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Abstract 
 

This project addresses the limited application of Natural Language Processing (NLP), 

particularly Language Model Libraries (LLMs), in the gaming industry and game reviews. 

Recognizing a gap in existing game review platforms such as Steam, Opencritic, and 

Metacritic, which predominantly serve end-users and offer limited functionalities in terms of 

review analysis and filtering, a web-based game review platform called CritiQ is developed. 

CritiQ is a complimentary game review platform that leverages NLP to provide a variety of 

services including automated review analysis, generation of aggregated review summaries, and 

analytical features pertaining to game reviews such as review length and sentiment distribution. 

The project outcomes are categorized into three main sections: frontend, backend, and machine 

learning. The frontend concludes in a responsive, user-friendly, well-designed, and highly 

accessible web application compatible with various devices. The backend solution, hosted on 

cloud platforms, utilizes a comprehensive CI/CD pipeline for swift development and 

deployment processes. Machine learning models, including sentiment analysis, topic modeling 

and large language models, are effectively implemented with high precision and performance. 

CritiQ serves as a significant contributor to the gaming industry by streamlining the game 

development process and facilitating an efficient feedback loop between game developers and 

players. It also provides substantial benefits to the general gaming community as it enables 

them to utilize the platform for game discovery, expressing their viewpoints about various 

games, and collectively enhancing the gaming experience through constructive feedback. The 

project demonstrates the feasibility and benefits of integrating NLP into the analysis of game 

review. It concludes that with a thoughtfully constructed system architecture, NLP tools can be 

smoothly incorporated into pre-existing systems, thereby enhancing the understanding of game 

developers and users about the strengths of the games and areas for improvement. 
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1. Introduction 

This section discusses the Project Background (Section 1.1), Objectives (Section 1.2), 

Deliverables (Section 1.3), Contributions (Section 1.4) and Outline (Section 1.5). 

 

1.1. Background 

The emergence of game review platforms such as Steam, Opencritic, and Metacritic are 

predominantly designed to serve the needs of end-users. Feedback from game reviews can 

provide valuable feedback on bug fixes and game design suggestions  (Lin et al., 2019). 

However, these platforms offer limited functionalities particularly in terms of review 

analysis and filtering. Consequently, this poses a challenge for developers seeking to derive 

meaningful insights from user opinions though the platforms. 

 

This project aims to create a comprehensive full-stack review website with a primary 

objective of leveraging machine learning (ML) and natural language processing (NLP) 

techniques to empower game developers by eliminating the need for labor-intensive manual 

analysis and allowing game developers to make data-driven decisions. The project aims to 

revolutionize the review process by implementing advanced data processing and 

visualization capabilities, automating the analysis of reviews, and generating insightful 

feedback for developers. By leveraging the power of NLP, the website seeks to extract 

valuable information from user reviews, identify patterns and trends, and provide 

developers with detailed feedback that can improve their software development practices 

through easy-to-understand visualization. Developers can gain deeper insights and 

actionable intelligence from the reviews, enabling them to enhance their game and optimize 

the overall experience. This project represents a significant step towards empowering game 

developers through cutting-edge technologies and facilitating continuous improvement in 

their game development processes. 
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1.2. Objectives 

The five main objectives of this project are listed below. 

• Research into NLP, including tokenization, stemming, and stopwords removal. 

• Provide feedback using Sentiment Analysis, Topic Modelling, and Keyword Extraction. 

• Perform web-scraping for data extraction, processing, and model training. 

• Develop a full-stack scalable modern web application with responsive web design 

approach. 

• Provide intuitive data visualization to users in the web application. 

 

1.3. Deliverables 

This project aims to deliver a full-stack cloud-native web application, including a frontend 

webpage, backend system, and database and distributed ML models that support the NLP 

functionalities of the application. 

 

1.4. Contributions 

This project plan to develop a complimentary game review platform call CritiQ, which 

offers services such as automated review analysis, generation of aggregated review 

summaries, and analytical features pertaining to game reviews such as review length and 

sentiment distribution. Our platform serves as a significant contributor to the gaming 

industry by streamlining their game development process and facilitating efficient feedback 

loop between game developers and players. Furthermore, it provides substantial benefits to 

the general gaming community as it enables them to utilize our platform for game discovery, 

expressing their viewpoints about various games, and collectively enhancing the gaming 

experience through constructive feedback. 

 

1.5. Outline 

This report will present a comprehensive analysis of the project, focusing on key sections, 

including Related Work (Section 2), Detailed Methodologies (Section 3), Results (Section 

4), Difficulties and Limitation (Section 5), Full Project schedule (Section 6), and a 

Conclusive Summary with Future Works (Section 7). 

  



 3 

2. Related Work 

Game reviews are user-generated posts that provide feedback, opinions, and discussions about 

specific games. They focus on evaluating the gameplay, graphics, and overall experience of 

the game. To better understand the characteristics of game reviews, related literature was 

reviewed. Lin et al (2019) conducted a thorough empirical study of game reviews to analyze 

their length, topics and relationship with players’ playtime when writing the reviews. 

Comparisons were made between positive and negative reviews, early-access reviews and non-

early-access reviews, indie games reviews and triple-A games reviews. Guzsvinecz & Szűcs 

(2023) analyzed the length and distribution of sentiments in over 35 million game reviews from 

11 popular genres, such as Action, Racing and Sports. 

 

However, special characteristics of the text in game reviews pose significant difficulty in the 

task of sentiment classification, in which the performance of the classifiers may be diminished. 

Viggiato et al (2022) identified six major characteristics. First, game reviews often come with 

frequent uses of contrast conjunctions as both advantages and disadvantages of the game are 

pointed out. Second, game reviews include words that is usually viewed negatively in other 

context, yet in a neutral or positive manner in game reviews, such as, “kill”, “zombie”, and 

“fire” in First Person Shooters and Action games. Third, sarcasm was frequently observed in 

game reviews. It occurs when a positive text was used to convey a negative attitude, or vice 

versa. The remaining three characteristics are unclearness, game comparison with another 

game or with a previous version of itself, and mismatched recommendation. 

 

Sentiment analysis is one of the numerous aspects of NLP that aims to extract sentiments and 

opinions from texts (Birjali et al., 2021). It has been well applied in various domains, such as 

analyzing customers' product reviews, establishing a reliable recommendation system based on 

reviews, and public healthcare monitoring (Birjali et al., 2021). As for the gaming industry, 

various researchers attempted to classify the sentiment of comments using various machine 

learning models and deep neural networks. 

 

Tam et al (2021) conducted a comparative study about the ability of machine learning models 

to classify around 15K game comments and reviews scrapped from Steam and Metacritic. 

Three-class sentiment labels, i.e., Positive, Negative and Neutral, were first created with pre-

trained sentiment analysis models, such as VADER, on reviews. The Synthetic Minority 

Oversampling Technique (SMOTE) was then applied to create a balanced dataset, tackling data 
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imbalance in neutral and negative reviews over positive reviews. Five machine learning 

algorithms, which are Logistic Regression (LR), Multinomial Naïve Bayes (MNB), Support 

Vector Machine (SVM), Multi-layer Perceptron Classifier (MLP), and Extreme Gradient 

Boosting Classifier (XGBoost) were then applied to build sentiment classifiers with both 

imbalanced dataset and balanced dataset. Results suggested that training with a balanced 

dataset with oversampling significantly improved the performance of most models. 

 

Ruseti et al (2020) conducted a study about three-class sentiment classification on a 117K 

dataset with games reviews from Metacritic. Reviews were first classified into positive, neutral, 

or negative based on the score on Metacritic. Then a range of ML models, which were SVM, 

MNB, and deep neural networks (DNN), combined with bag-of-words (BoW), word2vec 

embedding, or Universal Sentence Encoder, were trained on a balanced dataset to classify the 

reviews. All models achieved accuracy between 61% and 67%. 

 

Al Mursyidy Fadhlurrahman et al (2023) applied Bidirectional Encoder Representations from 

Transformers (BERT), Bi-directional Long-short Term Memory (BiLSTM), and Bi-directional 

Gated Recurrent Unit (BiGRU) on two class sentiment classification with a balanced dataset 

containing 7K comments from 10 most reviewed games on Steam. They then presented another 

model, BERT-BiLSTM-CRF, to enhance sentiment classification over fine-tuned BERT on the 

dataset. The original fine-tuned BERT model achieved 0.88 in F1 score, accuracy, and recall. 

 

The above-mentioned related works provides expected sentiment classification rate in the 

context of game comments and reviews. However, works that compare the classification 

performance of game comments with different architectures on a large training and testing 

dataset are rare. As a result, our research in sentiment classification contributes to the 

aforementioned works as an experimental expansion by comparing the real-life performance 

of various approaches of feature extraction and model architectures. 

 

Topic modeling is one of the numerous aspects of NLP that compresses a set of documents and 

return a set of highly representative topics that describe the content in an accurate and coherent 

manner (Churchill & Singh, 2022). Due to the nature of the length of game reviews, and 

rareness of applying topic modeling on game reviews, literature reviews regarding short text 

topic modeling on game reviews and social media posts were conducted. 
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Yu et al (2022) applied Latent Dirichlet Allocation (LDA) to explore the prominent topics in 

reviews from Dark Soul 3 and Dark Soul 1 separately, which the former is a sequel of latter, 

and compare the common topics within the two games. 14 and 15 topics were uncovered 

respectively from a total of 130K English reviews from Steam. Topics uncovered reflected 

players enjoyed the combat, character, overall experience, and difficulty of both games, and 

other commonly found aspects, such as graphic and gameplay. 

 

Similar approach was also taken in (Stepien, 2021) to analyze the topic in 3 popular games: 

DOTA2, PUBG and GTA5. LDA and LDA Sequential were applied to uncover the distribution 

of changes of shares of topics by training both models on reviews scrapped from Steam of each 

game. The result suggested that changes in shares of topics were observed when major game 

updates were released, or major tournaments were organized. 

 

More advanced topic modelling models have been applied to analyze different short text in 

social media posts. Eagger & Yu (2022) compared the ability of four common topic modeling 

techniques, LDA, Non-negative Matrix Factorization (NMF), Top2Vec, and BERTopic, in 

analyzing the topics in Twitter posts regarding travel and COVID-19 pandemic. 31800 unique 

tweets were collected from Twitter, and comparisons were drawn between the created topics 

and their keywords of LDA and NMF, and that of Top2Vec and BERTopic. Result suggested 

BERTopic and NMF were effective in analyzing Twitter data. 

 

A similar comparison of topic models was conducted by Gan et al (2024) to compare three 

topic modeling methods: LDA, Top2Vec and BERTopic, in analyzing the latent topic in 

Twitter and Weibo posts regarding the topic ChatGPT. Result suggested generated topics from 

BERTopic were better segmented, more independent, with clear semantics understanding in 

both English and Chinese. 

 

The above-mentioned works provide a baseline regarding the ability of various topic modelling 

techniques. Yet, works related to topic modeling on game reviews only focused on training 

separate models on each game. Works that compare the performance of applying a single topic 

modeling model across multiple games were hardly found. As a result, our research in topic 

modelling contributes to the works as an experimental approach of applying a single trained 

topic model to analyze various common aspects of games in different games. 
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3. Methodology 

The project can be divided into three main sections which are Machine Learning and Natural 

Language Processing (Section 3.1), Frontend Web Applications (Section 3.2), and Backend 

Technologies (Section 3.3). The methodology of development will be discussed in detail. 

3.1 Machine Learning and Natural Language Processing 

This section discusses three NLP tasks which are  Sentiment Analysis (Section 3.1.1), 

Topic Modeling (Section 3.1.2) and Keyword Extraction (Section 3.1.3). 

3.1.1 Sentiment Analysis 

This section presents the Problem Definition (Section 3.1.1.1), Data Preparation 

(Section 3.1.1.2), Text Preprocessing (Section 3.1.1.3), Exploratory Data Analysis 

(EDA) (Section 3.1.1.4), Dataset Preparation (Section 3.1.1.5), Feature Extraction and 

Model Selection (Section 3.1.1.6), Model Implementation (Section 3.1.1.7), Model 

Training (Section 3.1.1.8), Model Evaluation (Section 3.1.1.9), and Model Deployment 

(Section 3.1.1.10). 

 

3.1.1.1 Problem Definition 

Sentiment analysis is a crucial task for both game developers and potential players. 

It enables the former to understand the feedback and preferences of the gaming 

community, and the latter to form a clear and unbiased impression of the game’s 

expected experience. This can facilitate better decision-making for both parties, 

such as improving game quality, features, and bug fixes, and making informed 

purchase choices. However, manually reading and analysing all the comments and 

reviews about a game is impractical and inefficient, especially for popular titles that 

generate a large volume of text data. Therefore, automated sentiment analysis can 

provide a useful and convenient way to obtain a summary of the community’s 

opinions and sentiments toward a game. 

 

The process of sentiment analysis typically consists of six stages (See Figure 1 (a)). 

First, text data is collected from relevant sources or platforms, and structured and 

stored in a suitable format, forming a dataset. Second, data preprocessing is applied 

to the text dataset to remove noise, irrelevant information, and reduce data 

dimensionality. Third, feature extraction is performed on the preprocessed text data 

to create a feature space that can be used by machine learning or deep learning 

models. Fourth, a model is implemented and trained on the extracted features to 
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learn how to classify the sentiment polarity of the text data, such as positive, neutral, 

or negative. Fifth, evaluation is conducted on separate testing or validation datasets 

to measure the performance of the trained model and select the best one. Sixth, the 

selected model is deployed to real-world scenarios on a system.  

     

       (a)         (b) 

Figure 1: Usual stages in Sentiment Classification. (a): Six usual stages in Sentiment Classification. (b): Overall 

framework of section Sentiment Analysis of the project. Two additional stages were added and labeled in pink. 

As mentioned in Section 2, Related Works, it is not uncommon to find a huge 

imbalance in several positive and negative reviews in a game. Also, research from 

2015 showed that the performance of ML models is positively correlated with the 

size of the training dataset in sentiment classification (Prusa et al., 2015). Therefore, 

three research questions were created to guide the process of selecting the best 

performant model in sentiment classification of game reviews. These questions are 

in the following. 

RQ1: Does an imbalance training dataset hamper model performance? 

RQ2: What is the relationship between dataset size and performance? 

RQ3: What is the best model with little hyperparameter selection? 

Due to the research questions, compared to the common stages of sentiment 

classification, two stages, EDA, and Dataset Preparations, were performed after 

Data Pre-processing and before Feature Extraction to understand the distribution of 

data and prepare corresponding datasets for RQ1 and RQ2. Hence, the framework 

of this section involves eight stages (See Figure 1 (b)). 

3.1.1.2 Data Preparation 

An existing dataset created by Sobkowicz (2017) with reviews scrapped from Steam 

was selected. The dataset contains over 6.4 million publicly available English 

reviews from different games and genres on Steam. The dataset contains five 

columns, which are: [‘app_id’, ‘app_name’, ‘review_text’, ‘review_score’, 
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‘review_votes’], with each representing the id of the game on Steam, the name of 

the game, the review text, an indicator whether the review recommends the game, 

and an indicator whether the review was recommended by another user respectively. 

The sentiment of each comment was labelled by the column ‘review_score’, 

whether a ‘1’ indicates a positive review, and a ‘-1’ indicates a negative review, as 

there are two distinct values in the column ‘review_score’, which was either ‘1’ or 

‘-1’. All ‘-1’ labellings in column ‘review_score’ were converted to ‘0’ for the 

convenience of model training, as typically, labels for classes began from ‘0’. 

Selecting an existing dataset with a large number of comments saves a significant 

amount of time in data collection from creating a scraping program and running the 

data scraping program, speeding up the development process. 

 

3.1.1.3 Text Preprocessing 

Data cleaning is first performed on the cleaned dataset. First, rows with empty 

values in columns ‘app_name’ or ‘review_text’ were removed. Then, unhelpful 

comments containing merely the phrase ‘Early Access Review’ were removed. 

Next, rows with reviews containing filtered content were removed, as Steam 

replaced sensitive words with the symbol ‘♥’, leading to incomplete comments. 

Figure 2 displays an example of Steam's automated filtering. Rows with comments 

containing merely whitespaces were moved also. Finally, rows with less than 20 

characters were removed to remove comments that contained too short, difficult-to-

interpret content. After performing the mentioned data cleaning procedure, the 

number of rows in the dataset was reduced to 3.95M, a 38.4% reduction in terms of 

size. 

 
Figure 2: Steam automated comment filtering. The sensitive word was replaced by consecutive heart symbols. 

 

3.1.1.4 Exploratory Data Analysis 

Exploratory data analysis (EDA) was performed on the preprocessed dataset before 

model training. EDA is concerned with finding information from raw data and 

generating informal conclusions about the data. It aims to think about the data from 

various points of view by utilizing an array of tools, such as analyzing statistical 

values and graph plotting Fields(Morgenthaler, 2009). First, the ratio between the 

number of positive reviews and negative reviews was calculated to be 5.14: 1 (See 
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Figure 3), which was not surprising as similar ratios were recorded in a previous 

study across games in multiple genres (Guzsvinecz & Szűcs, 2023).  

Next, the focus was shifted to analyzing the distribution of the number of words in 

reviews. After calculation with Python and Pandas, the medium number of words 

was 29, with a median number of 154 characters. It was suggested that our dataset 

contained comments with relatively shorter game reviews than a previous study, as 

the median number of characters was 25% smaller than a previous study of game 

reviews (Lin et al., 2019). Also, 99% of reviews were 549 words or less, suggesting 

handling the majority of reviews will not be a computationally intensive task in 

terms of the length of a review. Further investigation regarding the distribution of 

the number of words in positive and negative sentiment reviews was conducted. It 

was discovered that negative reviews were longer than positive reviews, as the 

former had a median number of words equal to 40, while the latter was 27. The 

result also echoed the findings in the same previous study (Lin et al., 2019). 

Then, the focus was shifted to analyzing the common words of the reviews. Before 

analyzing, a further cleaning was performed, in which the flowchart of the process 

was shown below (See Figure 4). We first removed any hyperlinks and special 

markups (like “&gt;”, “&quot”, “<p>”), in the comments. Then we removed any 

emojis in the sentences. Next, we convert all letters to lowercase and unify 

consecutive whitespaces to a single whitespace character. Then we remove any 

punctuation except “,”, “.” and “!”. Finally, we performed stopword removal and 

stemming using NLTK for each review. Stopwords are a set of words that are 

ubiquitous yet carry little meaning to the text, such as ‘a’, ‘I’, ‘do’, ‘be’, ‘then’, 

‘that’, and ‘so’.  Removing them can reduce the noise in the text. Stemming is a 

technique to reduce words in multiple-word forms to their base form. Applying the 

technique can reduce the feature space of words, avoid redundancy, and lead to a 

more consistent representation of the text. A. After that, the number of appearances 

of each word was calculated and the top 20 common words in the whole dataset 

were discovered. It was shown that the words were about the game, such as the 

word ‘game’, ‘play’, ‘one’, and ‘story’, and feeling towards the game, such as ‘like’, 

‘good’, ‘fun’, ‘love’ (See Figure 5 (a)). If analyzing the sets with only positive or 

negative comments, 15 out of 20 frequent words in either positive or negative 

comments were in common (See Figure 5 (d)), showing huge overlapping in the set 
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of most common words in the set of positive-only reviews and negative-only 

reviews. 

  

Figure 3: Number of reviews in each sentiment class in the cleaned dataset with a 5.14: 1 positive to 

negative ratio. 

 

Figure 4:Procedure of further data cleaning on the cleaned dataset. 

    

(a)   (b)   (c)   (d) 

Figure 5: Number of appearances of top 20 frequent words in the cleaned dataset after further data cleaning. (a): 

Words in the cleaned dataset with both positive and negative reviews. (b): Words in the cleaned dataset with only 

positive reviews. (c): Words in the cleaned dataset with only negative reviews. (d): Common words in (b) and (c). 
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3.1.1.5 Datasets Preparation 

Eight datasets were constructed from the cleaned dataset after Text Preprocessing. 

Two of them were for validation, and the remaining were for model training. 

Regarding validation datasets, a balanced dataset and an imbalanced dataset were 

created to effectively perform cross-model performance comparison and evaluate 

the performance of models in real-life situations. The balanced dataset contained 

268588 reviews with the same number of positive and negative reviews, while the 

imbalanced dataset contained 790655 reviews with the ratio of number of positive 

and negative reviews approximated to 4.90: 1, similar to the cleaned dataset. The 

creation process was as below. First, the imbalanced dataset was created by 

selecting 20% of the reviews randomly. These selected reviews were then dropped 

from the cleaned dataset. Next, the balanced dataset was created by first selecting 

20 percent of the total number of negative reviews in the cleaned dataset, and then 

randomly selecting the same number of positive reviews from the cleaned dataset. 

Same as before, these selected reviews were dropped before the creation of training 

datasets. 

Regarding training datasets, six training datasets were created to compare the 

performance of different models trained with different training dataset sizes and 

class distribution. Three different sizes were selected, which were 120K, 240K, and 

480K. Then, for each size, a balanced and an imbalanced dataset was created. The 

ratio between the number of positive and negative was exactly 5: 1 in the 

imbalanced datasets. First, a balanced 120K dataset and an imbalanced 120K were 

created by random sampling without replacement. Then, each subsequent datasets 

in balanced and imbalanced categories were treated by doubling the number of 

training instances. The approach was analogous to the procedure in (Prusa et al., 

2015). It was mentioned that with each smaller dataset being a subset of a larger 

dataset, a more meaningful comparison between performance and dataset size can 

be achieved, as any change in performance is the result of additional reviews instead 

of randomly selecting a completely new set of reviews (Prusa et al., 2015). 

 

3.1.1.6 Feature Extraction and Model Selection 

Feature extraction is a fundamental and indispensable task in sentiment 

classification as it directly influences performance (Birjali et al., 2021). It extracts 

valuable information that describes the characteristics of the text from the words 
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(Birjali et al., 2021). Birjali et al (2021) identified two major representations of 

features, which were Bag-of-Words (BoW), and Distributed Representation (also 

called Word Embedding). BoW first creates a vocabulary of all unique words 

occurring in the document, then encodes a sentence as a vector with the length of 

the vocabulary of known words. The value of each position in the vector represents 

a count or frequency of the word in the vocabulary. However, BoW is incapable of 

representing the syntactic information of the text as it does not consider word order, 

sentence structure, or grammatical construction. (Birjali et al., 2021). Distributed 

Representation distributes the information of a word in a vector space with a fixed 

dimension where each word can be represented by a vector. Relation between the 

semantic meaning of words can be represented with vector operation. A famous 

example is that the result of vector(“King”) – vector(“Man”) + vector(“Woman”) 

is closest to the vector representation of the word “Queen” (Mikolov et al., 2013). 

Considering the difference in feature extraction, three methods of feature extraction 

and the corresponding model were selected to compare the performance of different 

feature extraction and representation methods in sentiment classification on game 

reviews.  

The first model, TFIDF-RF, applied Term Frequency-Inverse Document Frequency 

(TF-IDF) and Random Forest Classifier. TF-IDF is an example of BoW feature 

extraction. It measures the importance of a word to a corpus by considering its 

frequency in the document, which is a review, and its rarity in the whole corpus, 

which is all reviews in the training dataset. TF-IDF value can be calculated by first 

calculating the Term Frequency (TF) of term t within a document d, where 𝑓𝑡,𝑑 

represents the frequency of the term t in document d (Eqt. 1). Then the Inverse 

Document Frequency (IDF) of term t within the whole corpus D was calculated, in 

which the numerator represents total number of documents, and the denominator 

represents the document frequency of term t (Eqt. 2). An extra ‘1’ in both numerator 

and denominator equation (2) was to prevent zero divisions. Lastly, multiplying TF 

and IDF results in TF-IDF (Eqt. 3). TF-IDF assigns higher weights to words that 

occur frequently in a document but are rare in the corpus, allowing models to 

prioritize terms that are more indicative of sentiment in each review. Random forest 

was selected because of its ensemble learning approach, as multiple decision trees 

are combined to make predictions. 

 



 13 

𝑡𝑓(𝑡, 𝑑) =
𝑓𝑡,𝑑

∑ 𝑓𝑡′,𝑑𝑡′∈𝑑

(1) 

 

𝑖𝑑𝑓(𝑡, 𝐷) = log
1 + |𝐷|

1 + |{𝑑 ∈ 𝐷: 𝑡 ∈ 𝑑}|
(2) 

 

𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑, 𝐷) = 𝑡𝑓(𝑡, 𝑑) ⋅ 𝑖𝑑𝑓(𝑡, 𝐷) (3) 

 

The second model, GloVe-CNN, applied Global Vectors for Word Representation 

(GloVe) and Convolutional Neural Network (CNN). GloVe is an example of 

distributed representation. It captured the global corpus statistics directly by 

computing the word vectors based on the probability of the appearance of a target 

word given a context word, which is the co-occurrence probabilities of words. It 

first computed a large co-occurrence matrix based on the number of vocabs in the 

corpus, then optimized the word vector representation with least square regression 

with a custom loss function. Unlike TF-IDF, it encodes semantic relationships 

between words, which allows models to understand contextual information and 

capture sentiment nuances. CNN was selected because of its frequent use in 

sentence classification with ongoing advancements (Fachrul et al., 2022; Li et al., 

2022; Maisa et al., 2023; Wenxuan & Yuxuan, 2022). It treats a list of word vectors 

from the sentence like an image with size (d, w), where d = dimension of each word 

vector, w = length of a sentence with padding, if necessary. Then the filters learn 

the word features by adjusting the weights of each element in the kernel matrix. 

The third model, BERT, was a fine-tuned model from pre-trained Bi-directional 

Encoder Representation from Transformer (BERT). Although embedding each 

word in the form of distributed representation, the model has some fundamental 

differences compared to the first two models. First, regarding the nature of the 

embedding vector, the embedding from BERT contains more information than 

previously mentioned distributed representations, such as word2vec and GloVe. In 

the second model where GloVe embedding was applied, a static vector was used to 

represent the target word regardless of the context words around itself. However, 

large language models, such as Generative Pre-trained Transformer (GPT), BERT, 

and ELMo, used contextualized embeddings, in which different embedding vectors 

were used for the same word in different contexts. Indeed, a recent review 
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confirmed that BERT token representations contain both syntactic and semantic 

information fields (Rogers et al., 2021). Second, regarding the training method, this 

model trained with a larger corpus with a larger number of words. Unlike the first 

two models which a model is trained directly and only from the corpus of the dataset 

of the task, this model adopted the approach of fine-tuning for a downstream task, 

such as text classification, translation, and question-answering, from a pre-trained 

language representation in a language model, such as GPT, and BERT. It allowed 

a larger model to learn a universal representation of words that can transfer to a 

wide range of tasks with little adaptation (Radford et al., 2018). Third, in the second 

model, given a target word represented by its word vector, it only considered a fixed 

window size of the context word due to the fixed kernel size in convolution 

operation in CNN. However, thanks to the self-attention mechanism in the 

Transformer, a target word can consider any word within the document and assign 

a different value. Last, BERT introduced bi-directional pretraining instead of using 

uni-directional pretraining in GPT. It enabled the ability of a given word to consider 

context words in both directions, which was believed to be more powerful than a 

uni-directional model or a shallow concatenation of left-to-right and right-to-left 

models (Devlin et al., 2019). For the conciseness of the report, the technical 

structure and computational details of BERT were omitted, to which the 

corresponding details can be referred (Devlin et al., 2019). 

 

3.1.1.7 Model Implementation 

Regarding the first model, a training pipeline was implemented containing three 

major components. First, the top N words with the highest TF score were selected 

to form the vocabulary. Next, the TF-IDF representation of these selected words 

was calculated. Each sentence was then transformed into a vector with each element 

representing the TF-IDF value of each word. Finally, the vectors were fed to train 

a Random Forest classifier as a group of bootstrapped classification trees. The first 

model was implemented using scikit-learn. 

 

Regarding the second model, a training pipeline consisting of an embedding matrix 

and a CNN model similar to the structure in (Kim, 2014) was implemented. Before 

entering the pipeline, the top N words with the highest frequency across the whole 

training dataset were selected. Also, the length of a sentence was limited to a fixed 
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length L to prevent extended calculation time, and padding would be applied if 

necessary. In the pipeline, the embedding matrix was used to construct vector 

embedding of words in the sentence. The embedding matrix was set to be non-static, 

and the embedding vectors were updated during training to grasp the semantic 

meaning of words in the context of game reviews. It was reported that CNN models 

trained with non-static word vectors uniformly outperformed those trained with 

static word vectors (Zhang & Wallace, 2016). The CNN model consisted of three 

convolutional layers, placed in a flat structure. However, unlike convolutional 

layers in image-related tasks where a square kernel matrix will go through the whole 

image in both directions, the kernel will look into a window of a fixed number of 

words to produce a new feature. Then, each layer was followed by a 1D max pooling 

layer to select the most important feature in each channel of each convolutional 

layer. The features were then concatenated into a single-dimension array, and 

dropout was applied to the array as regularization. Finally, a fully connected layer 

is applied after the dropout layer to produce classification results. In 

implementation, instead of assigning a different filter size to each convolutional 

layer, we followed the recommendation of assigning all three convolutional layers 

with the same filter size (Zhang & Wallace, 2016), as it resulted in better 

performance than combining different sizes with the default setting. Original L2 

weight regularization was omitted for simplified implementation. The resulting 

model is shown in the figure below (See Figure 6). The model was implemented 

using Keras, a high-level abstraction library for building deep learning models 

created by Google. 

 
Figure 6: Model structure of CNN in model GloVe-CNN. 
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Regarding the third model, a training pipeline consisting of a tokenizer and a pre-

trained BERT model was implemented. BERTBASE was selected instead of 

BERTLARGE as the former contained only about 1/3 of the parameters while 

achieving state-of-the-art results compared to other models (Devlin et al., 2019). 

The reduced parameters also significantly reduced the fine-tuning time required 

with a large training dataset on personal-scale hardware. Regarding the tokenizer, a 

pre-trained case sensitive tokenizer was selected, as capitalized words often contain 

more extreme emotions. Truncating and padding were applied to each review, as 

there is a maximum length of tokens the model can receive as input, which is 512. 

Regarding the model, a pre-trained BERTBASE paired with the case sensitive 

tokenizer was initialized. The training pipeline was implemented with 

HuggingFace, a high-level abstraction library for building transformer models. 

3.1.1.8 Model Training 

Before training, further data cleaning customized with each model was performed 

on each training dataset. Applying customized further data cleaning for each model 

is necessary as it allows features to be consistent with the different feature extraction 

methods of each model, enhancing their performance. Flowcharts of three further 

data-cleaning processes are presented below (See Figure 7). Regarding the first 

model, the further data cleaning process following the same as that before analyzing 

the common words of the reviews was applied. The reasons behind applying the 

further data cleaning process were to reduce the feature space of words, avoid 

redundancy due to various verb forms, and lead to a more consistency 

representation of words in the corpus. Regarding the second model, the same further 

data cleaning process was applied to the training dataset except for stopword 

removal and stemming, as no stopword removal and stemming were performed 

during the pretraining GloVe. Regarding the third model, only the removal of 

emojis, hyperlinks, and markups was performed. Punctuations and numbers were 

retained as pre-defined tokens were available in the tokenizer of BERT. Also, 

punctuation was necessary for BERT to separate different sentences using special 

preserved tokens defined in the tokenizer. Both stemming and stopword removal 

were not applied as the tokenizer can break down words in various forms to one or 

more than one token which represented the stem and the verb form.  
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Figure 7: Customized further data cleaning to each model. Left: TFIDF-RF. Middle: GloVe-CNN. Right: BERT 

For model training with all different training datasets, 10% of the training dataset 

will be used as a testing dataset during training to monitor the training process. 

Regarding model parameters in the first model, N was set to 20K, which was chosen 

to represent non-arcane vocabs without posing significant computational difficulty 

in the reviews. The number of classification trees was 100. Other parameters of 

components used in the pipeline followed the default parameters in scikit-learn.  

Regarding the model parameters in the second model, N was set to 20K, and L was 

set to 512, which was identical to the maximum length of tokens in BERT. A GloVe 

representation pre-trained on 6 billion tokens, with 300-dimensional word vectors, 

was used to initialize the word embedding layer. Each convolutional layer contains 

128 filters, with filter size = 7. The dropout probability was set to 0.3. The batch 

size was set to 128 to fully utilize the memory of the GPU while presenting a more 

stable gradient. The loss was computed using sparse categorical cross-entropy. 

Adam optimizer was applied with learning rate = 1e-3, 𝛽1 = 0.9, 𝛽2 = 0.999. Other 

parameters of components used followed the default parameters in Keras. To 

prevent overfitting, the learning rate was reduced by 0.8 when there was no 

reduction in testing loss during training. Early stopping was performed when there 

was no reduction in testing loss for 5 consecutive epochs. After training, the best 

model with the lowest testing loss will be stored and used for evaluation. 

Regarding the model parameters of the third model, a pre-trained BERTBASE 

(Devlin et al., 2019) model was used for further fine-tuning. Following the 

recommendations of (Devlin et al., 2019), the batch size was set to 32. Adam 
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optimizer was used with learning rate = 2e-5, as a higher learning rate will result in 

catastrophic forgetting shown by (Sun et al., 2019), 𝛽1 = 0.9,  𝛽2 = 0.999. L2 weight 

decay was set to 0.001. No learning rate warmup was applied as the number of steps 

in training with 120K datasets was fewer than 10000. The number of epochs was 

set to 3. Other parameters of components used followed the default parameters in 

HuggingFace. The best model with the lowest testing loss will be restored and saved 

for evaluation. 

 

3.1.1.9 Model Evaluation 

The evaluation was performed with the view to answering the research questions, 

and therefore, selecting the best performance model for deployment. Weighted 

average F1-score was chosen for the chief performance metric as the equation 

considered both recall and precision by calculating a harmonic mean of them. To 

define a weighted average F1-score from F1-score, we first let there be 𝑛 sentiment 

classes and define 𝑦𝑖 to be the number of samples within the sentiment class 𝑖. Then 

we calculate the precision and recall for each sentiment class i. Next, we calculate 

a weighted average of the precision (See Eqt. 4) and recall (See Eqt. 5) of all 

sentiment classes n. Finally, we calculate the weighted average F1-score by 

considering the weighted average of precision and recall (See Eqt. 6).  

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ 𝑦𝑖

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖

𝑛
𝑦=1

∑ 𝑦𝑖
𝑛
𝑦=1

(4) 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝑒𝑐𝑎𝑙𝑙 =
∑ 𝑦𝑖

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖

𝑛
𝑦=1

∑ 𝑦𝑖
𝑛
𝑦=1

(5) 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐹1 =
2

1
𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

+
1

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝑒𝑐𝑎𝑙𝑙

(6)
 

 

3.1.1.10 Model Deployment 

Before deploying on the virtual machine, the trained model was converted to ONNX 

format for fast CPU inference with ONNXRuntime, as a previous study showed 

that a 36.5% reduction in inference execution time was recorded on ONNX + 

ONNXRuntime than Torch Script + Libtorch, a library for running PyTorch models 
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on C++ (Öğüt, 2021). Comparisons of end-to-end inference times of a prediction 

on CPU between the original and converted ONNX model were drawn on two 

different machines, one on a moderate window machine running WSL 2 and another 

on an Apple laptop. An end-to-end inference refers to the inference from a pre-

processed review, then producing possibilities on both sentiment classes. WSL2 

was used instead of running natively on Windows as TensorFlow, the backend of 

Keras, stopped complete support on native-Windows. The specifications of the two 

machines are listed below.  

 Machine 1 Machine 2 

CPU Intel Core i5-8250U,  

4 Cores, 8 Threads 

Apple M1 Max, 8 Performance Cores,  

2 Efficiency Cores 

RAM 8GB (in WSL 2) 32GB 

OS Ubuntu 22.04 (in WSL 2) 

Windows 10 22H2 

macOS Monterey 12.6.2 

 

Python was used to run the measurement program as it was the programming 

language for both ML development and deployment. For the sake of completeness, 

the version information of used software is provided below. 

• Python 3.9.18 

• scikit-learn 1.3.0 

• TensorFlow 2.15.0 

• Keras 2.15.0 

• torch (PyTorch) 2.1.0 

• transformers (HuggingFace) 4.35.0 

• accelerate (HuggingFace) 0.24.1 

• onnx (ONNX) 1.14.1 

• onnxruntime (ONNX Runtime) 1.16.3 

• skl2onnx 1.16.0 

• tf2onnx 1.15.1 

• optimum (HuggingFace) 1.16.1 

Regarding the conversion progress, an end-to-end ONNX model was generated 

from scikit-learn. However, the text vectorizer component in Keras and the 

tokenizer component in HuggingFace were unable to convert to ONNX as ONNX 
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does not support string manipulation. Therefore, original components from Keras 

and HuggingFace were used in the end-to-end ONNX inferencing.  

For the measurement program, after loading the models and reviews, a warmup of 

inferencing 1000 reviews with batch size = 1 was performed. It ensures the model 

is fully loaded to the memory, reducing variance in inference time. Then, the time 

of inferencing 2000 reviews with batch size = 1 was measured. Batch size = 1 was 

selected as the sentiment classification result should be provided as soon as the 

review was posted to the platform, in which the message was consumed 

immediately by the Python NLP backend. The time required for performing data 

cleaning to the reviews was unrecorded as it is insignificant to the overall inference 

time. The times of inferencing each review were then stored for further analysis. 

 

3.1.2 Topic Modelling 

Topic Modelling is an unsupervised machine learning technique that aims to discover 

hidden themes in textual data and perform categorization (Churchill & Singh, 2022). 

Applying topic modeling for game reviews benefits both potential players and 

developers. To potential players, grouping reviews allows them to quickly glance at a 

specific aspect of a game, such as graphics, compatibility, and gameplay, without the 

need to read hundreds of fewer related comments. This shortens the purchasing 

decision-making progress. To developers, topic modeling helps them to better prioritize 

tasks to be done to cater to their players’ needs. It distinguishes reviews based on 

various aspects of the game, such as graphics, gameplay, and bug reports, selecting 

contributing comments from unhelpful, emotional comments. This empowers 

developers to quickly locate issues that players complain about the most, for instance, 

game-blocking bugs and crashes (Lin et al., 2019), and reallocate manpower and time 

to provide a more satisfactory gaming experience to both current and future players. 

 

Three topic modelling techniques were selected to apply to the task of topic modeling 

on game reviews. In particular, LDA, Contextualized Topic Model (CTM) (Bianchi et 

al., 2021), and BERTopic (Grootendorst, 2022) were selected. LDA was selected 

because of its generality and frequent usage in various topic modeling problems 

(Churchill & Singh, 2022). It serves as a baseline to compare existing results in 

examined previous studies. BERTopic and CTM were selected as contextualized 

embeddings was used for building topic models in both techniques, in which 
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contextualized embeddings produces the best performance among the three examined 

feature extraction methods in the task sentiment analysis. 

 

LDA is a probabilistic, bag of words model that represents topic based on the 

probability of appearance of words in that topic. It assumed each word in the document 

is created from sampling a topic from the distribution of topics for the document, and 

then sampling a word from the topic (Abdelrazek et al., 2023). The algorithm aims at 

finding the topic-word distribution that maximizes the likelihood of documents in the 

dataset over K number of topics (Churchill & Singh, 2022). Two more parameters, 

alpha and beta, were used to define Dirichlet priors for drawing topic distribution and 

word distribution within a topic. 

 

CTM is a bag of words model extended from neural topic model. A neural topic model 

is an encoder-decoder which first maps the bags-of-word (BoW) document 

representation to a continuous latent representation through encoder, then reconstructs 

the BoW by generating the words from the latent representation through decoder 

(Bianchi et al., 2021). An example is ProdLDA (Srivastava & Sutton, 2017)., which 

improves from LDA by approximating the Dirichlet prior in LDA using Gaussian prior 

and replacing distribution of words with product of experts (Srivastava & Sutton, 2017). 

CTM extends ProdLDA by adding contextualized embedding generated from SBERT 

(Reimers & Gurevych, 2019).  

 

Unlike the first two models which represent a topic by word distribution, BERTopic 

adopted a clustering embedding approach with four key steps. First, similar to the 

second model, contextual document embeddings are generated from SBERT. Then, 

dimensionality of embeddings is reduced using UMAP and clustering is performed 

using HDBSCAN. Next, a class-based TF-IDF (c-TFIDF) was used to model the 

importance of words in a cluster to generate topic-word distribution. Finally, topic 

merging was performed based on the c-TFIDF representation to reduce the number of 

topics to a specific value. 

 

Data scrapping will be performed on the Steam platform to acquire a comprehensive 

dataset of all potential game genres. Subsequently, the review data will be categorized 

based on the genre of the game that the review pertains to. Then, it will undergo a 
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process of data cleansing and preprocessing to reduce noise and improve the efficiency 

of the training process. Utilizing this refined review data, we will train the topic models 

using the review datasets specific to each genre. 

 

In relation to the datasets, EDA will be conducted subsequent to the data cleaning 

process. The reviews will be linked to the ‘gameid’ column, correlating them to the 

games they are critiquing. We will specifically select reviews that provide commentary 

on a specific genre of games. For instance, reviews that reference games are not present 

in the Steam game database will be excluded from consideration. 

 

Moreover, Grid Search methodology is employed to discover the optimal quantity of 

topics for the topic models. All topic models will be trained with a range of topics 

spanning from 10 to 100, incrementing in steps of 10. 

 

While conventional naming algorithms for topics generated by the model are predicated 

using keyword-extraction methodologies, they frequently fall short in providing 

human-comprehensible names for each topic. Given the challenges and laborious 

nature of topic naming via traditional methods, usage of LLM will be investigated as a 

potential alternative for this task. 

 

In order to assess the performance of various topic models, both quantitative and 

qualitative approaches will be employed. From a quantitative perspective, 

measurements of topic coherence and topic diversity will be conducted using 

predefined metrics. More specifically, topic coherence will be evaluated using 

Normalized Pointwise Mutual Information (NPMI), which involves the identification 

of top words, calculation of pairwise NPMI, averaging of NPMI scores, and averaging 

across topics. In terms of topic diversity, it will be measured using Inverted Rank-

Biased Overlap (RBO), which includes the processes of identifying top words, 

calculating pairwise RBO, inverting RBO, and averaging over topic pairs. Regarding 

qualitative approach, pyLDAvis will be utilized to qualitatively analyze the results of 

the LDA. A manual inspection will be performed on the top 10 keywords of each topic, 

and the representative texts for each topic will be evaluated to determine whether they 

are capable of extracting more meaningful representative documents. Similar 
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qualitative analytics tools are available for other topic models, which will not be 

discussed in the section.  

 

3.1.3 Keyword Extraction 

Keyword extraction is a technique to extract a set of keywords from a document without 

manual work (Khan et al., 2022). It can be applied to game reviews to extract critical 

information, especially for longer reviews, and to provide a high-level overview of the 

review content and sentiment. It can also act as a topic modeler to support the topic 

modeling tools by assigning interpretations to the topics categorized by the topic 

modeling models.  

 

Despite the existence of various developed keyword extraction models, such as 

KeyBERT, YAKE, Text Rank, Page Rank, none of them produce interpretable and easy 

to read description of a topic after topic-modeling is applied. For instance, in Figure 8, 

KeyBERT generates short n-gram keywords that were created while Llama2 can 

summarize the topic-keywords into a single term. Therefore, our focus was shifted to 

using pre-trained Large Language Models (LLMs) to produce comprehensible 

descriptions of identified topics in section Topic Modeling. 

 

Figure 8: Example output of BERTopic using KeyBERT and Llama2 to name the topics. 

 

Instead of using existing online services like OpenAI, or Azure ChatGPT, the utilization 

of locally deployed LLMs offers two main advantages. Firstly, by opting for local 

deployment, the privacy of user data is ensured, mitigating the risk of any confidential 

or sensitive information being leaked.  Secondly, local deployment allows for the 
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utilization of a wide range of models, including Llama2 from Meta, phi-2 from 

Microsoft, Mistral developed by Mistral AI, and even custom fine-trained models. This 

not only grants developers fine-grained control but also enables the use of "uncensored 

models" that are fine-tuned on datasets without filtered responses. This is particularly 

crucial in analyzing game reviews where the content may contain sexual, aggressive 

language that can trigger models content filtering mechanism. Examples of game 

reviews that triggered Azure ChatGPT content filtering mechanism are shown in Figure 

9.  

 

   (a)      (b) 

Figure 9: Two game reviews and the response from ChatGPT hosted by Azure when prompting to classify their sentiment. 

 

Specially, three tools were selected to integrate LLMs into our system to perform the 

keyword extraction task, which are LangChain, a prominent framework for application 

development that integrate with LLMs, Mistral AI, a powerful and open source LLM 

developed by Mistral that offer excellent performance, and Chroma, a lightweight 

vector database that facilities Retrieval-Augmented Generation (RAG). With these 

tools, possible prompt techniques such as RAG and generated knowledge will be 

explored and instruct the LLM to perform the keyword extraction task. 

 

The result of the keyword extraction will be evaluated quantitively by manual 

inspection. In particular, the coherence between the generated name for the topic and 

some most representative documents of the topic will be examined.  
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3.2 Frontend Web Application 

This section discusses the technologies that will be involve in developing the frontend 

system (Section 3.2.1), the user interface design approach and method for the web 

application (Section 3.2.2), and the proposed implementation of authentication process 

and user information access and management for the web application (Section 3.2.3). 

3.2.1 Technologies Involved 

First, the selected framework for developing the application is React, which is a widely 

adopted and popular web framework known for its extensive range of community-made 

packages, which adopt a declarative and component-based approach to build user 

interfaces. 

Second, to enhance the appearance and functionality of the user interface, Material UI 

(MUI), a component library of React that provides a set of prebuilt and customizable 

UI components, will be used because it provides efficient, production-ready, and 

complete set of components that can facilitate the website development tremendously. 

For instance, it provides inputs components such as the text field, select and button 

components, which can be used to create different forms, such as the login form and 

the add review form. 

Third, Next.js, a meta-framework built on top of React, has been chosen to provide 

support for modern features like Server-Side Rendering, File-based Routing, Secure 

Fetching, and Performance Optimization. These features enable the application to be 

maintainable, responsive, performant, and scalable. 

Finally, TypeScript, a syntactic superset of JavaScript that offers high-level type safety, 

has been chosen as the programming language to enhance development efficiency and 

minimize unintended bugs caused by typing mismatch, as TypeScript ensures all 

variables only access authorized memory locations that are well-defined and 

permissible. 

 

3.2.2 Design Approach 

To cater to a broader audience and enhance accessibility for users across different 

devices and platforms, such as mobile, tablet, and desktop, the web application must be 

responsive and performant. Therefore, the web application will be designed under the 

Responsive Web Design (RWD) approach, which adjusts the size, position, and 

visibility of webpage elements based on the device viewport to ensure that the website 

will have a natural and intuitive appearance on different screen sizes, resolutions, and 
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orientations. This design approach ensures that the web application is compatible with 

various devices with different screen sizes. This will enable users to seamlessly interact 

with the platform regardless of their preferred device and platform, thereby expanding 

our reach and maximizing user engagement. To implement the RWD, our web 

application will utilize media queries and modify the style properties of Cascading 

Stylesheets (CSS) based on various breakpoints. We adhere to the breakpoints defined 

by MUI to represent different viewports. Specifically, a width of 0-600px is indicative 

of mobile devices, 900-1200px corresponds to tablet devices, and anything above 

1200px is representative of desktop devices. 

 

In addition, the design process of the web application is facilitated by Figma, a popular 

and collaborative design tool for application development. Figma offers valuable 

community assets for creating the web application prototype, such as the Material UI 

asset that contains all the prototype assets of the pre-built UI components provided by 

the Material UI library. In addition, Figma enables collaborative design features, which 

allow multiple people to join and participate in the design process as a team, making it 

appropriate for a group project. 

 

Furthermore, to maintain the design consistency of our web application, we utilize the 

theming feature of MUI. By configuring the theme variables within the MUI theme 

provider, we ensure a consistent colour palette, typography, and breakpoints for (RWD 

across all pages. 

 

3.2.3 Frontend Authentication 

The frontend application’s user authentication will be implemented using JSON Web 

Token (JWT) (See Section 3.3.2), HTTP cookie (browser cookies), and useContext 

hook from React. The user login authentication will invoke one of the two backend 

APIs, depending on the presence of the refresh token in the HTTP cookies. 

 

The first API, login, takes the user credentials as the request body and returns the access 

token and refresh token in the response body. This API is invoked only when the HTTP 

cookie does not contain a valid refresh token. The users can access this API through the 

login form in the web application, where they must enter their username or email and 

password. The login form has a “Remember Me” checkbox. If the user selects this 
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option, the refresh token is stored as a persistent cookie with a 7-day expiration time. 

Otherwise, the refresh token is stored as a session cookie without an expiration time, 

and the cookie will expire if the user closes the browser session. 

The second API, refreshToken, refreshes the session by generating a new access token. 

It takes the refresh token as the request body and returns a new valid access token in the 

response body. When the user accesses the web application, the frontend application 

will verify the existence of the refresh token in the HTTP cookies. If it exists, the 

application will invoke the API to refresh the session and obtain a new access token. 

The backend system will handle the invalid or expired refresh tokens by sending the 

appropriate error message in the response body. 

 

Once the access token is obtained successfully by either method, it will invoke the 

userAuth API to fetch the updated user information. This API takes the access token as 

the request body and returns the user information in the response body if the access 

token is valid. 

 

To manage and access the user information globally for the react application, the 

useContext hook will be employed. The user information will be stored in a mutable 

state using the useState hook. A context provider will be created with the user 

information state as a value. The page components will be wrapped within the provider 

to allow the provider to pass the user information state value to the pages. The page 

components can access the user information through the useContext hook via the context 

provider.  
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3.3 Backend Technologies 

This section discusses the implementation of 9 services supporting the Backend solutions, 

including Spring Boot Server Application (Section 3.3.1), Authentication with JWT 

(Section 3.3.2), Email Service (Section 3.3.3), Database (Section 3.3.4), Object Storage 

(Section 3.3.5), Continuous Integration/Continuous Delivery (Section 3.3.6), Message 

Queue(Section 3.3.7), Hosting (Section 3.3.8) and Monitoring (Section 3.3.9). 

 

3.3.1 Spring Boot Server Application 

The backend system will be built using the Java Spring Framework, a common 

framework used to build high-performance and scalable Enterprise Application 

Programming Interface (API) solutions.  

 

Spring Boot provides most of the functionality needed for a scalable backend API 

system, including security, MVC (Model View Controller), Batch Processing, High 

Performance, and non-blocking event loops. All data access requests will be made to 

the backend system through RESTful Hypertext Transfer Protocol (HTTP) requests. 

Most business logic and validation will only be performed in the backend system to 

provide security and high performance through parallelization on clusters as it has linear 

scalability. 

 

By centralizing these processes in the backend system, parallelization can be leveraged 

on clusters for improved performance. Furthermore, this approach allows for linear 

scalability, ensuring that the system can efficiently handle an increase in demand. 

 

External libraries that are used in the application will be installed with Apache Maven, 

an open-source tool for building and managing any Java-based project. The deployed 

server will use Maven to generate an executable JAR file using the production 

environment. 
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3.3.2 Authentication with JWT 

The backend system implements the authentication mechanism based on the JSON Web 

Token (JWT) RFC standard, using Spring Security as the framework for authentication 

and access control. The system stores the tokens in both the client-side browser and the 

server-side database for security and convenience. When a user authenticates 

successfully, the system returns a JWT response to the client, which contains the user 

information and two tokens: the Access Token and the Refresh Token. The client 

utilizes these tokens to obtain authorization for API calls and to refresh the session when 

needed. The system ensures the security and validity of the authentication by applying 

a digital signature to the token data. 

 

The system adopts HS256 as the encryption algorithm for the JWT signature, which is 

a symmetrical algorithm that relies on a shared secret key between the identity provider 

(Spring Security) and the application user. HS256 offers an adequate level of security 

and high performance for the system, as the system is the sole consumer of the JWT. 

An alternative algorithm, RS256, is an asymmetrical algorithm that uses a public and 

private key pair to generate and verify the JWT signature. RS256 is more suitable for 

scenarios where the client is not controlled by a single platform or application, as the 

client only needs to know the public key. 

 

The system only includes non-sensitive user information in the Access Token, which 

can be decoded and viewed by using a public JWT reader (See Figure 10). The system 

sends the user’s ID, email, and name as the user claims, along with the “exp” (Expired 

At) and “iat” (Issued At) claims, which indicate the expiration and issuance time of the 

token. The client can use these claims to determine when to renew the token or to prompt 

the user to log in again. Information can be added to the claims easily to support future 
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development by modifying the HashMap used to generate the Token without affecting 

Authentication. 

 

Figure 10 JWT Claims extracted from the Access Token user received on login 

 

3.3.3 Email Service 

Email service will be set up to support User authentication services, including email 

verification and forgot password. We will utilize the Gmail SMTP Server to send the 

email from the Google account created. Utilizing the Google SMTP Server instead of 

a separate Mail server reduces the workload of our virtual machine and improves the 

efficiency of the User registration and authentication workflow. 

 

All emails will be sent from Spring Boot using the Spring Email library to help establish 

the connection to the SMTP server and provide detailed results and tracking of the email 

sent without additional setup and configuration. 

 

Gmail offers free email service with the additional advantage of reducing the email 

being flagged as a Spam email or filtered compared to using an email attached to a 

custom domain. 
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3.3.4 Database 

MySQL will be adopted as the preferred database due to its ability to handle relational 

data effectively and deliver high performance. Digital Ocean, a reputable cloud service 

provider, has been chosen to host the database. 

 

To streamline database access and optimize Create, Read, Update, and Delete (CRUD) 

operations, Java offers the Java Persistence API (JPA). By leveraging the Spring JPA 

library, the application can benefit from improved performance and reduced boilerplate 

code for database interactions. JPA also encompasses features that support the 

Atomicity, Consistency, Isolation, and Durability (ACID) model, thereby ensuring data 

integrity and consistency when deployed as a distributed system. To ensure a structured 

and organized approach to database management, the creation and management of 

database tables and entities will be handled exclusively by Spring JPA. This approach 

guarantees the maintenance of data integrity and consistency throughout the lifecycle 

of the application. The entity relation diagram encapsulates the data necessary for the 

platform (See Figure 11), such as game, reviews, and user data and the attributes present 

in each entity. It also shows the relation and cardinality between entities and their 

representation in a database schema. 

 

Figure 11 Database Entity Relations Diagram 

Sensitive User data including Passwords and tokens will be encrypted before being stored 

in the database to ensure data security and will not be serialized and sent to users. 
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3.3.5 Object Storage 

The project will incorporate a Simple Storage Service (S3) compatible storage solution 

to house all files provided by Digital Ocean. This includes but is not limited to, text 

documents, images, videos, and audio files. By opting for an S3-compatible storage 

bucket, the application can leverage the capabilities of the Amazon Web Service (AWS) 

Software Development Kit (SDK) to securely access, upload, and remove files from 

the bucket (See Figure 12).  

 
Figure 12 Sample Code to upload a file to the S3 Bucket 

The integration of an S3-compatible storage service offers a multitude of advantages. 

Primarily, it ensures high availability, thereby facilitating continuous access to the 

stored files. This is critical to guarantee uninterrupted service to the users. Furthermore, 

it provides high scalability, effectively accommodating the potential growth of the 

application and its associated file storage needs. This scalability ensures that the 

application remains future-proof and can handle increased demand efficiently. Lastly, 

the use of such a service guarantees high-performance file access and upload 

capabilities. This enhances the efficiency of file-related operations, thereby improving 

the overall user experience. The dashboard provided by Digital Ocean allows for clear 

analysis, modifications, and an overview of the files stored in the bucket (See Figure 

13). 
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Figure 13 Digital Ocean Spaces Dashboard 

3.3.6 Continuous Integration/Continuous Delivery (CI/CD) 

To facilitate the development and deployment of our backend systems and minimize 

downtime during cutover, we have set up a Custom CI/CD pipeline using Jenkins, an 

open-source software for automating deployment using pipelines hosted on Digital 

Ocean’s Ubuntu Virtual Machine.  

 

Jenkins will poll GitHub, the Source Change Management platform used for this project 

every minute to query for changes and commits made to the repository. The pipeline 

written will deploy the backend and NLP solution when changes have been made to 

their respective directories. When such changes are detected, Jenkins will trigger their 

respective build stage to build the Docker Container using a Dockerfile, a file command 

to specify the building steps of the system and deploy the new changes (See Figure 14). 

 

Figure 14 Jenkinsfile pipeline written for deploying the Backend Server and NLP Server with the use of docker 

and dockerfiles 
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3.3.7 Message Queue 

RabbitMQ will be used to support inter-process communication and maintain a durable 

message queue for high fault tolerance and asynchronous communication. Message 

Queue (See Figure 15) will be used to support real-time and batch-processing ML 

features, enhancing system performance and reliability in case of system failure. 

 

RabbitMQ offers various benefits including Durability, Reliability, Scalability. 

• Durability: RabbitMQ can persist messages to disk, ensuring that they are not lost 

in case of a failure or a restart. This also allows for message recovery and replay. 

 

• Reliability: RabbitMQ provides various features to ensure the delivery and 

processing of messages, such as acknowledgments, confirmations, dead letter 

queues, and transactions. These features help to avoid message loss, duplication, or 

corruption. 

 

• Scalability: RabbitMQ can handle high volumes of messages and concurrent 

connections, as well as distribute the load across multiple nodes in a cluster. 

Horizontal scaling can be done easily by deploying more Python Programs without 

any code modification to handle a larger amount of machine learning tasks. 

Compared to other popular Message Queue solutions, including Apache Kafka and 

Amazon SQS, RabbitMQ offers two distinct advantages: Flexible Routing, and 

intuitive Management User Interface. 

• Flexible Routing: RabbitMQ supports different types of exchanges and bindings, 

which allow for flexible and dynamic routing of messages based on various criteria, 

such as topic, header, or direct, and allow for dynamic and flexible routing of 

messages.  

 

• Intuitive Management User Interface: RabbitMQ provides a web-based user 

interface that allows for easy monitoring and management of the broker, such as 

viewing queues, exchanges, bindings, messages, connections, channels, and 

statistics. The user interface also allows for performing common operations, such 

as creating, deleting, purging, or publishing messages. 
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The official Spring and Python RabbitMQ adaptors will be used to connect the Spring 

Boot Backend and the Python NLP program to the message queue server. 

 

Figure 15 Message Queue Structure for Supporting Inter-process Machine Learning Application 

The connections to the message queue server and the data stored in the queues can be 

accessed using a web-based management panel provided for debugging and analytic 

purposes. The first two connections are the Spring Boot Server and NLP Server 

Connection to the queues with the last being a local connection (See Figure 16). 

 

Figure 16 RabbitMQ Management Panel showing all the queue connections. 

  



 36 

3.3.8 Hosting 

The backend services will be hosted on two different cloud providers, Digital Ocean, 

and Contabo. 

Digital Ocean will host the MySQL Database, RabbitMQ Message Queue Server, and 

S3-compatible storage Bucket. Digital Ocean provides one-click setup and monitoring 

for these services on their control panel without needing to create separate virtual 

machines. 

 

Contabo will only host the Virtual Machine running Ubuntu LTS 21. Virtual Machine 

hosted by Contabo provides high performance at a low cost of entry with high-

bandwidth networking included. 

  

All backend services will be deployed in Singapore, a region that is supported by both 

Digital Ocean and Contabo. By consolidating all our services in Singapore, we can 

reduce the latency and network traffic time between API calls and network requests and 

enhance the overall performance of the entire backend system. Complex API calls such 

as Advanced Searching or Analytics involve multiple database queries, which would 

be adversely affected by increasing the physical distance between the database and the 

Spring Boot server from sub-1 second to over 2.5 seconds. 
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3.3.9 Monitoring 

To ensure stable performance and reliability, we use Prometheus and Grafana, two 

open-source software for monitoring and analytics, to monitor our Spring Boot backend 

application on our Virtual Machine. Prometheus collects and stores time-series data 

from the application actuator endpoints, and Grafana visualizes and analyzes the data in 

dashboards and panels.  

 

A Grafana dashboard will be created to monitor essential information about the Spring 

Boot Application, including Application Uptime, CPU utilization, Application Load, 

and Database Connection Size (See Figures 17,18). If the application goes down for an 

extended period, a custom notification will be sent through a webhook. 

 

Figure 17 Grafana Dashboard displaying uptime, CPU, and Memory Utilization by the Spring Boot Application. 

 

 Figure 18 Grafana Dashboard shows the database connection pool size, maintaining a stable connection to the 

database.  
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4 Result 
This section discusses the results discovered subsequent to the culmination of the project. These 

include tasks related to Machine Learning and Natural Language Processing (Section 4.1), the 

creation and functionality of Frontend Web Applications (Section 4.2), and the use and 

evaluation of Backend Technologies (Section 4.3).  

 

4.1 Natural Language Processing Tasks 

First, the results derived from the Natural Language Processing tasks are presented. 

These tasks include Sentiment Analysis (Section 4.1.1), Topic Modeling (Section 

4.1.2), and Keyword Extraction (Section 4.1.3). For an in-depth explanation of the 

implementation of various NLP tasks, please refer to the report by my group mate, 

Cheng Pak Yim, Michael, who oversees the NLP tasks. 

 

4.1.1 Sentiment Analysis 

The evaluation was conducted on both balanced and imbalanced validation sets to 

address the three research questions, thus selecting the best model for deploying on 

the VM. 

RQ1: Does an imbalanced training dataset hamper model performance? 

Results of all models trained with 120K balanced and imbalanced datasets were 

presented in Figure 19. 

 

  (a)    (b)    (c) 

Figure 19: Results of all models trained with 120K balanced dataset. (a): Weighted Average F1-score on all models. 

(b): Weighted Average Precision on all models. (c): Weighted Average Recall on all models. 

It was observed that TFIDF-RF and GloVe-CNN received a lower weighted average 

F1-score on the balanced validation set, with TFIDF-RF models receiving the biggest 

difference in the score between training with a balanced dataset and an imbalanced 

dataset. Since the weighted average F1-score considered both weighted average recall 

and precision, the difference was surmised to be a drop in recall and/or precision. 
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Considering the weighted average recall of models trained with the 120K dataset, both 

TFIDF-RF and GloVe-CNN models trained with an imbalanced dataset received lower 

recall than those with the balanced dataset. The same result was also noted in precision. 

To further dig into the cause of the difference in weighted average precision and recall, 

a comparison was drawn on these metrics in both positive and negative sentiment 

classes. Regarding weighted average precision, although achieved higher precision in 

classifying negative sentiment, models trained with an imbalanced dataset fell short in 

correctly classifying positive sentiment samples (See Figure 20). Models trained with a 

balanced dataset achieved more all-rounded performance in precision, resulting in 

higher weighted average precision (See Figure 19(b)). It is surmised that models trained 

with imbalanced datasets implicitly learned the distribution of the training dataset, and 

then made more positive guesses to reviews, leading to lower precision in positive 

sentiment, and higher precision in negative sentiment. While models trained with 

balanced datasets attained balanced performance in both sentiment classes, resulting in 

higher weighted average precision in balanced datasets. Regarding weighted average 

recall, although achieved higher recall in positive sentiment, models trained with an 

imbalanced dataset fell short in recalling negative sentiment samples (See Figure 21). 

While models trained with a balanced dataset achieved more all-rounded performance 

in recall (Figure 19(c)), resulting in higher weighted average recall. The observation 

further supported our earlier conjecture, leading to a much lower recall of negative 

reviews, and achieving a nearly perfect recall of positive reviews. 

 

    (a)      (b) 

Figure 20: Precision of both sentiments on balanced validation set by models trained with 120K imbalanced and 

balanced datasets. (a): Positive. (b): Negative. 
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Figure 21: Recall of both sentiments on balanced validation set by models trained with 120K imbalanced and balanced 

datasets. (a): Positive. (b): Negative. 

Referring to Figures 22 and 23, the same conclusion that models trained with an 

imbalanced dataset underperformed those trained with a balanced dataset was observed 

in training with both 240K and 480K training datasets. The consistent observation 

suggested that training with a balanced dataset was preferred, as it yielded higher and 

more balanced performance. 

 
(a)    (b)    (c) 

Figure 22: Results of all models trained with 240K balanced dataset. (a): Weighted Average F1-score on all models. 

(b): Weighted Average Precision on all models. (c): Weighted Average Recall on all models. 

 

(a)     (b)     (c) 

Figure 23: Results of all models trained with 480K balanced dataset. (a): Weighted Average F1-score on all models. 

(b): Weighted Average Precision on all models. (c): Weighted Average Recall on all models. 
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RQ2: What is the relationship between dataset size and performance? 

Referring to Figure 24 (a), among the models trained with a balanced training set with 

different sizes, the Weighted Average F1-score of TFIDF-RF and GloVe-CNN 

increased as the size of the training set increased. The percentage increase was between 

0.84% and 1.46% (See Table 1 (Up)). Further breakdown of the Weighted Average F1-

score showed that both Weighted Average Precision and Recall increased as the size of 

the training set increased. The percentage increase in Weighted Average Precision was 

between 0.82% and 1.17% (See Table 1 (Bottom left)), while that in Weighted Average 

Recall was between 0.84% and 1.44% (See Table 1 (Bottom right)). 

 

       (a)     (b)     (c) 

Figure 24: Results of all models trained with balanced datasets of all three sizes. (a): Weighted Average F1-score on 

all models. (b): Weighted Average Precision on all models. (c): Weighted Average Recall on all models 

Model/Size TFIDF-RF GloVe-CNN BERT 

120K 0% 0% 0% 

240K +0.84% +1.46% 0% 

480K +0.93% +1.02% 0% 

 

Table 1: Percentage change of all models trained with balanced datasets with different sizes. Up: Weighted Average F1-

score. Bottom left: Weighted Average Precision. Bottom right: Weighted Average Recall. 

A similar result can be observed in models trained with imbalanced datasets of all three 

sizes. The Weighted Average F1-score also increased as the size of the imbalanced 

dataset increased, except for model GloVe-CNN, which suffered from a drop in 

Model/Size TFIDF-RF GloVe-CNN BERT 

120K 0% 0% 0% 

240K +0.84% +1.46% 0% 

480K +0.93% +1.02% 0% 

Model/Size TFIDF-RF GloVe-CNN BERT 

120K 0% 0% 0% 

240K +0.84% +1.46% 0% 

480K +0.93% +1.02% 0% 
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performance in the 240K imbalanced dataset (See Figure 25). Considering only positive 

percentage changes, the percentage increase of the Weighted Average F1-score ranged 

between 3.05% and 12.61% (See Table 2 (Up)). Further breakdown of the Weighted 

Average F1-score showed that both Weighted Average Precision and Recall increased 

as the size of the training set increased. Considering only positive percentage changes, 

the percentage increase in Weighted Average Precision was between 0.61% and 5.15% 

(See Table 2 (Bottom left)), while that in Weighted Average Recall was between 1.81% 

and 11.20% (See Table 2 (Bottom right)). 

 

Figure 25: Results of all models trained with imbalanced datasets of all three sizes. (a): Weighted Average F1-score on 

all models. (b): Weighted Average Precision on all models. (c): Weighted Average Recall on all models 

Model/Size TFIDF-RF GloVe-CNN BERT 

120K 0% 0% 0% 

240K +3.05% -4.96% 0% 

480K +4.85% +12.61% 0% 

 

 

Table 2: Percentage change of all models trained with imbalanced datasets with different sizes. Up: Weighted Average F1-

score. Bottom left: Weighted Average Precision. Bottom right: Weighted Average Recall. 

  

Model/Size TFIDF-RF GloVe-CNN BERT 

120K 0% 0% 0% 

240K +0.61% -1.35% 0% 

480K +0.95% +5.15% 0% 

Model/Size TFIDF-RF GloVe-CNN BERT 

120K 0% 0% 0% 

240K +1.82% -4.24% 0% 

480K +3.02% +11.20% 0% 
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RQ3: What is the best model with little hyperparameter selection? 

Model Balanced training set Imbalanced training set 

 120K 240K 480K 120K 240K 480K 

TFIDF-RF 0.82 0.82 0.83 0.84 0.84 0.85 

GloVe-CNN 0.86 0.90 0.90 0.91 0.90 0.92 

BERT 1.00 1.00 1.00 1.00 1.00 1.00 

Table 3: Weighted Average F1-Score of all models on the imbalanced validation sets. 

Model Balanced training set Imbalanced training set 

 120K 240K 480K 120K 240K 480K 

TFIDF-RF 0.81 0.82 0.83 0.56 0.58 0.61 

GloVe-CNN 0.87 0.89 0.89 0.80 0.76 0.85 

BERT 1.00 1.00 1.00 1.00 1.00 1.00 

Table 4: Weighted Average F1-score of all models on the balanced validation sets. 

Referring to Table 3, both models trained with an imbalanced dataset and balanced 

dataset received similar weighted average F1-score on the imbalanced validation set, 

even the models trained with an imbalanced dataset slightly out-performed those trained 

with the balanced dataset. However, in Table 4, as mentioned in RQ1, models trained 

with an imbalanced dataset fell short in performance in a balanced validation set. 

Although the majority of games receive chiefly positive reviews, there will be situations 

in which mixed reviews or more extreme, mostly negative reviews will be received on 

the game platform. They can occur due to the game’s poor quality, sluggish gameplay, 

or frequent bugs, resulting in more than usual negative reviews. Examples are The Last 

of Us 2, the initial release of No Man’s Sky, and Lord of Rings: Gollum. Moreover, 

some of the games were under early access reviews, in which a demo of the game was 

released on the platform for eager players to test and provide feedback although the 

game was under development process. Since the game was unpolished and incomplete, 

it was expected for the developers to receive a mixed review. Therefore, considering 

the performance of models in both balanced and imbalanced validation datasets, models 

trained with balanced datasets were preferred. Referring to Table 3 and Table 4, the 

best performant model was BERT, achieving a perfect weighted average F1-score in 

both imbalanced and balanced validation datasets. 

Since there was a tie in the weighted average F1-score of all BERT models, a different 

metric is required to select the best performant model with respect to the size of the 

training dataset. Receiver Operating Characteristic – Area Under the Curve (ROC-
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AUC) was chosen to be the metric as it measures the performance of a model at different 

classification thresholds. A prediction from a model can be treated as a probabilistic 

prediction, with each class containing a value [0, 1], and the sum of them equal to 1. 

With the information, the True Positive Rate (TPR) against the False Positive Rate 

(FPR) at different prediction thresholds can be plotted, creating the ROC curve. To find 

out the ROC-AUC value, the area under the ROC curve is calculated. A ROC-AUC 

value = 0.5 represents a random classifier, and a ROC-AUC value = 1.0 represents a 

perfect classifier. Classifiers with ROC-AUC value < 0.5 are considered worse than a 

random classifier, and vice versa. The higher the ROC-AUC value, the more performant 

the classifier is. 

Referring to Figure 26, BERT fine-tuned with 240K balanced dataset scored the highest 

ROC-AUC among all three BERT models in the imbalanced validation set, achieving 

a 0.68 in ROC-AUC. A similar result on a balanced validation set was also observed. 

Therefore, the BERT model fine-tuned on a 240K balanced training set was the best 

performing model. Its ROC curves on both imbalanced and balanced validation sets are 

displayed in Figure 27. 

 

(a)       (b) 

Figure 26: ROC-AUC of all models trained with the balanced dataset. (a): on the imbalanced validation set. (b): on the 

balanced validation set. 

 
Figure 27: ROC curve of BERT fine-tuned on 240K balanced training set. (a): on the imbalanced validation set. (b): on 

the balanced validation set. 
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Regarding the required inference time for one review, it was obvious that speedup was 

recorded for all three models on both machines. The median inference time, lower and 

upper quartile were plotted in Figure 28. Among the three models, TFIDF-RF recorded 

the largest speedup on both machines, followed by GloVe-CNN, and lastly BERT (See 

Table 5). The large variation in inferencing times on BERT was attributed to its higher 

complexity compared to the other two models. 

 

    (a)      (b) 

Figure 28: Median inference time of original and ONNX model on different machines. (a): Machine 1 (Windows i5-

8250U). (b): Machine 2 (Apple M1 Max) 

 Machine 1 (i5-8250U) Machine 2 (M1 Max) 

TFIDF-RF 14.21 9.93 

GloVe-CNN 7.88 7.51 

BERT 1.88 2.65 

Table 5: Median Speedup of inference time of both machines. 

Therefore, considering the conclusion of three research questions and results on 

inference time evaluation, BERT finetuned on a 240K balanced training set, converted 

to ONNX format, was selected for deployment on the VM. 
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4.1.2 Topic Modeling 

For simplicity’s sake, the two genres that are most reviewed will be selected to train the 

topic models. After data scrapping was performed, we retrieved 4.05M of game reviews. 

After some processing tasks, a comprehensive dataset of all potential game genres was 

created. Based on the characteristic of the review dataset (See Figure 29), the top two 

genres with the highest amount of game review are action and indie, which contain 

1.31M and 0.74M reviews, respectively. In total, they accounted for around 50% of all 

reviews, therefore, the topic models trained with these two genres should be able to 

handle most of the reviews. 

  

Figure 29 List of game genres and the review frequencies 

To evaluate the performance of the topic models trained with the action and indie genres 

and test the capacity of the models. We applied some reviews from unseen games with 

the same genre to the model. Only reviews written since 2023 were selected. For 

different games, the number of reviews selected ranged from 2 to around 290000. 

Usually speaking, indie games created by small developer teams are inclined to have 

few reviews, whereas triple-A titles published by renowned game publishers tend to 

have hundred thousand reviews.  

 

As mentioned in the methodology section of the topic modelling (section 3.1.2). The 

topic model will be evaluated both quantitatively and qualitatively. 

For the quantitative evaluation, as discussed before, the topic coherence and diversity 

of the topic models will be measured using NPMI score and the inverted RBO score, 

respectively. Three topic models, each using a different architecture (which include 
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BERTopic, LDA and CTM) were trained. Regarding architectures that tackle sentence 

embedding (BERTopic and CTM), the models were trained with a special technique 

called token splitting, where the reviews were split if the length exceeded the limited  

tokens length of sbert, which is 384 tokens. This is to guarantee that the model will be 

able to learn different topics from the same review. According to the analysis result 

of the NPMI score on the models trained with reviews data from action genre, the 

BERTopic architecture performed significantly better than LDA and CTM in terms of 

topic coherence, and CTM performed slightly better than LDA (See Figure 30). 

  

Figure 30 NPMI score of models trained with different architectures and reviews on games in the action genre 

Based on the quantitative analysis results (refer to Michael report for the full results), 

we selected the top two architectures that performed the best, which are BERTopic and 

LDA, to undergo further qualitative analysis. 

Since the quantitative evaluation is unable to measure the human readability of the 

results generated by the topic models, which often is the most important metric to the 

users, we recognize the significance of manual examination in evaluating the topic 

models through the qualitative manner. 

 

Regarding the qualitative analysis process, cross model comparison was performed on 

the topics of “crashes and bugs” and “horror puzzle game”. The results showed that 

while both architectures perform similarly in terms of the generated keywords. 

BERTopic performed much better than LDA in extracting meaningful representative 

documentation from all of the reviews. This result is expected as LDA performs 
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lemmatization and stemming, causing the modal trained with LDA to favor reviews 

with repetitive words, whereas BERTopic focuses on contextual meaning of the 

sentence and unlikely to affect by the repetitive review context (see Table 6 and 7). 
 

LDA BERTopic 

Top 10 

Keywords 

'work', 'fix', 'play', 'crash', 

'bug', 'issue', 'problem', 

'computer', 'patch', 

'window' 

'crashes', 'windows', 'crashing', 

'crash', 'account', 'fix', 'work', 'play', 

'start', 'wont' 

Top 

Representative 

Document 

Crash! Crash! Crash! 

Crash! Crash! Crash! 

Crash! Crash! Crash! 

Crash! … 

Good game, but it CRASHES. 

TOO. MUCH. 

 
crashes, crashes, crashes, 

crashes, crashes, crashes, 

crashes, crashes, … 

Have Windows 8 or Windows 10? 

This game won't run on your 

computer without crashing every 5 

minutes. 

Table 6 Representative texts and topic keywords generated by the topic models on the topic of "crashes and bugs" 

 
LDA BERTopic 

Top 10 

Keywords 

'puzzle', 'music', 'art', 

'style', 'atmosphere', 

'gameplay', 'sound', 

'horror', 'design', 'movie' 

'puzzles', 'puzzle', 'horror', 'like', 

'really', 'good', 'scary', 'great', 'play', 

'characters'  

Top 

Representative 

Document 

Puzzles, inside of puzzles, 

inside of puzzles, inside of 

puzzles, inside of 

puzzles, … 

Great graphics, wonderful story and 

puzzles. Will make you think at the 

end. 

 
I couldn't stand playing 

anymore. SO SCARY!SO 

SCARY!SO SCARY!SO 

SCARY!SO SCARY!SO 

SCARY!SO SCARY!SO 

SCARY!SO SCARY!SO 

SCARY! … 

I've just played this game through 

and I can definitely recommend it 

to those, who enjoy casual 

adventure (specifically hidden-

object/simple puzzle) games…. 

Table 7 Representative texts and topic keywords generated by the topic models on the topic of "horror puzzle 

game” 

Based on the results of the quantitative and quantitative evaluation. BRETopic is 

selected for training the topic models, as this architecture offers the best performance 

out of the three. 
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Regarding the task of topic naming. Following the methodology, the use of LLM with 

prompt engineering to generate a concise topic name using the result of top 10 

keywords and most representative texts are explored. It is discovered that the LLM with 

Llama-2-7b architecture is able to generate a sensible and concise topic name with 

prompting within a reasonable amount of time.  

 

Moreover, experiments on transfer learning with BERTopic models are conducted. For 

the BERTopic model trained with game reviews for action and indie genres, it learned 

to identify topics specific to these genres. The aim of transfer learning is to use this pre-

trained topic model on a new problem, specifically, to identify topics names in games 

with genre other than action or indie. It is found that though contextual embedding, the 

pre-trained BERTopic model can be applied on unseen games that belong to the other 

genre and generate meaningful topic names for analysis. The pre-trained topic model 

with action game reviews was applied on the game Starfield, an action RPG to generate 

meaningful topic names catering to that game with exceptional result (See Figure 31). 

 

Figure 31 Topic name results after applying the pre-trained topic model on action game reviews to the game 

Starfield 
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4.1.3 Keyword Extraction and LLM Prompting 

As mentioned in the methodology of keyword extraction (See Section 3.1.3). LLM with 

prompt engineering is selected to implement the keyword extraction task rather than a 

certain keyword extraction algorithm. This is because these algorithms are unable to 

provide human comprehensible names for the generated keywords and topics, which is 

considered as the most important element in understanding its meaning. Tools of 

LangChain, Mistral AI and chroma, along with the prompt techniques of RAG, 

generated knowledge, one-shot prompting, use of delimiters and role prompting are 

incorporated for this task. The purpose of prompt engineering is to reduce the likelihood 

of LLM producing hallucinations, and to assist the LLM in generating more consistent 

and concise outcomes. This leads to the creation of keywords of superior precision and 

quality related to the review. It also streamlines the process of extracting, formatting, 

and saving the results to the database, making it easier to incorporate them into the 

front-end application. 

 

The keyword extraction process, as depicted in Figure 32, operates in the following 

manner: Firstly, when a new review is created by the user, a message with the review 

context will be directed to our system though RabbitMQ, triggering the keyword 

extraction task. Then the LLM is tasked to analyze the review to determine if it is spam. 

If the review is indeed spam, then the process is halted, and no further keyword 

extraction task is carried out as it would be pointless. If not, the LLM is prompted 

sequentially to analyze the review based on different review aspects. These aspects, ten 

in total, include graphics and art design, price, gameplay, accessibility, performance, 

sound, bug, narrative, suggestion and overall. Notably, the 2-4-4 approach is adopted 

where the LLM first extracts keywords from the initial two aspects, then the next four, 

and finally the last four. This strategy minimizes token usage and costs, as each prompt 

consumes tokens, and reduces the likelihood of hallucinations, which are more probable 

when the LLM is asked to extract keywords from too many aspects at once. During this 

analysis, two subtasks are executed: keyword extraction and sentiment classification of 

these keywords in relation to the aspect being analyzed. Finally, if the review context 

exceeds 50 words, the LLM is prompted to generate a summary of the review. 
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Another implemented LLM Prompting task involves generating a summary of all 

reviews for a specific game on the platform. The process, as depicted in Figure 33, 

begins with the use of the gameID to fetch the results of sentiment analysis and topic 

modeling. Following this, the LLM accesses a vector database containing game reviews 

written by game critics, and is tasked with summarizing each aspect. In the course of 

this process, the LLM also creates a brief description based on the sentiment analysis 

results. Finally, the LLM uses the aspect information, sentiment analysis results, and 

the most prevalent topics from all reviews to create a concise and comprehensive 

summary for the game. 

This section further explores the use of prompt engineering with the LLM, 

demonstrating how this method can minimize the generation of hallucinated results and 

aid the LLM in producing outputs with a consistent format. 

The subsequent picture presents the template of the LLM prompting for extracting 

keywords from the reviews (See Figure 33). The text marked in green denotes the role 

prompting technique, where the role of a player reading game reviews is assigned to 

Figure 33 Procedure of keyword extraction with LLM and prompting 

Figure 32 Procedure of aggregated review summary generation with LLM and prompting 
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the LLM. This assignment helps control the context’s format and style generated by the 

LLM. 

The text highlighted in yellow represents the one-shot prompting techniques, providing 

an example of the desired output format for the LLM. This method guides the LLM to 

adhere to our provided output schema, resulting in more relevant and reliable outputs. 

The text in purple shows the prompt restrictions used to minimize hallucination. In this 

instance, it prevents the LLM from outputting results in formats other than JSON and 

from presenting inaccurate keyword information when the answer is unknown because 

the review context does not discuss certain aspects. 

The text in pink indicates the use of delimiters, specifically a special character 

combination of \’\’\’, to define the boundaries that include the review context. This 

technique helps eliminate ambiguity, which could lead the LLM to produce 

hallucinated responses or structures with inaccuracies.  

Lastly, the text in blue denotes the RAG technique, where the LLM is provided with 

review summaries extracted from the vector database as content and prior knowledge. 

This technique is vital in preventing hallucination. 

 

Figure 34 Prompting template to extract keywords from the reviews for the LLM 

With the use of this prompting template, the LLM can accurately extract keywords from 

reviews and generate responses in a consistent, predefined format. This assists in 

converting the response into a JSON object for future operations and integration with 

both backend and frontend systems (refer to Figure 35). 

Moreover, the response generated by the LLM successfully prevents hallucinated 

responses. If aspects are not discussed in the review context, the LLM responds with 

“N/A”. 

Regarding the token spent for this request. The total token usage is 597, where the 

prompt requires 520 tokens and the completion cost 77 tokens. 
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Figure 35 An example prompt and the returned response from the LLM 

 

4.2 Web Application 

This section explains the design, features, and implementation of the web application. The 

web application was developed using the technologies, framework and design approach 

specified in the proposed methodology (Section 3.2). The pages and important user 

interface elements that have been developed are the toolbar (Section 4.2.1), register and 

login popup modal (Section 4.2.2), forget password and reset password pages (Section 

4.2.3), landing page (Section 4.2.4), search result page (Section 4.2.5), game page (Section 

4.2.6), game reviews page (Section 4.2.7), review page (Section 4.2.8), game analytics page 

(Section 4.2.9), and profile page (Section 4.2.10). The following sub-sections will discuss 

and explain the mentioned pages and components in detail. As outlined in the section on 

design methodology (See Section 3.2.2), our web application adheres to the principles of 

Responsive Web Design (RWD). This ensures that our application adapts to the user’s 

viewport. In the subsequent section detailing the results of our web application, we will 

provide screenshots from both desktop and mobile viewports to illustrate how the user 

interface adapts to different devices. 
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4.2.1 Toolbar 

The toolbar was implemented using the AppBar and Toolbar components from MUI. 

The layout of the toolbar was customized to suit the needs of our web application and 

consisted of three major sections (See Figure 36 above).  

 

On the left is the app icon button that redirects the user to the landing page when clicked.  

In the middle, there is a search bar that allows the user to search for games with game 

title. If no input is given, it will search for all the games in the database. The user can 

initiate the search by clicking the search button or pressing the enter key while typing 

the input field, after that, it will take them to the search results page.  

 

Finally, on the right, there is either a register button or a user avatar button, depending 

on the user’s login status. The register button opens a popup modal that enables the user 

to create a new account or sign in to their existing one. The details of the popup modal’s 

implementation, features, and design will be discussed in Section 4.2.2. The user avatar 

button opens a menu (See Figure 36(c)) that displays the username and two button 

options: the profile button and the logout button. The profile button takes the user to 

the profile page, while the logout button signs the user out of the web application. 

 

The toolbar follows the principles of Responsive Web Design (RWD) in its design and 

implementation. For the viewport of mobile devices (See Figure 36(b)), the app icon 

button is substituted by a simplified version of the icon, the spacing between the three 

components is minimized, and the dimensions and font size of the register button are 

scaled down. These measures ensure that the toolbar can adapt to the smaller viewport 

and offer the optimal user experience. 

 

(a) 

(b) 
(c) 

Figure 36 Web application's toolbar design. (a): Toolbar design for desktop viewport. (b): Toolbar design for 

mobile viewport. (c): Avatar icon button drop down menu. 
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The toolbar also adopts a dynamic display strategy to enhance the website’s visual 

clarity and information density. The toolbar disappears when the user scrolls down and 

reappears when the user scrolls up. 
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4.2.2 Login and Registration 

 

Figure 37 Web application's register modal popup 

             

Figure 38 Register modal input validations 
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Figure 39 Web application's login modal popup 

As mentioned in the previous sections, the popup modal can be accessed by the users 

through clicking the register button on the toolbar. This modal enables the users to 

either register a new account or log in to their existing account. The Modal component 

from MUI is utilized to implement this popup modal and the input fields are a 

customized version of the InputBase component from MUI. The layout of the popup 

modal consists of the web application icon and an icon button to close the modal on the 

top, and the tab bar below the icon. The Tabs and Tab components from MUI are 

employed to implement the tab bar. The users can toggle between the register modal 

and the login modal by selecting the corresponding tab.  

 

The register modal (See Figure 37 above) requires the users to enter all the fields to 

create a new account, which comprise username, email address, password, confirm 

password, birth date and gender. The front-end application performs validations on all 

the input fields using regular expressions (See Figure 38) based on the following 2 rules. 

This is crucial as it reduces the network load for the backend system by preventing the 

users from making invalid requests.  
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1. The username must have a length of 4 to 14 characters with no spaces or @ symbol, 

as this symbol is designated for the email address detection.  

2. The password must have a length of 8 to 16 characters with both number and letter 

to ensure its security. 

The backend system also validates the register request to avoid duplicate usernames or 

email addresses in the database. 

 

The login modal (See Figure 39) requires the users to enter the username or email 

address and password to sign into their account. The icon button on the right of the 

password input field allows the users to hide or show the password by changing the 

type of input field between text and password. The “Remember Me” checkbox below 

the two input fields determines how the refresh token cookies are stored, as explained 

in Section 3.2.2. The backend system is responsible for the validations, and it will return 

an error message with a description of the issue for the invalid login request. The modal 

will display this error message to inform the user. If the user has forgotten their 

password, they can click the forget password button below the login button, which will 

redirect them to the forgot password page. The next section will describe the 

implementation of this page. 
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4.2.3 Forgot Password Page and Reset Password Page 

 

Figure 40 Web application's forget password page design. 

 
Figure 41 Reset password email 

The user can access the forgot password page (See Figure 40 above) by clicking the 

forgot password button on the login page. On this page, the user can input the email 

address associated with their account. Validations will be performed by both the 

frontend application and the backend system. The frontend application uses regular 
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expressions to validate the email address format, and the backend system queries the 

database to check the email address existence. If the email address is valid, the system 

generates an email with a link to the reset password page (See Figure 41) and sends it 

to the user after they click the confirm button. The link contains a unique token that 

corresponds to a specific account, and this token is passed as a prop to the reset 

password page to enforce authentication and authorization. The backend system also 

persists the token in the database for verification purposes and sets it to expire after 2 

hours for increased security. To prevent email spamming, the web application disables 

the confirm button for 60 seconds after sending the email. 

 

 

Figure 42 Web application's reset password page design 
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Figure 43 Web application's reset password page with invalid token 

On the reset password page, the web page displays a form to reset a new password (See 

Figure 42) if the token in the link is valid. Otherwise, an error message is shown to 

inform the user of the invalid or expired token (See Figure 43 above). To update the 

password, the user must enter a new password and confirm it in the respective input 

fields in the form. The system enforces the same password rules as for registering a new 

account. After the user clicks the confirm update button, the web application sends the 

update password request to the backend system. Validation is performed by the backend 

system to ensure that the new password is different from the old password. If the request 

is invalid, the backend system will return the error to be displayed by the frontend 

system, otherwise, the backend will modify the password in the database. 
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4.2.4 Landing Page 

  

(a) (b) 

Figure 44 Web application’s landing page design. (a): Landing page design for desktop viewport. (b): Landing page design 

for mobile viewport. (c) Game card component 

(c) 
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Upon entering our web application, users are greeted by our landing page (See Figure 

44(a) above). On the top of the page is the logo of the CritiQ platform, accompanied by 

a brief description of our platform below. 

 

This page showcases five rows of game card sliders, each displaying the top 20 games 

based on different filtering, and ordering criteria, using the game card component. The 

slider is implemented using the Embla Carousel components and package, which offers 

advanced features such as responsive layout based on viewport and thumbnails 

navigation. A detailed discussion about an image slider, which utilizes this library, will 

be discussed when we present the review page in future section (See Section 4.2.7). 

Each game card outlines essential game details (See figure 44(c)). The game icon serves 

as the card’s background. If the game is still under development, an ‘Early Access’ chip 

appears on the card’s top left corner. The game’s scores are displayed on the top right 

corner, while the game genre is displayed near the middle and right below the score. 

The lower segment shows the game’s title, the developer’s name, and three chips 

representing the number of reviews, favorites, and wishlists from our users. Clicking 

the game card components will redirect to user to the game page of that specific game. 

 

The ‘Latest Releases’ row orders the games by their releases date in reverse 

chronological order and includes a ‘View All Games’ button that leads to the Search 

Result Page, whose design and functionality are elaborated in the subsequent section. 

The ‘Most Reviewed Early Access Titles’ row ranks in-development games by their 

release date. The ‘Most Reviewed Game’ row orders games by the number of reviews 

created. The ‘Most Favourite Game’ and ‘Most Wishlisted Game’ rows sort games by 

the number of favorites and wishlists, respectively. Through these interactive game card 

sliders, we aim to offer users an effortless means to discover games that suit their 

interest. 

 

A mobile-responsive design has been developed for the landing page (See Figure 44(b)), 

which is distinct from the desktop version. Adjustments have been made to the font size, 

spacing between elements, and the downsizing of the game card to accommodate the 

limited width of a mobile screen, resulting in a more compact layout. Moreover, the 

navigation methods for the game card sliders are different between the desktop and 

mobile versions. Desktop users can navigate the slider by clicking the next and previous 
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buttons situated at the far right and left of the slider. On the other hand, mobile users, 

who typically operate a phone by scrolling, can navigate the slider by simply swiping 

left or right on the slider to transition between slides. 
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4.2.5 Search Result Page 

Figure 46 Web application’s search result page design. (a): Search result page design for desktop viewport. (b): 

Search result page design for mobile viewport 

(b) (a) 

Figure 45 Search result page searching example 
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Section 4.2.1 and Section 4.2.4 describes how the user can access the search result 

page via the search bar, the search button in the toolbar and game card. The search 

button has a conditional functionality based on the state of the search bar. If the search 

bar is empty, the search button redirects the user to the search result page that displays 

all games in the database (See Figure 45(a) above). If the search bar has an input, the 

search button redirects the user to the search result page that displays the games that 

match the input (See Figure 46). The default search method for the search bar is 

search by game name.  

 

The search result page has a description at the top that specifies the search method and 

the search input used to generate the results. Three different search methods are 

available to the user through the advanced search feature: all games search, search by 

title, and search by developer. The description changes accordingly to reflect the chosen 

search method and input. 

 

Figure 47 Advanced search modal for search result page 
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The user can see a select button and an advance search button on the right of the 

description. The select button opens a menu that allows the user to choose the sorting 

method available for the game results: relevance, score, or release date. The advance 

search button opens a popup menu (See Figure 47) that enables the user to perform an 

advanced search by applying various filtering criteria, such as genres, platforms, and 

development state. The user can also choose between two search methods in this menu, 

which are search by title or developer.  

 

The front-end application determines the search type and filtering criteria based on the 

query parameters appended to the URL and sends a search API request with the 

appropriate body. The query parameter gamename is used for search by title, while 

developername is used for search by developer. Other query parameters are genre, 

platform, and isInDevelopment, which are incorporated in the body of the API request 

to retrieve the filtered game results.  

 

A URL example that searches by the developer’s name “valve”, with the genre of 

shooter, the platform of steam, and the exclusion of games in development is 

https://critiq.itzjacky.info/result?developername=valve&genre=7&platform=0&isInD

evelopment=false. In this example, the genre of shooter is mapped as 7 and the platform 

of steam is mapped as 0 by the application.  

 

The game search results are displayed below the description. Each search result card 

component displays the basic information of the game if it exists in the database. This 

information includes game icon, game name, developer name, game genres, game 

platforms, development state, and game release date. Additionally, the score of the 

game is also displayed, which is computed by the average score of all reviews. The 

game is classified as bad, average, or good based on its percentile rank among all games 

in the database. Games ranked above the 75th percentile are considered good, games 

ranked below the 30th percentile are considered bad, and games ranked between the 

30th and 75th percentile are considered average. Good games are displayed with a green 

score, average games are displayed with an orange score, and bad games are displayed 

with a red score. Clicking on the search result card will redirect the user to the game 

page, the implementation and design of the game page will be explained in the next 

section. 

https://critiq.itzjacky.info/result?developername=valve&genre=7&platform=0&isInDevelopment=false
https://critiq.itzjacky.info/result?developername=valve&genre=7&platform=0&isInDevelopment=false
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Two distinct versions of search result cards are developed to cater to the diverse range 

of devices. Both versions present identical game information as mentioned before. 

However, the desktop version (See Figure 45(a)) is designed to accommodate the 

information in a horizontal layout, capitalizing on the greater width available on 

desktop interfaces. Taking into account the limited width of mobile viewports, the 

mobile version (See Figure 45(b)) adopts a more compact design with a reduced font 

size and a vertical composition. 

 

The pagination at the bottom of the page allows the user to navigate through the search 

results. This is implemented using the Pagination component from MUI. The number 

of results shown on each page depends on the viewport layout. For the desktop layout, 

up to 10 results are shown on each page, while for the mobile layout, up to 5 results are 

shown on each page. 

 

The search result page adapts to the user’s viewport by displaying the layout of the page 

and the search result card component differently to accommodate the various screen 

sizes. The font size for the mobile viewport is also reduced to ensure that all information 

is displayed properly (See Figure 37 (a) & (b)). This design approach ensures that users 

will have the optimal user experience regardless of the devices they use to access the 

website. 
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4.2.6 Game Page 

 

Figure 48 Web application's game page design. (a): Game page design for desktop viewport. (b): 

Game page design for mobile viewport. 

(a) (b) 
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Figure 49 Game detailed information popup modal 

As stated in the previous sections, the game page (See Figure 48 above) can be accessed 

by selecting the search result card on the search result page, or by clicking on the game 

card in the landing page. This page includes four main sections, which are Information, 

Aggregated Review, Add Review and All reviews.  

 

Firstly, the information section is located at the top of the game page, it displays all the 

game information that was previously presented on the search result card. On the top 

of this section is a container with the game icon as the background. To access the full 

description of the game, the user can click on the “More” button located on the top right 

of this container, which will open the game detailed information modal (See Figure 49). 

On top of the “More” button is the “Analytics” button, clicking this button will redirect 

the user to the game analytics page. The game analytic page will be discussed in the 

future section (See Section 4.2.10). For the desktop version (See Figure 48(a)), two 

buttons are positioned next to the “More” button on the left size, which are the 

“Favourite” and “Wishlist” Buttons, for user who have singed into their account, they 

can favorite or wishlist a game using these buttons, and the favorite and wishlist data 

will be collected and used for the game analytic page to help the developer to analyze 

the game. Below the “More” button is a blue chip displaying the genres of the game. 

For the Mobile version (See Figure 48 (b)), the layout is altered, where the Favourite” 
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and “Wishlist” Buttons and game genres chip are positioned differently to 

accommodate the limited width of the mobile phone. Moreover, below the icon 

container description box, it provides a brief overview of the game, the name of the 

publisher, and a comprehensive list of platforms that support the game. The brief 

overview is restricted to three lines for desktop and five lines for mobile, and the 

overflown text will be concealed by ellipsis.  

 

The information section is followed by the aggregated review section and the DLC 

section. The aggregated review section utilizes LLMs with prompt engineering to 

generate an aggregated review that summarizes all the reviews of the game made by 

our platform users, and display the summary information on this section. The DLC 

section will only be visible for games that have DLC, and all the DLCs will be presented 

in a slider format with an individual DLC card. The DLC card shows the name, 

developer, the release date, and the score of the LDC, clicking on the card will redirect 

the user to the game page of the DLC. The slider is implemented using the React Slick 

library, a popular React carousel that offers a simple, lightweight, and customizable 

carousel component. 

Following the aggregated review section is the add review section. Unauthenticated 

users will be prompted to log in before they can create a review. Otherwise, users can 

create new reviews by completing the input fields in the add review form (See Figure 

50(a)). They are required to provide mandatory information, including a numerical 

score (from 0 to 100), the recommendation status, the source of the game (self-bought 

Figure 50 Add review section design. (a): Implementation for authenticated user that have not 

made a review to the game. (b): Implementation for authenticated user that made a review to 

the game 

(a) 

(b) 
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or sponsored), the review content, the platform, and the total playtime. Additionally, 

users can optionally attach images to their reviews through the file input field, this is 

implemented using the MUI file input component from the MUI file input library. The 

submitted images are limited by quantities and size, with a maximum of 10 images and 

a size of less than 3 Megabytes per image. This constraint aims to prevent users from 

uploading excessive number of high-quality images to our storage bucket and hindering 

the performance of page load. When the user clicks on the confirm button, both the 

frontend and backend perform validations to ensure that all required fields are filled, 

and the attached images do not surpass the size limit. If the new review is successfully 

created, the web application will redirect the user to the review page.  

 

For users who have already made a review for this game, this section will display their 

review (See Figure 50(b)). Furthermore, they can modify their review by clicking on 

the “Edit Review” button, which brings up the add review form pre-filled with their 

previous review details, allowing them to make necessary changes. However, for the 

sake of simplicity, users are not permitted to change the platform and images in their 

review. To prevent spam, users are limited to editing their review once per week, as 

each update triggers a regeneration of the automated review analysis. The system 

checks the time both on the frontend and backend, and the frontend will display the 

remaining time before the user is eligible to edit their review again. 

 

Finally, the game review section exhibits the reviews that other users have written for 

the game. A tab bar for filtering and a select button for sorting are located at the top. 

Users can choose to display based on the review sentiment values by selecting the 

respective tab in the tab bar. They can also filter out possible review spam by checking 

the filter spam check box next to the tab bar. Clicking the select button opens a menu 

for users to select the sorting criterion for the reviews, which comprises recency or 

score.  
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The review information is displayed using the game review card component, it presents 

the essential information about the game review and the reviewers (See Figure 51(a) 

above).  

 

A mobile version with slight changes to the layout, icon size and font size is 

implemented to reduce the width of the card (See Figure 51(b)). The cards are situated 

below the tab bar. The first row in the game review card displays the avatar icon and 

name of the reviewers, the date and time the game review was created, a thumb up or 

thumb down icon indicating the recommendation status of the review, and the score 

that the reviewer assigned to the game. The score color is computed dynamically: scores 

above 75 are deemed as good and shown in green, scores below 50 are deemed as bad 

and shown in red, and scores between 50 and 75 are deemed as average and shown in 

orange. The second row shows the review content, which is limited to four lines and 

the excess content is concealed by ellipses. The left side of the third row reveals the 

total playtime, the platform, and the game version that the reviewer played the game 

on, and the right side has the read more button, which will redirect the user to the review 

page upon clicking. The review page will be explained in detail in the subsequent 

section. Lastly, the fourth row displays the sentiment result of our NLP model on the 

left, and the number of likes, dislikes, images, and review comments on the right. We 

used LLMs and prompt engineering to analyze each induvial review. The model 

identifies possible review spam, and places an orange alert on the top right the corner 

accordingly to alert the user.  

 

Moreover, the game review cards are structured using the Grid component from MUI, 

which enables the adjustment of the card per row according to the viewports. The 

desktop layout displays two game review cards per row, while the mobile layout shows 

Figure 51 Game review card design. (a): Game review card under desktop viewport. (b): Game review card under 

mobile viewport 

(a) (b) 
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one game review card per row. The game page will only show 12 reviews at most, if                                            

more than 12 reviews are created, the “View More Reviews” button will be displayed 

on the bottom on the game page. Clicking this button redirects the user to the Game 

Review Page, which will be discussed in the next section.  
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4.2.7 Game Reviews Page 

 

As mentioned in the previous section, The game reviews page can be accessed by 

clicking on the “View More Reviews” button in the game page. This page displays 

the game reviews in the same way as the game page with the sentiment and spam 

filtering, and sorting by recency or score (See Figure 52 above). The creation of this 

page aims to declutter the game page, which is already information-dense. A 

pagination feature is included at the bottom of this page for easy review navigation, 

implemented in the same manner as on the game result page (See Section 4.2.5).  

Figure 52 Web application's game reviews page design. (a): Game reviews page design for desktop viewport. (b): Game 

reviews page design for mobile viewport 

(a) (b) 
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4.2.8 Review Page 

Figure 53 Web application's review page design, review context has been shortened to reduce the length of the 

screenshots. (a): Review page design for desktop viewport. (b): Review page design for mobile viewport. 

(a) (b) 
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This section presents the review page, which was mentioned in the previous sections. 

The review page can be accessed by clicking on the read more button on the game 

review card and consists of three sections: the header section, the review body section, 

and the review comment section (See Figure 53(a) above). This page implements RWD. 

The layout for the mobile version is most similar to the desktop version. However, 

modifications have been made to adapt to the narrower width of mobile devices. These 

include reducing the font size, adjusting the spacing between elements, and reordering 

components (See Figure 53(b)). 

 

The header section, located at the top of the page, displays the game icon and a location-

based breadcrumb navigation. The breadcrumb navigation allows the user to return to 

the previous level in the website’s hierarchy, which is the game page, by clicking on 

the game icon or the game name. The Breadcrumbs component from MUI is used to 

implement the breadcrumb navigation. 

 

The review body section, which follows the header, comprises four sub-sections.  

The first sub-section displays some basic information about the review and the reviewer. 

On the left, it shows the avatar icon and the name of the reviewer, the creation time of 

the review, the platform, the total play time, and the version of the game that the 

reviewer played. On the right, it shows the recommendation status of the review and 

the score that the reviewer assigned to the game.  

The second sub-section consists of the review analysis information. Users can expand 

or collapse this section by clicking on the arrow button situated at the center of the 

section’s bottom. The content within this section is automatically generated using 

Natural Language Processing (NLP) models. The analysis includes sentiment, topics, 

keywords, and a summary. The sentiment, which can be either positive or negative, is 

determined using a sentiment analysis model, aiding in understanding the overall tone 

of the reviews. The primary topics are identified using Topic Modelling and LLMs, 

identifying prevalent themes or subjects in the reviews. Keywords are extracted using 

keyword extraction techniques combined with LLMs and prompt engineering 

according to different predefined aspects. These aspects, with positive or negative 

keywords, are marked with green or red, respectively. This identifies the most 

commonly used words or phrases in the reviews according to different aspects. The 

summary is produced using LLMs and prompt engineering, where a summary will only 
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be generated if the review contains more than 50 words. With this review analysis 

information, we hope to provide a concise yet comprehensive overview of the review 

and assist in reducing the time required for developers to analyze the review, enabling 

them to devote more resources to enhance their game and create games that better align 

with player expectations and preferences. The information aids the developer in 

understanding what players like or dislike about different aspects of the game and make 

informed decisions to enhance their game. 

 

The third section presents the review context and attached images. The section displays 

the review text body and an image slider that shows the images associated with this 

review. The image slider is implemented using the Embla Carousel component, which 

was described on the landing page (See Section 4.2.4). The height of slider is reduced 

for the mobile viewport to avoid the slider from taking up the entire screen. The user 

can navigate the images in various ways, such as dragging on the image, clicking the 

left and right arrow buttons, and clicking on the individual thumbnail below the slider. 

The final section allows the user to evaluate the review by clicking on the like or dislike 

buttons, depending on whether they found the review helpful or not. The buttons and 

the game review card show the number of likes and dislikes, which provide an initial 

impression of the review to other users. 

 

The final section of the review page is the comment section, which appears below the 

review body section. This section allows the users to add new comments and interact 

with other users about the review. The section displays the total number of comments 

at the top, followed by the comment box, which is only visible to logged-in users. The 

comment box shows the user’s avatar and a text input field for entering the comment. 

The user can submit the comment by pressing enter while typing. The comments of 

other users are shown below the comment box, sorted by the creation time in ascending 

order. The user can browse the comments using the pagination at the bottom, which is 

implemented in the same way as the search result page (See Section 4.2.5). 
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4.2.9 Game Analytics Page 

Figure 54 Game analytics page design for desktop 

viewport 

Figure 55 Game analytics page 

design for mobile viewport. The 

Image is cropped as the page is 

too long to display 



 80 

This section outlines the design and implementation of the game analytics page. As 

referenced in section 4.2.6, users can navigate to the game analytics page by clicking 

the “Analytics” button on the game page. When this page is accessed by a user, an API 

is triggered to fetch the analytical data from the backend, which is compiled from the 

existing data from our users and reviews. We employ an on-demand processing 

approach, as opposed to batch processing, for managing the analytical data due to its 

superior efficiency and lower cost. Consequently, we evaluate the timestamp of the last 

update to the analytical data. If more than 24 hours have passed since the last update, 

the analytical data will be refreshed when a user visits the page and triggers the API. 

 

The game analytics page is divided into five sections: the game header, game statistics, 

reviews, players, and wishlist and favorite (See Figure 54 above). This page also 

implements RWD. In the mobile view, due to the restricted width, all charts and 

components will occupy the full row (See Figure 55). The layout of the charts and 

components and implemented using the Grid component from MUI. This component 

was discussed in Section 4.2.6. 

 

Firstly, the game header shows the name of the game, its icon, and the name of the 

current page. It uses the game icon as its background. It incorporates breadcrumb 

navigation similar to the one implemented on the review page (refer to Section 4.2.8). 

Within the breadcrumb navigation, there is a button labeled with the game’s name. 

Clicking this button will navigate the user back to the game page. Additionally, there 

is a typography component present to signify that this page serves as the analytics 

dashboard for the game. 

 

Secondly, the game statistics section displays the basic analytics information regarding 

the game, which includes the number of reviews, favorites and wishlist for the game. It 

features a pie chart of recommendation ratio that illustrates the proportion of user 

reviews that recommend the game versus those that do not. This is implemented using 

the ResponsivePie component from nivo, a renowned React library offering a variety 

of data visualization components such as charts and maps. Additionally, this section 

presents the game’s score and its percentile ranking compared to all games in the 

platform’s database, implemented using the CircularProgress component from MUI. 
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Thirdly, the reviews section visualizes the reviews related data through charts. It 

comprises three bar charts and a tree map. The charts depict the distribution of review 

lengths, the distribution across platforms, and the distribution of play times. This data 

is retrieved from the reviews submitted by users on our platform. The charts are 

constructed using the ResponsiveBar component from nivo. The purpose of these bar 

charts is to understand if users are providing detailed feedback or just brief comments, 

identify which platforms are most popular for this game and indicate if the game is 

engaging enough to holds the players’ interest for extended periods.  Additionally, the 

tree map showcases the frequency of topics generated for the reviews through topic 

modelling, with a maximum limit of 10 topics. It is created using the 

ResponsiveTreeMap component from nivo. The purpose of the tree map is to help game 

developer to identify common theme and the most frequently discussed topics in the 

reviews, understand what players like and dislike about the game, and prioritizing their 

development resources accordingly to improve the frequently discussed topic. 

 

Fourthly, the players section provides analytics information regarding the reviewer of 

the game. It comprises four bar charts and one pie chart. The four bar graphs represent 

the distribution of reviews by age and gender, as well as the sentiment distribution of 

reviews by age and gender. These bar charts are created using the ResponsiveBar 

component from nivo. The pie chart, which is made using the ResponsivePie 

component from nivo, represents the ratio of review sentiments. The data for age and 

gender are obtained from our users, as these details are mandatory when registering a 

new account. The sentiment data is produced by our sentiment analysis model. 

Moreover, in the bar charts for sentiment distribution by age and gender, users have the 

option to include or exclude specific age groups or genders to analyze sentiment data 

according to various user groups and target audiences. 

 

Finally, the wishlist and favorite section showcases the wishlist and favorite data of the 

game. As mentioned in the game page, authenticated users can add a game to their 

favorites or wishlist via the provided buttons. This section includes four bar charts 

representing the wishlist distribution by age and gender, and the favorite distribution of 

reviews by age and gender. These charts aim to understand the preferences of different 

demographic groups, thereby directing marketing efforts towards the interested 

audience. Furthermore, developers can customize their game to cater more to 
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demographics that show higher engagement with the game. If a particular demographic 

group exhibits increased interest in the game, it indicates the success of marketing 

strategies or game features that resonate with those groups. 

Furthermore, a navigation bar has been incorporated into the game analytics page to 

provide the users a convenient way to move between different sections of the page. 

Users can select a specific section from the content table, which will then scroll the 

page to that section. Moreover, as users scroll through the sections, the content table 

will highlight the current section the user is viewing by showing that section as active 

(See Figure 56 above). The navigation bar utilizes the Stepper components from MUI, 

while the content table is made up of the Step, StepButton, and StepLabel components 

from MUI. The section tracking feature is implemented using the intersection observer 

API and the IntersectionObserver interface, allowing for asynchronous observation of 

changes in the intersection of a target element with an ancestor element or with the 

viewport of the top-level document. The active Step is set whenever the user’s screen 

interacts with a specific section on the page.  

Figure 56 Game Analytics Page sections tracking feature 
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4.2.10 Profile Page 

 

As outlined in Section 4.2.1, users can navigate to their own profile page by selecting 

the profile button located in the toolbar menu. If they desire to view another user’s 

profile page, they can do so by clicking on the user’s avatar icon or name, which can 

be found on the review page or within a review card. 

There are three major sections in the profile page (See Figure 57(a) above). For mobile 

viewports, the layout and spacing are adjusted to suit mobile devices. Some components, 

like the profile privacy switcher, are simplified to ensure that no component overflows 

or overlaps with another (See Figure 57(b)).  

Figure 57 Web application's profile page design under the owner  view. (a): Profile page design for desktop viewport. 

(b): Profile page design for mobile viewport. 

(a) (b) 
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The profile page will be explained with the desktop version for the sake of simplicity. 

On the top of the profile page is the user banner. If the profile page is under the owner’s 

view, they will also see a control panel on the right side, with the profile privacy 

switcher and a button to open a menu to update username of their profile banner (See 

Figure 60). Clicking on the switch will switch the profile page between public and 

private. Selecting the button on the menu will open the respective modals for the user 

to update username or their profile banner (See Figure 58 and 59 below). The username 

update follows the same rules as for registering an account.  

Next, on the left-hand side of the profile page, you’ll find three sub-sections, which are 

the user avatar box, the personal information box, and the settings box. In the desktop 

viewport, this section is assigned a sticky position in the CSS. This means that the 

section will remain affixed to the top of the page and will not be scrolled past by the 

user, ensuring its constant visibility. 

 

In the user avatar box, for the profile owner, a small purple edit icon will appear at the 

bottom right of the user avatar. Clicking this icon opens the ‘Update User Avatar’ modal 

(See Figure 61(a)). After an image is uploaded via the file input bar, an interface 

Figure 60 Profile page control panel for the 

profile owner 

Figure 59 Update username modal 
Figure 58 Update profile banner modal 
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backdrop featuring the avatar editor will appear. Here, users can crop, rotate, and set 

the image as their avatar icon (See Figure 61 (b)). The updated avatar icon will then be 

displayed on the modal, and users can click ‘Save’ to confirm the avatar changes (See 

Figure 61 (c)). 

Directly below the user avatar box is the personal information box, which displays the 

email address, gender, and age of the user. Lastly, the settings box is situated beneath 

the personal information box and is only visible to the profile owner. This box displays 

the account verification status and includes a button to resend the verification email to 

your email address every 60 seconds. 

Next to the previous section and on the right-hand side, it displays the username, the 

user’s last active time, and a box for user reviews. A verification icon is placed adjacent 

to the username, indicating the verification status of the user’s email address. An 

unverified status is represented by a red exclamation mark, while a green tick denotes 

a verified status. The user reviews box presents all the reviews created by the user, with 

options to sort them by recency or score. The review fetching feature employs an 

infinite scroll, automatically retrieving new reviews as the user scrolls to the bottom of 

the review box, until all the user’s reviews have been fetched. This is accomplished 

using the Intersection Observer API and IntersectionObserver interface, implemented 

in a manner similar to the section tracking in the game analytics page (refer to the 

previous section). The fetch API is triggered whenever the user scrolls and interacts 

with the bottom of the review box. 

 

Figure 61 Update user avatar modal. (a) Modal before image upload. (b) Modal after image upload, with avatar editor 

backdrop to set the icon. (c) Modal after the image is uploaded and the icon is set 

(a) (b) (c) 
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As mentioned previously, profile users can set their profile page to private or public. 

Under the private view. When a user sets their profile to the public, other users are 

granted access to view their personal information, which includes their email address, 

gender, and age. Additionally, other users can see the last time the profile owner was 

active and read all the reviews they have created (See Figure 62 (a) and (b) below). 

  

Figure 62 Web application's profile page design under visitor view and private profile. (a): Private profile page design for desktop 

viewport. (b): Private profile page design for mobile viewport. 
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4.3 Web Scraping 

Web scraping was adopted to extract information of existing games on the Steam platform. 

Using Steam Web API (Valve, 2023), 157068 games in total were discovered, and data such 

as description, developers, genres, categories, and release dates were scraped from Steam in 

October 2023. The data was then saved in JavaScript Object Notation (JSON) format.  

 

Subsequently, a Python program was used to parse the data and modified them to match the 

format used in the database (See Figure 63). This data was utilized to establish the foundation 

of data for our platform. Furthermore, these data will be utilized in topic modeling 

experiments, employing various methods to construct distinct topic models, including topic 

models trained with top categories and genres. 

 

 

Figure 63 Sample Database Records of Scraped Games from Steam 
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4.4 Backend System 

This section will discuss the preliminary results of the backend solution, including CI/CD 

(Section 4.4.1), API Endpoints and Database (Section 4.4.2), API Security (Section 4.4.3), 

S3 Bucket (Section 4.4.4) and Stability and Testing (Section 4.4.5). 

 

The backend solution has been set up according to the planned Methodology with Spring 

Boot being the main application and CI/CD handled by Jenkins and Docker (See Figure 64).  

 
Figure 64 Backend Solution Architecture Graph 
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4.4.1 CI/CD 

Uptime and Stability are key for modern web applications. And our backend 

architecture is designed to provide high uptime and stability without relying on 

additional backup nodes. Our pipeline is written to only deploy changes to the modified 

service, reducing the overall system downtime for long-starting service, including our 

Sentiment Analysis Model Server. 

 
Figure 65 Jenkins deployment User Interface with different stages of deployments. 

By using a Custom CI/CD pipeline (See Figure 65 above), we have reduced the 

downtime for our backend system during deployment to approximately 10 seconds with 

minimal impact on the end-user experience of our platform. Moreover, Jenkins also 

offers an intuitive UI that displays the status and duration of each deployment with 

failed deployments marked in red. 
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4.4.2 API Endpoints and Database 

The APIs required by the frontend application have been developed and tested to 

optimize for performance and stability. 

 

By creating API endpoints based on the need of frontend applications and optimizing 

database performance, the Round-Trip-Time (RTT) of the most commonly used API 

endpoints has been lowered to within 300ms. 

 

Database optimization techniques including Indices on commonly queried entities and 

lazy load, which is only loading information associated with the entity when needed, 

significantly reduced the RTT of most API endpoints, improving the responsibility of 

the application. The most common API, /findGameById, is used to display 

information regarding a selected game and can be executed in 65 milliseconds (See 

Figure 66). 

 

 
Figure 66 API call to /findGameById to fetch specific game information finishes in 65ms 

 

For API calls that perform exhaustive searches, including the Advanced Search 

feature, the RTT depends on the size of the returned result. Testing has shown that the 

worst case’s RTT still falls below 300ms (See Figure 67). 
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Figure 67 API call to /findGamesWithSearch to perform exhaustive game search finishes in 251ms 

Our database plan offers a connection limit of 150 concurrent connections from any 

location (See Figure 68). To improve the performance of complex queries, including 

Advanced Game Search or Data Analysis, setting a larger connection size from Spring 

Boot had improved the query times by over 100%. Further testing has shown that 70-

100 concurrent connection to the database in the production environment yielded the 

best result without utilizing too many connections (See Figure 69). A small portion of 

connection pool is reserved for local development and testing purposes.

 

Figure 68 Current Database Plan with 2GB RAM offer a maximum of 150 concurrent connections 

 
Figure 69 Spring Boot utilizes 80 concurrent connections to the database 
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4.4.3 API Security 

 

API Security is crucial in maintaining the confidentiality, integrity, and availability of 

our platform and its data by only permitting data access and modifications. The system 

uses the @AuthenticationPrinciple annotation in the REST API endpoint of the 

backend application to obtain the user based on the username or email from the JWT in 

the HTTP request. The system can also restrict access to the API call by verifying the 

user’s information. The figure below illustrates how the system checks if the user’s ID 

matches the requested user’s ID before sending the verification email (See Figure 70). 

 

Figure 70 Access Control by verifying the user based on the JWT sent in HTTP requests using the 

@AuthenticationPrincipal annotation. 

An alternative annotation @PreAuthorize can directly access the user making the 

requests based on the JWT token and make use of the Spring Expression Language 

(SPEL). This annotation will check for permission based on the SPEL evaluation. In 

our application, it is used to check for the role of the user prior to method invocation. 

The figure below showcases that the /removeGame API endpoints should only be 

accessed by user with the ADMIN role and will automatically return a 403 Forbidden 

Error otherwise (See Figure 71). 

 

Figure 71 Access Control by verifying the user's role based on JWT sent in HTTP requests prior to method invocation 

using the @PreAuthorize annotation. 
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Attempting to access a protected API without a valid JWT, or without being the 

authorized user or having the necessary permission, will result in a 403 Forbidden error 

(See Figure 72) 

 

Figure 72 403 Forbidden Error on Unauthorized Access to Protected API endpoints 
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4.4.4 S3 Bucket Storage 

The S3-compatible storage Solution provided by Digital Ocean offers high availability,  

To optimize the user’s experience, a Content Delivery Network (CDN), is a network of 

edge servers that serve the content to the user based on the user’s geographic location 

to minimize network traffic time, provided by Digital Ocean is used. By using a CDN, 

we can minimize the data fetching time of common User Interface elements in the web 

application, including User Icon, Game Images, and Review Images. 

Together with browser and server caches, images presented on the web application can 

be loaded efficiently and quickly without hindering the user experience during page 

navigation or exploration (See Figure 73). 

 

Figure 73 Fetching of Cached Image(s) can be performed within 50ms 

To ensure integrity of files uploaded to the storage, any modification to the storage 

bucket is only permitted through Spring Boot secured API endpoints, preventing 

unwanted access and modification of meta-data, including uploader, upload time and 

data. In addition, additional information including the uploader of the files will be 

tracked during file upload for security purposes and tracking (See Figure 74) while the 

uploader for files uploaded by the Backend system will be marked as “System”. 

 

Figure 74 Uploader Header is set to the user's name during file upload 
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4.4.5 Stability and Testing 

API testing using Gatling, a scalable load-testing tool, has shown scalable performance 

in terms of basic and complex CRUD operations (See Figure 75). The system can 

sustain 60 concurrent users performing queries while maintaining an acceptable 

performance of around 0.2 second of response time per database query. The increase in 

users has not led to any depreciation of application performance and stability. 

 

Figure 75 Backend Load-Testing using Gatling, showing the ability to sustain 60 active users 

performing complex queries. 
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5 Difficulties and Limitations 

This section discusses the primary challenges and constraints experienced throughout the 

development process. The structure of this section is as follows: Section 5.1 discusses HTTPS 

and SSL certificates. Section 5.2 addresses the issue of Message Queue Disconnection. Section 

5.3 explores the compatibility issues of Nest.js with other libraries. Section 5.4 examines the 

issues related to dataset noise.  

 

5.1 HTTPS and SSL Certificate 

Our backend server was hosted on a Virtual Private Server (VPS) from Contabo, which did 

not provide a Secure Sockets Layer (SSL) certificate without an extra charge. However, 

modern browsers that prioritize security would automatically convert any HTTP requests 

from a site using HTTPS to HTTPS requests.  

Since HTTP and HTTPS are two distinct origins for a backend service, HTTPS requests to 

an HTTP-only server will result in a 404 Not Found error. This resulted in the backend 

server being unable to receive any requests from the frontend application. To adhere to 

modern security standards, our frontend application was hosted on Vercel, a cloud website 

hosting platform, which automatically provided an SSL certificate to the application using 

Let’s Encrypt, an open Certificate Authority (CA) from the Internet Security Research 

Group (ISRG).  

We initially attempted to self-sign a digital SSL certificate. However, this was not a viable 

option, as modern browsers such as Google Chrome, Firefox, and Safari would not trust 

the certificate since it was not signed by a CA and would show an error page (See Figure 

76).

 

Figure 76 Google Chrome Browser Error Page on Visiting Website with a self-signed digital certificate 
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Our solution was to install Let’s Encrypt locally on the VPS using CertBot to set up the 

SSL certificate to enable HTTPS for the traffic going to the Spring Boot backend services.  

Let’s Encrypt performs domain validation using challenges where only the domain owner 

can perform, making the certificate official compared to a self-signed certificate where no 

domain validation is performed. We faced some challenges when using the signed 

certificate file to enable HTTPS on Spring Boot. Firstly, the certificate generated was either 

in the PEM or Java Keystore (JKS) format, which were both incompatible with Spring 

Boot. We had to convert the keystore file into a PCKS12 format, which could be read by 

Spring Boot. Secondly, enabling HTTPS on Spring Boot required the front end to use 

HTTPS calls even in the local development environment by default. However, Spring Boot 

would not accept the certificate that was signed on the VM when it was run on localhost. 

To overcome this and facilitate local development, we disabled HTTPS during local 

development with different environment variables and allowed HTTP requests to be made 

to the local backend service. 

However, certificates issued by Let’s Encrypt are only valid for 3 months. And without an 

automated renewing service, manual renewal will be required prior to the expiration of the 

current certificate. By using a modern browser and visiting the backend service, the 

certificate issued by Let’s Encrypt can be viewed, together with the certificate key (See 

Figure 77 below). 
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Figure 77 Certificate Viewer on Backend Domain Address using Google Chrome 

 

5.2 Message Queue Disconnection 

The Pika Python library, the official Python library for working with RabbitMQ, was used 

to connect to the Message Queue Server, which supports Machine Learning services. The 

incoming reviews were read from the message queue and processed by the deployed ML 

Models. However, random disconnections were experienced, without any error messages 

from both the Python client and the Message Queue Server. The logs revealed that the 

disconnection frequency varied from 10 minutes to 3 hours after redeployment. There were 

no error messages from either the Python client or the Message Queue Server. Logs reveal 

that disconnection occurs at random frequencies, ranging from 10 minutes to 3 hours after 

redeployment. 

 

Many solutions for common problems were attempted to fix the issue, including: 
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- Enforcing Mandatory Delivery Confirm (Acknowledgement): This solution aimed 

to prevent data loss due to disconnections by using the transactional mode of Pika. The 

producer would send a batch of messages and wait for the broker to confirm that they 

were received and persisted. The producer would block until the broker responded with 

a commit_ok message, indicating that the transaction was successful. If the connection 

was closed or the broker returned an error, the producer would catch the exception and 

retry the transaction. 

- Reverting to Single Threading: This solution aimed to reduce the complexity and the 

overhead of managing multiple connections and channels by using a single-threaded 

approach for both the producer and the consumer. The producer and the consumer 

would use the pika.BlockingConnection class, which provides a simple and 

synchronous interface for interacting with the broker. The producer and the consumer 

would use the channel.basic_publish() and channel.basic_consume() methods to send 

and receive messages, respectively. The channel.basic_consume() method would block 

until a message was delivered, and then invoke a callback function to process the 

message. 

- Mandatory Flag (Return message on Failure): This solution aimed to handle any 

messages that could not be routed to a queue by using the mandatory flag of Pika. The 

producer would instruct the broker to return any unrouteable messages, which could 

happen if the queue did not exist, or if the queue was full or had reached its limit. The 

producer would set the mandatory parameter to True when calling the 

channel.basic_publish() method. The producer would also register a callback function 

with the channel.add_on_return_callback() method, which would be invoked when the 

broker returned a message. The callback function would then handle the returned 

message, such as logging it, retrying it, or discarding it. 

However, none of the mentioned solutions solved the disconnection issue.  

 

The final solution that resolved the unpredictable disconnection issue was to disable the 

heartbeat check (See Figure 78). The heartbeat check is a mechanism that allows the broker 

and the client to detect and close stale connections. The broker and the client exchange 

heartbeat frames at regular intervals, and if either side does not receive a heartbeat frame 

within a specified timeout, it will close the connection. However, this mechanism can also 

cause problems if the network is unreliable, or the client is busy processing messages. To 

use this solution, the Blocking Connection for the consumer was set to not use the heartbeat 
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check. This would tell the broker not to expect any heartbeat frames from the client. With 

further testing, disabling the heartbeat check did not lead to any additional packet loss or 

drop. 

 

Figure 78: Code snippet to initiate the RabbitMQ connect with heartbeat check disabled. 

 

5.3 Next.js Compatibility and Debugging Issues 

It is challenging to navigate the compatibility issues in Next.js, especially when dealing 

with dependencies that use different JavaScript module systems. During the development 

of the React application using Next.js, it’s observed that certain external React libraries 

conflict with Next.js due to the complicated relationship between various JavaScript 

module systems and Next.js’s server-side rendering (SSR) nature. 

 

For instance, when an external package that is written in ES6 syntax or later is imported, if 

the library maintainers have not transpile their package to ES5 or CommonJS, errors of 

“SyntaxError: Cannot use import statement outside a module” will occur. This happens 

because Next.js, which runs on both the server and client side, requires the appropriate 

module styles for each. The server side runs on Node.js, which uses the CommonJS module 

system, while the client side can handle the ES6 imports. If a library does not export 

CommonJS files, it fails on the server side, leading to such errors.  

This situation was encountered when using the MUI file input component from the MUI 

file input library, when implementing the game page (See Section 4.2.6). The creator of the 

library did not consider the compatibility issue with different module systems for their 

package, resulting in error. A workaround was discovered by adding the problematic 

package to the transpilePackages option in the next.config.js file. This instructs Next.js to 

transpile the specified package, converting its modern JavaScript code into a version 

compatible with all browsers and preventing syntax errors. Hover, this comes at the cost of 

performance as transpiling unnecessary packages can slow down the build time.  

Nonetheless, adding the library to transpilePackages option does not always resolve the 

issue. A similar issue was encountered when using the nivo package to implement the game 

analytics page (See Section 4.2.9). Despite Next.js 13’s native support for ECMAScript 

Modules (ESM), problems may still arise with packages like nivo that depend on other 

packages using ESM, in our case, the d3-scale library. Adding nivo to the transpilePackages 

option in the next.config.js file in this case does not resolve the issue. This is because the 
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problem is not with the nivo package itself, but with how its dependency d3-scale is being 

imported. We tried to switch to loose mode in the Next.js configuration as suggested by the 

Next.js documentation, which Next.js will tries to automatically detect whether the 

imported package is ESM or CommonJS, and correct the error accordingly. This fails to 

resolve the issue as the nivo package contains dependencies on both ESM and CommonJS 

module. Out of solution, we resorted to downgrading the nivo package to the version of 

0.80.0, where the d3 packages used are not ESM only and support CommonJS imports. 

This difficulty highlights the complexities involved in managing dependencies and module 

systems in Next.js. 

 

Another challenge in Next.js is the complexity involved in debugging getServerSideProps. 

This server-side function is a key part of Next.js’s page routing implementation, fetching 

data, and enabling Next.js to pre-render the page at build time, thereby enhancing 

performance and reducing page load time. However, its SSR nature poses a hurdle for 

traditional browser-based debugging tools, which are unable to capture any output or error 

messages within this function. This makes troubleshooting issues related to data fetching 

particularly difficult. 

 

5.4 Dataset Noise 

Dataset noise is a significant challenge that encountered during the development of 

machine learning models. It refers to the presence of irrelevant or inconsistent information 

in the dataset that can impair the performance of models. In the context of game reviews, 

three main types of dataset noise were observed, which are the non-relevant text, spam of 

words and language inconsistency. 

Firstly, non-relevant text refers to personal stories, tangential details, or entirely unrelated 

data within the review, implying that the review does not genuinely address the game. This 

kind of noise can misguide models during training, leading to incorrect predictions. 

Secondly, word spam is related to the repetition of specific words. Common examples of 

repeated words include acronyms like “GOAT” (Greatest Of All Time), game references 

such as “Cake” (a term from the 2007 video game Portal, as in “The cake is a lie”), and 

sentiment spam of words like “good” and “bad. These types of data noise can lead to 

skewed word frequency, causing a model to overemphasize these words during training. 

This can impact the outcome of topic modeling as word spam can overshadow other 

significant but less commonly used words. Furthermore, it can influence sentiment analysis. 
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For example, repeated use of words like “good” or “bad” lead a model to misclassify the 

sentiment of a review, resulting in misleading sentiment results. 

Finally, language inconsistency is another form of dataset noise. Game reviewers from 

diverse countries, communities, and backgrounds exhibit different linguistic styles and 

prefer to use varying jargon, meme references, or languages. This inconsistency can lead 

to confusion for models, particularly those that depend on language patterns or structures. 

Therefore, dataset noise introduces a significant difficulty in data processing and model 

training. The application of suitable data cleaning and preprocessing techniques is crucial 

to mitigate the effects of such noise and enhance model performance.  
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5 Project Schedule 

The following timetable outlines the progression of our project throughout its entirety, 

detailing the tasks accomplished within each respective phase. (See Table 8). 

Period Work done 

Sep - Define Requirements for Web App and ML Models 

- Literature Review on NLP and ML Architectures 

Oct - Designed Web App & DB Structure 

- Designed and implemented Search Result Page 

- Performed Data Scraping for Model Training 

- Performed Software Architecture Design 

- Designed Use-Case Diagram 

Nov –  Dec - Designed and Implemented Sign Up & Sign In Page with JWT 

- Designed and Implemented Game Page 

- Designed and Implemented Review Page 

- Trained & Evaluated Sentiment Analysis Model 

Jan – Feb - Integrated the Sentiment Analysis model into our application. 

- Designed and Implemented Profile Page 

- Implemented Topic Modelling Model 

- Implemented Keyword Extraction model 

Feb – Mar - Designed and Implemented Game Analytic Page 

- Designed and Implemented Landing Page 

- Implemented Responsive Web Design for All Pages 

- Fine-tuned Topic Modelling Model 

- Fine-tuned Keyword Extraction model 

Mar – Apr - Fine-tuned of all models and their integration. 

- Debug and Refactor Code 

- Prepared for the Final Presentation 

- Prepared Demo and Demo Video 
Table 8 Proposed Schedule for the project 

 

6 Work Distribution 

The contribution of each member to the project is listed in Table 9. 

Student Contributions 

Lee Chi Ho - Backend Architecture Design 

- Cloud Solution Design and Setup 

- Database Design and Implementation 

- Spring Boot Server Implementation 

- DevOps Design 

Cheng Pak Yim - Research, Implement, Evaluate all Sentiment Analysis models. 

- Research Topic Modeling models 

- Research Keyword Extraction models 

- Implement Python client side of the NLP message queue. 

Siu Yuk Shing - Web Application Design 

- Frontend Implementation 

- Frontend Libraries and Packages Setup 
Table 9 Work Distribution Table of the project  
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7 Conclusion and Future Works 

The progress NLP, particularly in the area of LLMs, has been remarkable. Yet, its application 

in the gaming sector and game reviews remains limited. Recognizing this gap, this project aims 

to create a web-based  game reviews  platform that leverages NLP. This platform assists game 

developers with analytic features such as automated review analysis, aggregation, filtering, and 

organization. Moreover, it visualizes analytic data related to the players and reviews through 

charts and maps. The outcomes of this project highlight the feasibility of integrating NLP into 

the gaming industry, especially in the realm of game review analysis. This integration can assist 

players in finding games that align with their preferences and enable developers to identify 

areas for enhancement in their games. 

 

The outcomes of this project are categorized into three main areas: frontend, backend, and 

machine learning. The frontend has culminated in a responsive, user-friendly, well-designed, 

and highly accessible web application that is compatible with various devices. It is engineered 

to include game review features, automated review analysis with feedback of sentiment, 

primary topics, keywords, and summary, reviews aggregation for a specific game, and foster 

interaction between players and developers with the user though review commenting feature. 

The backend solution is hosted on cloud platforms, utilizing a comprehensive CI/CD pipeline 

to accurately reflect alterations made to the production environment, thereby enabling swift 

development and deployment processes. Regarding machine learning models, the sentiment 

analysis model, with careful tuning, can be effectively implemented while maintaining high 

precision and performance. The topic modeling models are capable of identifying the main 

topic from the review as indicated by the quantitative and qualitative evaluation, and generate 

a succinct, human-readable name through LLM. Finally, for the keyword extraction task, with 

the assistance of advanced LLM development tools and frameworks such as LangChain, 

Mistral AI, and Chroma, the model can capture keywords related to multiple aspects from the 

review, generate a concise summary for the review, and aggregate reviews created by the 

platform users and game critics to create a summarized review efficiently. 

 

In conclusion, this project has demonstrated that, with a thoughtfully constructed system 

architecture, NLP tools can be smoothly incorporated into pre-existing systems with minimal 

expenditure and hardware prerequisites, thereby expanding the understanding of game 

developers and users about the strengths of the games and areas for improvement.  
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Regarding the future works of this projects, since I am mainly responsible for the frontend 

development, only future works related to the frontend will be discussed,  if you are interested 

in the possible future works of the backend system and machine learning tasks, please refer to 

the report by my teammates. 

 

While the current state of the frontend application has met the necessary requirements and 

provided an intuitive user interface, there are several areas identified for future development 

and enhancement. 

 

Firstly, the potential benefits of investigating UI libraries other than MUI were recognized. The 

choice to use Material UI as the primary React component library was driven by its extensive 

range of UI components that cater to a wide variety of use cases. However, some web 

developers have criticized MUI as being generic and cheap due to its minimalist design and 

overuse in web applications. During the early development stages, the adoption of other UI 

libraries, such as Joy UI, was contemplated because we perceived its design approach to be 

more vibrant and distinctive. This consideration was eventually dismissed as Joy UI was still 

in its beta development phase, and the number of components it provided did not meet our 

expectations at that time. Once Joy UI reaches full development, we should contemplate 

migrating to other UI libraries to enhance the appearance and aesthetics of our web application. 

 

Secondly, the potential upgrade from Page Router to App Router in Next.js requires further 

exploration. Currently, our project is using the Page Router,  and the App Router built on React 

Server Components is introduced in Next.js 13. Transitioning to the App Router from Page 

Router could bring benefits such as accelerated page load times, as the App Router favors 

client-side component rendering, thereby reducing the volume of data transmitted over the 

network. The decision between employing the Page Router or App Router was debated during 

the project’s early development stages. We gained experience with both the Page Router and 

App Router through a project undertaken last summer. However, we perceive the App Router 

as a relatively new feature that is currently lacking in both internal and external support. The 

official Next.js documentation for the App Router is not as comprehensive or clear as it could 

be, which complicates its usage. Furthermore, the App Router approach is not widely supported 

by many external React libraries, primarily due to its lack of out-of-the-box support for Server-

Side Rendering (SSR). Once the App Router achieves greater stability and support, 
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consideration may be given to upgrading from the Page Router to the App Router for better 

performance. 

 

Finally, enhancing frontend accessibility is a primary area of focus. The basic improvements 

include the implementation of Accessible Rich Internet Applications (ARIA) roles and 

properties, the facilitation of keyboard navigation, the support for trackpad usage, and ensuring 

appropriate color contrast for all elements. Regarding the charts and maps in the game analytics 

page, the use of color blind-friendly palette is planned to ensure data visualization is accessible 

to all users. Furthermore, the implementation of a language change functionality is proposed 

to cater to a wider audience, as our web application only display in English currently. To 

implement this feature, the machine learning model need to be tuned to accommodate for 

review that is not in English. In addition, the introduction of a dark mode theme is under 

consideration to enhance the accessibility of the web application across various environments. 

This feature can enhance the user experience by providing a visually relaxing interface and 

reducing eye strain in low-light conditions. 

 

These proposed enhancements aim to improve the overall user experience, performance, and 

accessibility of the web application. Each represents a significant area of work and will require 

careful planning and implementation.  
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