

COMP4801 Final Year Project

Final Report

The Road to Castle 3D

Supervisor:

Dr. T. W. Chim

Group Members:

Leung Chiu Yuen, Rain (3035857294)

Ko King Nam, Vincent (3035864297)

Date of Submission:

26 April 2024

I

Abstract

The popularity of RPGs has spanned over decades, along with the development in gaming

technology and growth of the game market. This project aims to develop and deliver a

third-person 3D fantasy action RPG through a game rework. To achieve this goal, several

gameplay systems and features will be implemented as objectives, by integrating Unity and

other applications. Currently, many features have been implemented and the major ones

are 3D World Editor, AI Music, Quest, RPG Basics, and Save and Load, have been tested

and deployed successfully. These systems control the game mechanics in different

scenarios and are the basic framework for future game development. In addition, the

prologue of our story is created with a wonderful scene and interactable NPCs. Robust

codebase and meticulous planning in the early stage has bored fruit. Adding content to the

game now requires minimal effort with our new framework. During the development,

difficulties on 3D modelling, collaboration, and time have been encountered and mitigated

respectively.

II

Acknowledgment

We would like to express sincere gratitude to our supervisor, Dr. T. W. Chim, for his

guidance and support throughout the development of this final year project. Dr. Chim has

given us many valuable comments and suggestions for our game.

III

Abstract .. I

Acknowledgment .. II

List of Figures .. V

List of Tables .. VII

Abbreviations ... VIII

1 Introduction ... 1

1.1 Background ... 1

1.2 Motivation ... 1

1.3 Objectives ... 2

1.4 Report Outline ... 2

2 Methodology ... 3

2.1 Development Tools ... 3

2.1.1 Game Engine – Unity.. 3

2.1.2 IDE – Visual Studio Code... 4

2.1.3 3D Modelling and Animation – Blender .. 4

2.2 Codebase Design ... 5

2.3 Event-Driven Development .. 5

2.4 Singleton Pattern ... 5

2.5 Physics .. 6

2.6 Player Movement .. 6

2.7 Unity Techniques .. 7

2.8 World Editor .. 7

2.8.1 Basic Actions .. 7

2.8.2 Model-Quest Selection Panel .. 8

2.8.3 Scene Controls .. 9

2.9 Advanced Quest System ... 10

2.9.1 Core Quest System .. 11

2.9.2 Quest API .. 12

2.10 Advanced Data Persistence ... 12

2.11 Scene Switching .. 14

3 Results and Discussion ... 16

IV

3.1 Original RPG Framework ... 16

3.2 Game Features .. 16

3.2.1 Inventory and Items .. 17

3.2.2 Combat .. 18

3.2.3 Quest and Conditions .. 19

3.2.4 Leveling .. 23

3.2.5 Save and Load ... 23

3.2.6 UI Panels ... 23

3.2.7 NPC Trading ... 25

3.2.8 Dungeon Editor ... 28

3.2.9 Game Maps ... 30

3.2.10 Models and Animations .. 32

3.2.11 Music and Sound Effects .. 32

3.3 Difficulties and Mitigations .. 33

4 Conclusion .. 34

4.1 Schedule .. 34

4.2 Limitations .. 35

References ... 36

Appendices ... A

Appendix A: Creating GameItem in Unity Asset Menu with Attributes A

Appendix B: Equation Derivations of 2D Projectile Motion.. B

Appendix C: Game Entities Configuration JSON File ... C

Appendix D: Creating A New Quest with the Developed Quest API D

Appendix E: All Subpanels in Game Panel .. E

V

List of Figures

Figure 2.1 Conceptual “assembly line” of the project ... 4

Figure 2.2 3D models created in Blender (a) and imported to Unity (b) 4

Figure 2.3 Player faces enemy such that a 2D plane is formed. .. 6

Figure 2.4 Player movement states and sub-states. .. 7

Figure 2.5 Code snippet showing the restore function... 8

Figure 2.6 Code snippet for DraggableModelButton. .. 8

Figure 2.7 Code snippet for dragging a 3D model in the game. .. 9

Figure 2.8 Code snippet for creating a model in World Editor. ... 9

Figure 2.9 Diagram visualizing the smooth rotation problem. .. 10

Figure 2.10 Code snippet for rotating a 3D model in the game. 10

Figure 2.11 Storyline definition in code. ... 11

Figure 2.12 Flow of StoryTask documented in code. .. 11

Figure 2.13 Sub-dialogue code implementation. ... 12

Figure 2.14 Generic class definition of DataPersistence. .. 13

Figure 2.15 Code snippet of the abstract class. .. 13

Figure 2.16 Part of the implementation for setting up a switched scene. 15

Figure 3.1 Opening Inventory panel by pressing “I” key. ... 17

Figure 3.2 Before (up) and after (down) using a Health Potion. 18

Figure 3.3 Damage indicators during battle. .. 19

Figure 3.4 An overview of the Quest API. .. 20

Figure 3.5 Example for setting up a Storyline (a) and in-game interaction (b, c). 21

Figure 3.6 Player stats before (left) and after a level-up event (right). 23

Figure 3.7 Game (a), Graphics (b), and Audio (c) tab pages in Setting panel. 25

Figure 3.8 Interact with a tradable NPC (a) and open the Shop panel (b). 26

Figure 3.9 Tooltip on NPC-side Shop panel. ... 27

Figure 3.10 Selling price discounted due to NPC Preferences. 28

Figure 3.11 World Editor panel in Dungeon Editor. .. 28

Figure 3.12 Adding 3D models in Dungeon Editor. .. 29

Figure 3.13 Editing quest conditions in Dungeon Editor... 30

Figure 3.14 Overview of game maps. .. 30

VI

Figure 3.15 Layout of the Village game map. ... 31

Figure 3.16 Layout of the Lost Woods. ... 32

Figure 3.17 Humanoid avatar (left) and its mappings (right) in Unity Editor 32

VII

List of Tables

Table 4.1 Project schedule with current phase highlighted .. 34

VIII

Abbreviations

3D Three-dimensional

AI Artificial Intelligence

CG Computer Graphics

ECS Entity Component System

IDE Integrated Development Environment

NPC Non-player Character

RPG Role-playing Game

UI User Interface

XP Experience Points

1

1 Introduction

This chapter introduces the context behind the project in 4 sections. In Section 1.1, a brief

background of this project is introduced. In Section 1.2, project rationales are discussed. In

Section 1.3, the purpose and objectives of this project are listed. In Section 1.4, an outline

of subsequent chapters is provided.

1.1 Background

Role-playing is generally considered one of the most popular game genres, which

originated from the publication of Dungeon and Dragons (D&D) in 1974 [1]. The term

role-play often correlates with make-believe, an action of imaging and pretending

something unreal. In RPGs, players can cast themselves and act as characters in fictional

settings, based on “the range of imagination” [2] of game developers.

Over the past few years, there has been a rapid growth in the global gaming market,

possibly due to pandemic lockdowns [3]. The game market has witnessed great success in

classic RPG franchises, such as Baldur’s Gate, Monster Hunter, and Dark Souls. For a

long time, the video game market has been dominated by large publishers and studios, with

their huge investments in game development and research. But thanks to advances in

gaming technology, indie game developers are now capable of creating games with good

quality.

Various game development tools and software are now ubiquitous and often accessible to

the public. There are free and yet powerful game engines, such as Unity and Unreal Engine

5, available on the market. Moreover, AI technologies are now widely employed in game

development to lower production costs. For instance, content creators can utilize AI to

write storylines, generate images, and create music for games [4].

1.2 Motivation

As game enthusiasts, the inspiration from RPG masterpieces and the great interest in their

game design principles are the sources of motivation for this project. This project serves as

a valuable opportunity for the team to gain hands-on experience in game development, and

to develop communication and collaboration skills from teamwork.

2

1.3 Objectives

This project will be a rework and migration of The Road to Castle [5], which is a text-

based fantasy RPG played on Linux terminal. The final deliverable will be a third-person

3D fantasy action RPG, with implemented gameplay systems and contents.

The main purpose of this game project is to present a fantasy game world with a captivating

gaming experience to players. To achieve this, multiple game features and systems will be

accomplished as the objectives:

• Develop a flexible, maintainable, and extendable framework from scratch

• Create a compelling storyline, integrated with tutorials

• Provide a user-friendly user interface (UI)

• Design maps with diverse terrains, eco-systems, and weathers

• Provide an inventory system

• Design and implement a balanced combat mechanism

• Allow players to save and load their progress locally and remotely

• Provide a level system for character development

• Allow players to design and share their own dungeons via an in-game editor

1.4 Report Outline

In Chapter 2, the methodologies of this project will be discussed, including development

tools, concepts, and techniques to be used and their justifications. Following that, Chapter

3 introduces the results achieved in this project, as well as the problems encountered with

mitigations. Finally, there will be a summary of current progress and future work plan in

Chapter 4.

3

2 Methodology

In this chapter, software, concepts, and other methods used in this project and their

justifications are discussed in 8 sections. In Section 2.1, the choices of game engine, IDE,

and CG software are discussed. In Section 2.2, the project structure and codebase design

are explained. In Section 2.3, the event-driven design of the game is introduced. In Section

2.4, the singleton pattern is discussed. In Section 2.5, the physics and projectile motion is

elaborated. In Section 2.6, player movements such as walking and climbing are discussed.

In Section 2.7, different useful techniques in Unity are presented. In Section 2.8,

functionalities of the world editor are presented. In Section 2.9, the updated quest system

and its API are mentioned. In Section 2.10, an advanced data class for serialization named

data persistence is discussed. Finally, in Section 2.11, scene-to- scene switching and its

idea is explained.

2.1 Development Tools

2.1.1 Game Engine – Unity

The game will be made with Unity, a free and user-friendly game engine, which supports

cross-platform 3D game development with C# scripting. It acts as the platform that loads

and integrates all gameplay systems and local game contents into a game.

Unity also serves as the “backbone” for connecting all contents from different software.

Figure 2.1 below illustrates the concept of such integration between these applications. In

the figure, empty entities are created in Unity as containers to store scripts, 3D models, and

animations from IDE and 3D modeler. These entities are later composed into unique game

objects for different game scenes.

4

Figure 2.1 Conceptual “assembly line” of the project

Compared with other alternatives like Unreal Engine 5, Unity is more user-friendly in

terms of its interface and functions, and it is easier to run on small-scale projects. Also, it

provides some useful built-in systems that could facilitate the development process.

2.1.2 IDE – Visual Studio Code

An integrated development environment (IDE) is an application that provides developer

tools for software development. Visual Studio Code is selected as the IDE, as it provides

high extensibility with custom extensions to fulfill different requirements. For this project,

extensions can be installed to support Unity development and debugging on C# scripts.

2.1.3 3D Modelling and Animation – Blender

Blender is a free 3D creation software that supports most CG functionalities, such as

modelling, animation, and rendering. In the project, architectural models, character models,

and animation can be created in Blender (see Figure 2.2a), and then imported directly to

Unity (see Figure 2.2b).

(a)

(b)

Figure 2.2 3D models created in Blender (a) and imported to Unity (b)

Unity: Entities

VS Code: C# Scripts Blender: Models & Animations

Unity: Game Objects

Unity: Scenes Unity

5

2.2 Codebase Design

To develop a flexible and extendable gaming framework, a well-organized file structure is

required. In this project, game contents are modularized and grouped under the standard

convention [6]. For example, a “Scripts” directory is used to contain all scripts of the game,

with sub-directories separated by content types. This improves division of work, as team

members can develop different features simultaneously without interruption.

In addition, Unity attributes and data container classes have been applied to facilitate the

development process on game assets. For instance, with “[CreateAssetMenu]” attribute and

objects inherited from ScriptableObject class in Unity, self-defined assets can then be

created by simply clicking on the asset menu, instead of repetitive programming, as shown

in Appendix A.

For code reuse, inheritance is extensively used in this project. For example, a GameItem

class has been developed as the superclass for different game items, such as game

equipment and consumables, to inherit common behaviors.

2.3 Event-Driven Development

For games, event-driven design is an architecture that implements the game flow based on

events, instead of a predetermined series of actions. Events in games are generally the

inputs from users, such as mouse click and keypress. These events are captured as the

“triggers” for follow-up actions or other events designed by the developers.

Such design allows the game to provide prompt and dynamic responses to players

depending on their behaviors, as well as for system-to-system communications. For

example, the combat system can notify the quest system whenever the player has made

progress in quests. Also, different events are independent and are developed separately for

specific tasks, which facilitate the development and testing process.

2.4 Singleton Pattern

A singleton is a globally accessible class that has only one instance at a time. A singleton

object will not be re-assigned after instantiation. This helps protect variables and values

6

from unexpected behaviors. One example is to create a singleton for user settings to prevent

them from changing when switching to a new game scene.

As Unity allows configuration on objects in the editor before the game runs, constant values

can be assigned to singletons. This prevents repetitive coding and simplifies the

development process of complicated systems, such as the UI systems.

2.5 Physics

To make the game more immersive, simulations on physics such as gravity and collision

are added to the game world. For example, projectiles with weights like arrows are shot

with parabola-like locus instead of a straight line. Such curve on a 2D plane follows the

equations derived in Appendix B. In a 3D game world, this is done by first forming a 2D

plane between the faces of two entities, such as a player and an enemy (see Figure 2.3). An

ideal angle can then be calculated and assigned to the projectile.

Figure 2.3 Player faces enemy such that a 2D plane is formed.

2.6 Player Movement

To support player movements on the map, two movement states for moving and standing

are required. These two states are combined to provide a smooth movement behavior of

the player, such as walking, jumping, and climbing. Also, they allow later integrations of

character animations. Figure 2.4 below shows the two states and their respective sub-states.

7

Figure 2.4 Player movement states and sub-states.

2.7 Unity Techniques

In this project, Unity APIs are utilized to reduce development time. For example, Physics

API provides some useful functions for ray casting and creating colliding spheres on the

fly. Rays are cast onto the floor to detect whether the player is on the ground, while collider

spheres are created to detect objects near the player. These can be applied in player-object

interactions, where spheres are used to detect and check whether colliding objects are

interactable.

It is also remarkable that a wise use of Unity can sometimes lead to no-code solutions. For

example, by using built-in packages like Cinemachine, the camera controls can be

simplified.

2.8 World Editor

World Editor is also known as Dungeon Editor in the game. And it is mainly separated into

3 parts: Basic Actions, Model-Quest Selection Panel and Scene Controls.

2.8.1 Basic Actions

Five major actions are implemented: Restore, Remove, Save, Load and Leave. As a world

editor, we want basic functions such as add and remove. However, adding is also

implemented in the Model-Quest Selection Panel. The remove functionality is defined to

remove the currently selected model.

Save and Load is simply saving and loading the scene and quests back and forth from a file

with our own Data Persistence API.

Just in case the user modified the original dungeon by accident. There is a function to

restore the built-in dungeon. To do so, we have decided to replace the current json save

with the original built-in json.

8

Figure 2.5 Code snippet showing the restore function.

Since world editor is designed to be used by users normally in the game, we want them to

leave the world editor without breaking anything. That is the reason for the “leave” function.

Loading the main world back in the game client is the concept behind this function.

2.8.2 Model-Quest Selection Panel

This panel allows users to drag and add 3D models into the scene. In addition to adding

basic 3D models into the scene, users can also customize the quest they want in the current

dungeon. Currently, not all quests can be saved. But major ones like puzzle and kill quests

can be brought into a dungeon. Saving and loading of quests will be discussed in detail

later in the section Advanced Serialization.

The mechanism of dragging a model from a UI into a 3D scene requires some tricks. To

start with, we want the UI button to detect mouse drags. This can be achieved by

implementing DragHandlers to the class as shown in the following code.

Figure 2.6 Code snippet for DraggableModelButton.

The code above handles the dragging of a button. But it does not account for creating and

dragging of a 3D model. For dragging, a 2D to 3D conversion process is needed. Since the

mouse is dragging in a 2D space (screen), we want to convert it into 3D space (game scene).

9

Here, a Unity built-in API is used to shoot a ray from camera to the world, hitting the floor

to obtain the world position.

Figure 2.7 Code snippet for dragging a 3D model in the game.

To create it, we simply use the built-in function from Unity to create and load a 3D model

(fbx) into the scene at mouse location.

Figure 2.8 Code snippet for creating a model in World Editor.

2.8.3 Scene Controls

With the conversion process being implemented, positioning and rotation of the 3D model

can now be handled next. Positioning is simple, it is shown in the code above. But rotation

is tricky. We want rotation to be smooth, meaning that rotation angle will not start from 0

the moment we start rotating the model. Instead, we want the rotation to start from the

current rotation. To solve this problem, it is best to draw out a diagram as follows.

10

Figure 2.9 Diagram visualizing the smooth rotation problem.

Using the information above, the solution is clear that the new drag angle once the mouse

starts dragging the rotation ring indicator is angle + anchorAngle.

Figure 2.10 Code snippet for rotating a 3D model in the game.

2.9 Advanced Quest System

Story Quests and World Quests are a huge part of an RPG game. Hence, the team have

spent a lot of time designing the system to make Quest API simple and extendable. There

are 2 parts to our quest system. The first one is the core of the system. This includes

dialogue and narration, core logic and flow of quests and data persistence of quests. The

second part is the design of Quest API such that content creators can use the API at ease.

11

2.9.1 Core Quest System

A storyline contains multiple tasks. Tasks must go in a linear fashion due to the nature of

its implementation as shown below.

Figure 2.11 Storyline definition in code.

For content creators, they can also use event listeners like onCompleted to implement

quest-specific logic.

A StoryTask is like a quest. Each task can contain dialogues and conditions. Players must

complete all conditions of a task in order to pass a StoryTask. Most of the time, a

combination of dialogues and conditions are used. Moreover, dialogue now supports

responses. This makes conversation between NPCs a two-way communication, instead of

the original boring one-way route. Example flow of a StoryTask is shown as follows:

Figure 2.12 Flow of StoryTask documented in code.

12

Implementing dialogue with responses is hard, but the basic concept of it is to replace the

current flow of dialogue with a branch.

Figure 2.13 Sub-dialogue code implementation.

Dialogues can now repeat from a previous point. So that, when players forget the quest

requirement, they can still talk to the NPC to get task relevant information to complete a

quest.

2.9.2 Quest API

Designing a flexible API takes time. We also aim to make it as simple to use as possible.

It is also required that the API can do a wide variety of things. For example, the quest API

allows puzzles and world quests to be implemented. The API is very simple, and dive

deeping into the implementation is not needed. Only by looking at code examples suffices

content creators need. Application of Quest API will be discussed in detail in the latter part

of this report.

2.10 Advanced Data Persistence

Serialization is a process of converting data structures into certain file format for storage

and transmission. Objects are saved into specific file formats via serialization and are later

loaded back to the game. There is also a deserialization process where a file is converted

back into an OOP object. For simplicity, we have generalized the whole system into Data

Persistence.

To allow players to save their game progress and resume afterwards, a “savable” object

class and a Save and Load system is desired. One possible solution is to loop through all

game objects once to check whether they are savable or not. For example, a GameData

class is designed as the container for the game data in objects. The GameData objects will

be converted and saved as JSON files using a famous c# library called Newtonsoft Json.

13

To further improve code quality and robustness, a generic DataPersistence class is created

to make this process applicable to all types of data objects. For example, world editor data,

game data and entities configuration objects can all go through the same generic

DataPersistence class to convert themselves into a json file. Below shows a snippet of the

generic class. Newtonsoft Json will handle the serialization and deserialization of common

type values.

Figure 2.14 Generic class definition of DataPersistence.

In addition to a generic data persistence class, we have also implemented a way to convert

abstract classes back and forth from a file. This process is widely used in our advanced

quest system to simplify the creation of new quest tasks. The concept behind the

implementation is to store the type of a class. Then, using the type information, the

corresponding type of the class will be created. Below shows the abstract class used to

implement player-defined quests in the Dungeon Editor.

Figure 2.15 Code snippet of the abstract class.

14

The whole in-house data persistence solution is packaged into a name called

DataPersistence API.

2.11 Scene Switching

Games often require scene switching. Scene switching is often used in games that have

levels, for example, Angry Birds. A common application of scene switching in all games

is switching between the main menu and the game world. We also have implemented

scene switching for the main menu and the game world. However, in our case, additional

preparations are needed.

Because the singleton pattern is widely used in our game, there are times when the

singleton is no longer available in a scene. For example, UI singleton in the main world

and the game world is fundamentally different because the UI of the two scenes is

different.

The additional preparation is to re-assign or re-create the singletons needed for a scene.

The whole process is packed into a single utility class called SceneUtils. Below shows

part of the class, where the camera in the new scene is re-assigned back into the

singletons.

15

Figure 2.16 Part of the implementation for setting up a switched scene.

16

3 Results and Discussion

This chapter provides an overview of the project results, organized into two sections. In

addition, technical issues encountered during the development are addressed. In Section

3.1, an RPG framework developed for the game is introduced. In Section 3.2, twelve

implemented game features are explained. In Section 3.3, the problems faced in the project

and their mitigations are discussed.

3.1 Original RPG Framework

To facilitate the development process and improve maintainability, an original RPG

framework is first created from scratch before introducing game content to the game. It

mainly integrates with Unity Editor and works as a foundation or “skeleton” for game

feature implementations.

This RPG framework offers powerful functionalities to develop game logic across systems

easily in Unity. It includes a Main Event System that allows system-to-system

communications between different gameplay systems. For instance, the Trading system

(see Section 3.2.7) relies on the inventories of both the player and NPCs, while the

Inventory system itself does not have access to NPC inventories. Hence, the transactions

are made by calling the Main Event System to transfer the game item from one side to

another.

The framework also provides ways to manipulate game configurations. Developers can

create, configure, save, and load between game configurations and game objects in JSON

easily with the DataPersistance class (see Section 2.10).

3.2 Game Features

Eight major gameplay systems are introduced as game features, namely Inventory and

Items, Combat, Quest and Dialogue, Leveling, Save and Load, UI Panels, Trading, and

Dungeon Editor. In addition, there are also four minor content-related game features,

including Storyline and Dialogue, Game Maps, Models and Animations, as well as Music

and Sound Effects.

17

3.2.1 Inventory and Items

Inventory management is generally considered an important feature of an RPG. In the game,

an Inventory system is developed for the player to collect and store items in the inventory,

with a UI panel to view, use, and equip game items. By pressing the “I” hotkey, an

Inventory panel pops up on the left side of the screen (see Figure 3.1).

Figure 3.1 Opening Inventory panel by pressing “I” key.

The player can use a “usable” game item, such as a consumable or an equipment, by

clicking the icon of the corresponding item in the Inventory panel. For instance, when the

player gets a Health Potion in his inventory and clicks on it, he will consume it and recover

his health points (see Figure 3.2).

18

Figure 3.2 Before (up) and after (down) using a Health Potion.

These game items can be easily created in Unity Editor

3.2.2 Combat

A Combat system is developed to handle all the logic in battles, such as calculations of

attack damages and statistics of game items. For instance, equipping a helmet provides

specific player stats like armor, which lowers the damage received by the player. Also, the

player can choose to use consumable game items for combat, such as using health potions

19

for healing or strength potions for attack damage. During the battle, damage indicators are

created to show the damage received from or dealt to an enemy (see Figure 3.3).

Figure 3.3 Damage indicators during battle.

Once the player defeats an enemy, loots such as game items and equipment are dropped

according to game configuration. Such configuration lists all items to be dropped by

specific enemies and their corresponding drop rates. An example is shown in Appendix D.

To make the Combat system and the gameplay more balanced, enemies will get stronger

along with the level of the player. Additionally, an enemy AI agent is developed to make

the game more immersive. When the player moves close enough to an enemy, it will start

chasing and try to attack the player.

3.2.3 Quest and Conditions

A Quest system is created to allow the player to progress through the storylines with

different challenges, also known as story tasks in the game. The player will be rewarded

with experience points, game items, and gold once they complete a task. This system is

particularly designed to be maintainable and extendible due to its size of contents.

A Quest API, as mentioned, is developed to serve such purposes. In the design, the game

world will have a unique collection of storylines, known as the StoryBank. A StoryBank

20

is composed of multiple parallel Storyline objects, each containing a series of StoryTask

(see Figure 3.4).

Figure 3.4 An overview of the Quest API.

Such API allows developers to implement Storylines and StoryTasks with dialogue and

rewards. By creating a Storyline object with a name, adding multiple StoryTasks with

single or branching dialogue (dialogue that provides a few options for response), and

setting the rewards in terms of experience points and gold for each of them (see Figure 3.5).

21

(a)

(b)

(c)

Figure 3.5 Example for setting up a Storyline (a) and in-game interaction (b, c).

The API also includes in total seven types of quest conditions for StoryTasks, namely Item

condition, Kill condition, Puzzle condition, Area condition, Defender condition, Open-

door condition, and Dolly Track condition. These conditions allow developers to create

different types of tasks and mini games, such as investigation quest that requires players to

22

move to a certain location or kill quest that asks players to defeat certain number of target

enemies.

The first question condition is Item condition, it requires the player to deliver specific items

to an NPC. By utilizing the Quest API, the required game items for a quest can be retrieved

in the form of InGameLogicalObjects (a special class for storing game item data) and added

to the task, with their required amounts.

Another quest condition is Kill condition, which requires the player to slay specific

enemies in certain location like typical RPGs. The API provides a way to spawn such

enemies from prefabs to game objects on specific coordinates and counts the number of

slayed enemies to keep track of the task status.

The third condition is Puzzle condition. This condition sets up different types of puzzles

designed by the team to certain location for players to solve. Currently, two types of puzzles,

Basic and Easy, have been developed. These puzzles require the player to activate all the

interactable towers in specific sequence and turn them into red color to complete the

condition.

The fourth condition is Area condition, which is by-design completed when the player

walks within a certain area in the game world. This condition acts like a trigger to proceed

with the Storyline or to start a new one.

The fifth condition is Defender condition. This condition first spawns a base named Nexus

and waves of enemies marching to it. The player is required to defend the Nexus and slay

all enemies to complete the condition.

The sixth condition is Open-door condition, which simply removes doors or borders that

are blocking the player from certain areas. This is used to open a new game map for players

when certain conditions are fulfilled.

The last quest condition is Dolly Track condition. This is a special condition that controls

the main camera and moves it in predefined tracks created by the developers. It is useful in

cases like creating cut scenes during the quest, or during scene switching.

23

3.2.4 Leveling

A Leveling system is built to manage the experience points (XP), levels, and their effects

on player attributes and abilities. The threshold for each level, or the XP required to level

up, is designed to grow quadratically to balance the difficulty of the game. When a player

accumulates enough XP and reaches a threshold, the system will trigger a level-up event,

which increases the level and corresponding player stats according to the level (see Figure

3.6).

Figure 3.6 Player stats before (left) and after a level-up event (right).

3.2.5 Save and Load

A Save and Load system is developed based on serialization method as mentioned. It

allows the player to save and load not only his progress during gameplay, but also user-

customized dungeons made with the Dungeon Editor (see Section 3.2.8). Also, game

configurations in different game scenes can also be saved and loaded. One example is the

game entities configuration for looting on item drops and drop rates in Appendix D.

3.2.6 UI Panels

A UI system is built to serve most of the gameplay systems. It consists of three main panels,

which are the Game panel, Setting panel, and World Editor panel. These UI panels act as

the medium for the player to interact with the game. For example, the Inventory panel

mentioned above (see Section 3.2.1) is a part of the Game panel.

The Game panel includes all UI components or subpanels for normal gameplay, including

the Minimap panel, Player Stat panel, Inventory panel, Quest panel, Interaction Info panel,

Shop panel, and Dialogue panel (see Appendix E).

The Setting panel comprises of three tab pages, namely Game, Graphics, and Audio (see

Figure 3.7). The Game page provides ways for players to exit back to the main menu or

24

exit the game. The Graphics tab page includes drop-downs for resolution and quality level

for the game, as well as a toggle for full screen. It allows the player to configure the

graphics based on their preferences and game performance. The audio page allows the

player to adjust the volumes of music and sound effects with sliders, as well as toggles to

mute them.

(a)

(b)

25

(c)

Figure 3.7 Game (a), Graphics (b), and Audio (c) tab pages in Setting panel.

3.2.7 NPC Trading

A Trading system is implemented as an extra feature that allows the player to exchange

game items. When the player interacts with a tradable NPC, a “Shop” option will be shown

on the Interaction Info panel. By pressing “F” to interact, a Shop panel is opened, showing

the inventories of the player and the NPC, with labels of gold amounts (see Figure 3.9).

26

(a)

(b)

Figure 3.8 Interact with a tradable NPC (a) and open the Shop panel (b).

In the Shop panel, the player can hover his cursor on an item on either side, and a tooltip

with info about that item will be shown on it (see Figure 3.9). Similar to the tooltip in the

Inventory panel, the tooltip contains the name and description of the item. In addition, it

lists the price (buying price in NPC-side panel, selling price in player-side panel) of that

item.

27

Figure 3.9 Tooltip on NPC-side Shop panel.

Intuitively, by left clicking on the item in the NPC inventory, the player can buy the item

from the NPC. And vice versa, the player can sell his item by left clicking on the item in

his own inventory.

To make the game more immersive and realistic, NPCs are set with different preferences

on buying and selling different types of items, known as the BuyItemPreferences and

SellItemPreferences. Such preferences affect the buying price and selling price of an NPC.

For instance, from the perspective of an NPC, a Health Potion costs 50 Gold when selling

to the player but is priced as 40 Gold when buying it back from the player (see Figure 3.10).

28

Figure 3.10 Selling price discounted due to NPC Preferences.

3.2.8 Dungeon Editor

A Dungeon Editor is developed based on the World Editor mentioned (see Figure 3.11). It

serves to provide players with a user-friendly editor for customizing their own unique

dungeon maps, with 3D models and a series of challenges using quest conditions and share

the maps with their friends.

Figure 3.11 World Editor panel in Dungeon Editor.

29

For control, players can move the camera freely in four directions with W, A, S, D keys.

The camera can also be raised or lowered with space and control keys.

To add 3D models and quest conditions to the dungeon, the player can make use of the

Content panel on the right, with “Models” and “Condition” buttons. After clicking

“Models”, a list of available 3D models will be shown (see Figure 3.12). By drag-and-drop,

players can add these models to the dungeon easily.

Figure 3.12 Adding 3D models in Dungeon Editor.

In addition, players can also add quest conditions introduced in Section 3.2.3 as a series of

tasks, using the “Conditions” button and a panel (see Figure 3.13).

30

Figure 3.13 Editing quest conditions in Dungeon Editor.

3.2.9 Game Maps

Currently, two game maps have been added to the game, including a village and a forest

named Lost Woods (see Figure 3.14).

Figure 3.14 Overview of game maps.

Village Lost Woods

31

In the village, architectural models such as houses and wooden pavements, as well as a few

interactable NPCs, have been created and added to the game world (see Figure 3.15). This

village serves as the starting point for the player and the focus of the first Storyline.

Figure 3.15 Layout of the Village game map.

In Lost Woods, trees and a bandit camp have been added to the map (see Figure 3.16). This

game map serves as a location for the player to complete certain quests in the Storylines.

32

Figure 3.16 Layout of the Lost Woods.

3.2.10 Models and Animations

The 3D architectural models used in this project, such as the houses and pavements in the

village, are mostly free or licensed assets downloaded from the Unity Asset Store, while a

small proportion of them are created by the team using Blender.

For character models, the game also includes a lot of animations on the player control and

NPCs. In a game, an animation can be thought of as a sequence of transformations of the

“joints” or the “skeleton” on a model. In Unity, character models are usually rigged and

skinned in the form of humanoid (see Figure 3.17), which can be easily mapped with

animation clips. In other words, the same clips can work on different types of humanoid

models.

Figure 3.17 Humanoid avatar (left) and its mappings (right) in Unity Editor

In our game, these animations are achieved by first setting up scripts to control the

transitions between different states with Booleans, as well as some finite state machine

controllers for characters such as the player and NPCs. Then, the states in these controllers

and the models will be mapped to specific animation clips, such that they can be played

during the state. For example, when the player is in “Running” state, an animation of

running will be played with the player model.

3.2.11 Music and Sound Effects

All music in this game is generated by a popular and free composition AI, Suno AI. For

our game, six high-quality background instruments are composed in total, with different

33

styles and instruments. Also, some free-to-use sound effects are downloaded from online

forums and mapped along with the animations.

3.3 Difficulties and Mitigations

Time constraint is always the major problem across the whole project. Given a period of 6

months and small team size of two, it is challenging to develop a good 3D game with

various gameplay systems, features, and contents. To accelerate the development process,

software engineering techniques like code-reuse, and pair programming have been applied.

For example, regular meetings have been hosted for the team to share their progress. In the

meeting, one member, known as the “driver”, focuses on developing new game features,

while another one, known as the “navigator”, offers suggestions and focuses on debugging.

Another problem is the steep learning curve of game development. In this project, each

teammate has taken up several roles, not only as a game developer, but also game designer,

3D modeler, and animator. There is no shortcut for acquiring such knowledge, but with

hours of practice and reading, the team has eventually overcome most of the challenges

encountered during development.

34

4 Conclusion

To conclude, this project aims to deliver a 3D fantasy action RPG world through a rework

on a previous game project. All proposed gameplay systems and features, such as Inventory,

Combat, and Dungeon Editor, have been tested and successfully implemented. In addition,

game contents, including two game maps and a list of 3D architectural models, have been

created and added. Extra features like Trading have also been added to the game.

4.1 Schedule

As planned, all the proposed objectives, including multiple gameplay systems and features,

have been completed (see Table 4.1). In the remaining time, the focus will be on the testing

and preparing for the coming project exhibition.

Table 4.1 Project schedule with current phase highlighted.

Milestones Objectives Deadline

Phase 1 (Inception) Detailed project plan

Project webpage

1 Oct 2023

Minimum Viable Project

Development

Inventory system

Combat system

Leveling system

Basic 3D models

Basic map design

31 Dec 2023

First Presentation 8-12 Jan 2024

Phase 2 (Elaboration) Preliminary implementation

Detailed interim report

21 Jan 2024

Final Project Development Dungeon Level Editor

Character models

Animations

15 Mar 2024

Game Testing and

Adjustments

 25 Mar 2024

Final Presentation 15-19 Apr 2024

Phase 3 (Construction) Finalized implementation

Final report

23 Apr 2024

35

Project Exhibition 26 April 2024

4.2 Limitations

Game development involves a wide variety of soft and hard skills, which are generally

specified by roles in real production. For instance, game developers specialize in coding

and programming, while game designers create game content. In this project, all the

teammates have taken on several roles that are unfamiliar to them.

At the beginning of the project, the project team is facing steep learning curves, and the

development process is slower than expected, especially for 3D modelling. With extremely

much time and effort, the team has managed to complete all the objectives for the project,

as well as to include a few extra features to improve game experience.

36

References

[1] P. Mason, “In Search of the Self”, Beyond Role and Play: tools, toys and theory for

harnessing the imagination. Helsinki: Ropecon ry, 2004, pp. 1-14.

[2] M. Hitchens and A. Drachen, “The Many Faces of Role-Playing Games,”

International Journal of Role-Playing, no. 1, pp. 3–21, Dec. 2008, doi:

https://doi.org/10.33063/ijrp.vi1.185.

[3] S. Read, “Gaming Is Booming and Is Expected to Keep growing. This Chart Tells

You All You Need to Know,” World Economic Forum, Jul. 28, 2022.

https://www.weforum.org/agenda/2022/07/gaming-pandemic-lockdowns-pwc-growth/

[4] N. Anantrasirichai and D. Bull, “Artificial Intelligence in the Creative industries: A

Review,” Artificial Intelligence Review, vol. 55, no. 1, Jul. 2021, doi:

https://doi.org/10.1007/s10462-021-10039-7.

[5] “The Road to Castle”, GitHub.

https://github.com/pystander/ENGG1340_Gp106_RTC

[6] “Best practices for organizing your Unity project | Unity,” Unity.

https://unity.com/how-to/organizing-your-project

https://doi.org/10.33063/ijrp.vi1.185
https://www.weforum.org/agenda/2022/07/gaming-pandemic-lockdowns-pwc-growth/
https://doi.org/10.1007/s10462-021-10039-7
https://github.com/pystander/ENGG1340_Gp106_RTC
https://unity.com/how-to/organizing-your-project

A

Appendices

Appendix A: Creating GameItem in Unity Asset Menu with Attributes

B

Appendix B: Equation Derivations of 2D Projectile Motion

C

Appendix C: Game Entities Configuration JSON File

D

Appendix D: Creating A New Quest with the Developed Quest API

E

Appendix E: All Subpanels in Game Panel

F

G

