 

are added to the game world. For example, projectiles with weights like arrows are shot 

with parabola-like locus instead of a straight line. Such curve on a 2D plane follows the 

equations derived in Appendix B. In a 3D game world, this is done by first forming a 2D 

plane between the faces of two entities, such as a player and an enemy (see Figure 2.3). An 

ideal angle can then be calculated and assigned to the projectile. 

 

Figure 2.3 Player faces enemy such that a 2D plane is formed. 

2.6 Player Movement 

To support player movements on the map, two movement states for moving and standing 

are required. These two states are combined to provide a smooth movement behavior of 

the player, such as walking, jumping, and climbing. Also, they allow later integrations of 

character animations. Figure 2.4 below shows the two states and their respective sub-states. 
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Figure 2.4 Player movement states and sub-states. 

2.7 Unity Techniques 

In this project, Unity APIs are utilized to reduce development time. For example, Physics 

API provides some useful functions for ray casting and creating colliding spheres on the 

fly. Rays are cast onto the floor to detect whether the player is on the ground, while collider 

spheres are created to detect objects near the player. These can be applied in player-object 

interactions, where spheres are used to detect and check whether colliding objects are 

interactable. 

It is also remarkable that a wise use of Unity can sometimes lead to no-code solutions. For 

example, by using built-in packages like Cinemachine, the camera controls can be 

simplified. 

2.8 World Editor 

World Editor is also known as Dungeon Editor in the game. And it is mainly separated into 

3 parts: Basic Actions, Model-Quest Selection Panel and Scene Controls. 

2.8.1 Basic Actions 

Five major actions are implemented: Restore, Remove, Save, Load and Leave. As a world 

editor, we want basic functions such as add and remove. However, adding is also 

implemented in the Model-Quest Selection Panel. The remove functionality is defined to 

remove the currently selected model. 

Save and Load is simply saving and loading the scene and quests back and forth from a file 

with our own Data Persistence API. 

Just in case the user modified the original dungeon by accident. There is a function to 

restore the built-in dungeon. To do so, we have decided to replace the current json save 

with the original built-in json. 
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Figure 2.5 Code snippet showing the restore function. 

Since world editor is designed to be used by users normally in the game, we want them to 

leave the world editor without breaking anything. That is the reason for the “leave” function. 

Loading the main world back in the game client is the concept behind this function. 

2.8.2 Model-Quest Selection Panel 

This panel allows users to drag and add 3D models into the scene. In addition to adding 

basic 3D models into the scene, users can also customize the quest they want in the current 

dungeon. Currently, not all quests can be saved. But major ones like puzzle and kill quests 

can be brought into a dungeon. Saving and loading of quests will be discussed in detail 

later in the section Advanced Serialization. 

The mechanism of dragging a model from a UI into a 3D scene requires some tricks. To 

start with, we want the UI button to detect mouse drags. This can be achieved by 

implementing DragHandlers to the class as shown in the following code. 

 

Figure 2.6 Code snippet for DraggableModelButton. 

The code above handles the dragging of a button. But it does not account for creating and 

dragging of a 3D model. For dragging, a 2D to 3D conversion process is needed. Since the 

mouse is dragging in a 2D space (screen), we want to convert it into 3D space (game scene). 
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Here, a Unity built-in API is used to shoot a ray from camera to the world, hitting the floor 

to obtain the world position. 

 

Figure 2.7 Code snippet for dragging a 3D model in the game. 

 

To create it, we simply use the built-in function from Unity to create and load a 3D model 

(fbx) into the scene at mouse location. 

 

Figure 2.8 Code snippet for creating a model in World Editor. 

2.8.3 Scene Controls 

With the conversion process being implemented, positioning and rotation of the 3D model 

can now be handled next. Positioning is simple, it is shown in the code above. But rotation 

is tricky. We want rotation to be smooth, meaning that rotation angle will not start from 0 

the moment we start rotating the model. Instead, we want the rotation to start from the 

current rotation. To solve this problem, it is best to draw out a diagram as follows.  
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Figure 2.9 Diagram visualizing the smooth rotation problem. 

Using the information above, the solution is clear that the new drag angle once the mouse 

starts dragging the rotation ring indicator is angle + anchorAngle. 

 

Figure 2.10 Code snippet for rotating a 3D model in the game. 

2.9 Advanced Quest System 

Story Quests and World Quests are a huge part of an RPG game. Hence, the team have 

spent a lot of time designing the system to make Quest API simple and extendable. There 

are 2 parts to our quest system. The first one is the core of the system. This includes 

dialogue and narration, core logic and flow of quests and data persistence of quests. The 

second part is the design of Quest API such that content creators can use the API at ease. 
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2.9.1 Core Quest System 

A storyline contains multiple tasks. Tasks must go in a linear fashion due to the nature of 

its implementation as shown below. 

 

Figure 2.11 Storyline definition in code. 

For content creators, they can also use event listeners like onCompleted to implement 

quest-specific logic. 

A StoryTask is like a quest. Each task can contain dialogues and conditions. Players must 

complete all conditions of a task in order to pass a StoryTask. Most of the time, a 

combination of dialogues and conditions are used. Moreover, dialogue now supports 

responses. This makes conversation between NPCs a two-way communication, instead of 

the original boring one-way route. Example flow of a StoryTask is shown as follows: 

 

Figure 2.12 Flow of StoryTask documented in code. 
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Implementing dialogue with responses is hard, but the basic concept of it is to replace the 

current flow of dialogue with a branch. 

 

Figure 2.13 Sub-dialogue code implementation. 

Dialogues can now repeat from a previous point. So that, when players forget the quest 

requirement, they can still talk to the NPC to get task relevant information to complete a 

quest. 

2.9.2 Quest API 

Designing a flexible API takes time. We also aim to make it as simple to use as possible. 

It is also required that the API can do a wide variety of things. For example, the quest API 

allows puzzles and world quests to be implemented. The API is very simple, and dive 

deeping into the implementation is not needed. Only by looking at code examples suffices 

content creators need. Application of Quest API will be discussed in detail in the latter part 

of this report. 

2.10 Advanced Data Persistence 

Serialization is a process of converting data structures into certain file format for storage 

and transmission. Objects are saved into specific file formats via serialization and are later 

loaded back to the game. There is also a deserialization process where a file is converted 

back into an OOP object. For simplicity, we have generalized the whole system into Data 

Persistence. 

To allow players to save their game progress and resume afterwards, a “savable” object 

class and a Save and Load system is desired. One possible solution is to loop through all 

game objects once to check whether they are savable or not. For example, a GameData 

class is designed as the container for the game data in objects. The GameData objects will 

be converted and saved as JSON files using a famous c# library called Newtonsoft Json.  
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To further improve code quality and robustness, a generic DataPersistence class is created 

to make this process applicable to all types of data objects. For example, world editor data, 

game data and entities configuration objects can all go through the same generic 

DataPersistence class to convert themselves into a json file. Below shows a snippet of the 

generic class. Newtonsoft Json will handle the serialization and deserialization of common 

type values. 

 

Figure 2.14 Generic class definition of DataPersistence. 

In addition to a generic data persistence class, we have also implemented a way to convert 

abstract classes back and forth from a file. This process is widely used in our advanced 

quest system to simplify the creation of new quest tasks. The concept behind the 

implementation is to store the type of a class. Then, using the type information, the 

corresponding type of the class will be created. Below shows the abstract class used to 

implement player-defined quests in the Dungeon Editor. 

 

Figure 2.15 Code snippet of the abstract class. 
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The whole in-house data persistence solution is packaged into a name called 

DataPersistence API. 

2.11 Scene Switching 

Games often require scene switching. Scene switching is often used in games that have 

levels, for example, Angry Birds. A common application of scene switching in all games 

is switching between the main menu and the game world. We also have implemented 

scene switching for the main menu and the game world. However, in our case, additional 

preparations are needed. 

Because the singleton pattern is widely used in our game, there are times when the 

singleton is no longer available in a scene. For example, UI singleton in the main world 

and the game world is fundamentally different because the UI of the two scenes is 

different. 

The additional preparation is to re-assign or re-create the singletons needed for a scene. 

The whole process is packed into a single utility class called SceneUtils. Below shows 

part of the class, where the camera in the new scene is re-assigned back into the 

singletons. 
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Figure 2.16 Part of the implementation for setting up a switched scene. 
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3 Results and Discussion 

This chapter provides an overview of the project results, organized into two sections. In 

addition, technical issues encountered during the development are addressed. In Section 

3.1, an RPG framework developed for the game is introduced. In Section 3.2, twelve 

implemented game features are explained. In Section 3.3, the problems faced in the project 

and their mitigations are discussed. 

3.1 Original RPG Framework 

To facilitate the development process and improve maintainability, an original RPG 

framework is first created from scratch before introducing game content to the game. It 

mainly integrates with Unity Editor and works as a foundation or “skeleton” for game 

feature implementations. 

This RPG framework offers powerful functionalities to develop game logic across systems 

easily in Unity. It includes a Main Event System that allows system-to-system 

communications between different gameplay systems. For instance, the Trading system 

(see Section 3.2.7) relies on the inventories of both the player and NPCs, while the 

Inventory system itself does not have access to NPC inventories. Hence, the transactions 

are made by calling the Main Event System to transfer the game item from one side to 

another. 

The framework also provides ways to manipulate game configurations. Developers can 

create, configure, save, and load between game configurations and game objects in JSON 

easily with the DataPersistance class (see Section 2.10). 

3.2 Game Features 

Eight major gameplay systems are introduced as game features, namely Inventory and 

Items, Combat, Quest and Dialogue, Leveling, Save and Load, UI Panels, Trading, and 

Dungeon Editor. In addition, there are also four minor content-related game features, 

including Storyline and Dialogue, Game Maps, Models and Animations, as well as Music 

and Sound Effects. 
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3.2.1 Inventory and Items 

Inventory management is generally considered an important feature of an RPG. In the game, 

an Inventory system is developed for the player to collect and store items in the inventory, 

with a UI panel to view, use, and equip game items. By pressing the “I” hotkey, an 

Inventory panel pops up on the left side of the screen (see Figure 3.1). 

 

Figure 3.1 Opening Inventory panel by pressing “I” key.  

The player can use a “usable” game item, such as a consumable or an equipment, by 

clicking the icon of the corresponding item in the Inventory panel. For instance, when the 

player gets a Health Potion in his inventory and clicks on it, he will consume it and recover 

his health points (see Figure 3.2). 
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Figure 3.2 Before (up) and after (down) using a Health Potion. 

These game items can be easily created in Unity Editor 

3.2.2 Combat 

A Combat system is developed to handle all the logic in battles, such as calculations of 

attack damages and statistics of game items. For instance, equipping a helmet provides 

specific player stats like armor, which lowers the damage received by the player. Also, the 

player can choose to use consumable game items for combat, such as using health potions 
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for healing or strength potions for attack damage. During the battle, damage indicators are 

created to show the damage received from or dealt to an enemy (see Figure 3.3). 

 

Figure 3.3 Damage indicators during battle. 

Once the player defeats an enemy, loots such as game items and equipment are dropped 

according to game configuration. Such configuration lists all items to be dropped by 

specific enemies and their corresponding drop rates. An example is shown in Appendix D. 

To make the Combat system and the gameplay more balanced, enemies will get stronger 

along with the level of the player. Additionally, an enemy AI agent is developed to make 

the game more immersive. When the player moves close enough to an enemy, it will start 

chasing and try to attack the player. 

3.2.3 Quest and Conditions 

A Quest system is created to allow the player to progress through the storylines with 

different challenges, also known as story tasks in the game. The player will be rewarded 

with experience points, game items, and gold once they complete a task. This system is 

particularly designed to be maintainable and extendible due to its size of contents. 

A Quest API, as mentioned, is developed to serve such purposes. In the design, the game 

world will have a unique collection of storylines, known as the StoryBank. A StoryBank 
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is composed of multiple parallel Storyline objects, each containing a series of StoryTask 

(see Figure 3.4). 

 

Figure 3.4 An overview of the Quest API. 

Such API allows developers to implement Storylines and StoryTasks with dialogue and 

rewards. By creating a Storyline object with a name, adding multiple StoryTasks with 

single or branching dialogue (dialogue that provides a few options for response), and 

setting the rewards in terms of experience points and gold for each of them (see Figure 3.5). 

 



 

21 

 

(a) 

 

(b) 

 

(c) 

Figure 3.5 Example for setting up a Storyline (a) and in-game interaction (b, c). 

The API also includes in total seven types of quest conditions for StoryTasks, namely Item 

condition, Kill condition, Puzzle condition, Area condition, Defender condition, Open-

door condition, and Dolly Track condition. These conditions allow developers to create 

different types of tasks and mini games, such as investigation quest that requires players to 
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move to a certain location or kill quest that asks players to defeat certain number of target 

enemies. 

The first question condition is Item condition, it requires the player to deliver specific items 

to an NPC. By utilizing the Quest API, the required game items for a quest can be retrieved 

in the form of InGameLogicalObjects (a special class for storing game item data) and added 

to the task, with their required amounts. 

Another quest condition is Kill condition, which requires the player to slay specific 

enemies in certain location like typical RPGs. The API provides a way to spawn such 

enemies from prefabs to game objects on specific coordinates and counts the number of 

slayed enemies to keep track of the task status. 

The third condition is Puzzle condition. This condition sets up different types of puzzles 

designed by the team to certain location for players to solve. Currently, two types of puzzles, 

Basic and Easy, have been developed. These puzzles require the player to activate all the 

interactable towers in specific sequence and turn them into red color to complete the 

condition. 

The fourth condition is Area condition, which is by-design completed when the player 

walks within a certain area in the game world. This condition acts like a trigger to proceed 

with the Storyline or to start a new one. 

The fifth condition is Defender condition. This condition first spawns a base named Nexus 

and waves of enemies marching to it. The player is required to defend the Nexus and slay 

all enemies to complete the condition. 

The sixth condition is Open-door condition, which simply removes doors or borders that 

are blocking the player from certain areas. This is used to open a new game map for players 

when certain conditions are fulfilled. 

The last quest condition is Dolly Track condition. This is a special condition that controls 

the main camera and moves it in predefined tracks created by the developers. It is useful in 

cases like creating cut scenes during the quest, or during scene switching. 
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3.2.4 Leveling 

A Leveling system is built to manage the experience points (XP), levels, and their effects 

on player attributes and abilities. The threshold for each level, or the XP required to level 

up, is designed to grow quadratically to balance the difficulty of the game. When a player 

accumulates enough XP and reaches a threshold, the system will trigger a level-up event, 

which increases the level and corresponding player stats according to the level (see Figure 

3.6). 

   

Figure 3.6 Player stats before (left) and after a level-up event (right). 

3.2.5 Save and Load 

A Save and Load system is developed based on serialization method as mentioned. It 

allows the player to save and load not only his progress during gameplay, but also user-

customized dungeons made with the Dungeon Editor (see Section 3.2.8). Also, game 

configurations in different game scenes can also be saved and loaded. One example is the 

game entities configuration for looting on item drops and drop rates in Appendix D. 

3.2.6 UI Panels 

A UI system is built to serve most of the gameplay systems. It consists of three main panels, 

which are the Game panel, Setting panel, and World Editor panel. These UI panels act as 

the medium for the player to interact with the game. For example, the Inventory panel 

mentioned above (see Section 3.2.1) is a part of the Game panel. 

The Game panel includes all UI components or subpanels for normal gameplay, including 

the Minimap panel, Player Stat panel, Inventory panel, Quest panel, Interaction Info panel, 

Shop panel, and Dialogue panel (see Appendix E). 

The Setting panel comprises of three tab pages, namely Game, Graphics, and Audio (see 

Figure 3.7). The Game page provides ways for players to exit back to the main menu or 
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exit the game. The Graphics tab page includes drop-downs for resolution and quality level 

for the game, as well as a toggle for full screen. It allows the player to configure the 

graphics based on their preferences and game performance. The audio page allows the 

player to adjust the volumes of music and sound effects with sliders, as well as toggles to 

mute them. 

 

(a) 

 

(b) 
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(c) 

Figure 3.7 Game (a), Graphics (b), and Audio (c) tab pages in Setting panel. 

3.2.7 NPC Trading 

A Trading system is implemented as an extra feature that allows the player to exchange 

game items. When the player interacts with a tradable NPC, a “Shop” option will be shown 

on the Interaction Info panel. By pressing “F” to interact, a Shop panel is opened, showing 

the inventories of the player and the NPC, with labels of gold amounts (see Figure 3.9). 
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(a) 

 

(b) 

Figure 3.8 Interact with a tradable NPC (a) and open the Shop panel (b). 

In the Shop panel, the player can hover his cursor on an item on either side, and a tooltip 

with info about that item will be shown on it (see Figure 3.9). Similar to the tooltip in the 

Inventory panel, the tooltip contains the name and description of the item. In addition, it 

lists the price (buying price in NPC-side panel, selling price in player-side panel) of that 

item. 
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Figure 3.9 Tooltip on NPC-side Shop panel. 

Intuitively, by left clicking on the item in the NPC inventory, the player can buy the item 

from the NPC. And vice versa, the player can sell his item by left clicking on the item in 

his own inventory. 

To make the game more immersive and realistic, NPCs are set with different preferences 

on buying and selling different types of items, known as the BuyItemPreferences and 

SellItemPreferences. Such preferences affect the buying price and selling price of an NPC. 

For instance, from the perspective of an NPC, a Health Potion costs 50 Gold when selling 

to the player but is priced as 40 Gold when buying it back from the player (see Figure 3.10). 
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Figure 3.10 Selling price discounted due to NPC Preferences. 

3.2.8 Dungeon Editor 

A Dungeon Editor is developed based on the World Editor mentioned (see Figure 3.11). It 

serves to provide players with a user-friendly editor for customizing their own unique 

dungeon maps, with 3D models and a series of challenges using quest conditions and share 

the maps with their friends. 

 

Figure 3.11 World Editor panel in Dungeon Editor. 
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For control, players can move the camera freely in four directions with W, A, S, D keys. 

The camera can also be raised or lowered with space and control keys. 

To add 3D models and quest conditions to the dungeon, the player can make use of the 

Content panel on the right, with “Models” and “Condition” buttons. After clicking 

“Models”, a list of available 3D models will be shown (see Figure 3.12). By drag-and-drop, 

players can add these models to the dungeon easily. 

 

Figure 3.12 Adding 3D models in Dungeon Editor. 

In addition, players can also add quest conditions introduced in Section 3.2.3 as a series of 

tasks, using the “Conditions” button and a panel (see Figure 3.13). 
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Figure 3.13 Editing quest conditions in Dungeon Editor. 

3.2.9 Game Maps 

Currently, two game maps have been added to the game, including a village and a forest 

named Lost Woods (see Figure 3.14). 

 

Figure 3.14 Overview of game maps. 

Village Lost Woods 
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In the village, architectural models such as houses and wooden pavements, as well as a few 

interactable NPCs, have been created and added to the game world (see Figure 3.15). This 

village serves as the starting point for the player and the focus of the first Storyline. 

 

Figure 3.15 Layout of the Village game map. 

In Lost Woods, trees and a bandit camp have been added to the map (see Figure 3.16). This 

game map serves as a location for the player to complete certain quests in the Storylines. 
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Figure 3.16 Layout of the Lost Woods. 

3.2.10 Models and Animations 

The 3D architectural models used in this project, such as the houses and pavements in the 

village, are mostly free or licensed assets downloaded from the Unity Asset Store, while a 

small proportion of them are created by the team using Blender. 

For character models, the game also includes a lot of animations on the player control and 

NPCs. In a game, an animation can be thought of as a sequence of transformations of the 

“joints” or the “skeleton” on a model. In Unity, character models are usually rigged and 

skinned in the form of humanoid (see Figure 3.17), which can be easily mapped with 

animation clips. In other words, the same clips can work on different types of humanoid 

models. 

  

Figure 3.17 Humanoid avatar (left) and its mappings (right) in Unity Editor 

In our game, these animations are achieved by first setting up scripts to control the 

transitions between different states with Booleans, as well as some finite state machine 

controllers for characters such as the player and NPCs. Then, the states in these controllers 

and the models will be mapped to specific animation clips, such that they can be played 

during the state. For example, when the player is in “Running” state, an animation of 

running will be played with the player model. 

3.2.11 Music and Sound Effects 

All music in this game is generated by a popular and free composition AI, Suno AI. For 

our game, six high-quality background instruments are composed in total, with different 
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styles and instruments. Also, some free-to-use sound effects are downloaded from online 

forums and mapped along with the animations. 

3.3 Difficulties and Mitigations 

Time constraint is always the major problem across the whole project. Given a period of 6 

months and small team size of two, it is challenging to develop a good 3D game with 

various gameplay systems, features, and contents. To accelerate the development process, 

software engineering techniques like code-reuse, and pair programming have been applied. 

For example, regular meetings have been hosted for the team to share their progress. In the 

meeting, one member, known as the “driver”, focuses on developing new game features, 

while another one, known as the “navigator”, offers suggestions and focuses on debugging. 

Another problem is the steep learning curve of game development. In this project, each 

teammate has taken up several roles, not only as a game developer, but also game designer, 

3D modeler, and animator. There is no shortcut for acquiring such knowledge, but with 

hours of practice and reading, the team has eventually overcome most of the challenges 

encountered during development. 
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4 Conclusion 

To conclude, this project aims to deliver a 3D fantasy action RPG world through a rework 

on a previous game project. All proposed gameplay systems and features, such as Inventory, 

Combat, and Dungeon Editor, have been tested and successfully implemented. In addition, 

game contents, including two game maps and a list of 3D architectural models, have been 

created and added. Extra features like Trading have also been added to the game. 

4.1 Schedule 

As planned, all the proposed objectives, including multiple gameplay systems and features, 

have been completed (see Table 4.1). In the remaining time, the focus will be on the testing 

and preparing for the coming project exhibition. 

Table 4.1 Project schedule with current phase highlighted. 

Milestones Objectives Deadline 

Phase 1 (Inception)  Detailed project plan 

Project webpage 

1 Oct 2023 

Minimum Viable Project 

Development 

Inventory system 

Combat system 

Leveling system 

Basic 3D models 

Basic map design 

31 Dec 2023 

First Presentation  8-12 Jan 2024 

Phase 2 (Elaboration) Preliminary implementation 

Detailed interim report 

21 Jan 2024 

Final Project Development Dungeon Level Editor 

Character models 

Animations 

15 Mar 2024 

Game Testing and 

Adjustments 

 25 Mar 2024 

Final Presentation  15-19 Apr 2024 

Phase 3 (Construction) Finalized implementation 

Final report 

23 Apr 2024 
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Project Exhibition  26 April 2024 

4.2 Limitations 

Game development involves a wide variety of soft and hard skills, which are generally 

specified by roles in real production. For instance, game developers specialize in coding 

and programming, while game designers create game content. In this project, all the 

teammates have taken on several roles that are unfamiliar to them. 

At the beginning of the project, the project team is facing steep learning curves, and the 

development process is slower than expected, especially for 3D modelling. With extremely 

much time and effort, the team has managed to complete all the objectives for the project, 

as well as to include a few extra features to improve game experience. 
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Appendices 

Appendix A: Creating GameItem in Unity Asset Menu with Attributes 
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Appendix B: Equation Derivations of 2D Projectile Motion 
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Appendix C: Game Entities Configuration JSON File 
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Appendix D: Creating A New Quest with the Developed Quest API 
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Appendix E: All Subpanels in Game Panel 
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