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Abstract 

Living in an era filled with catastrophe, it is key to innovate technologies that could minimize 

the loss of not only financial capital, but most importantly, human lives. To advance search 

and rescue post natural disasters, where entrances of human beings could be risky and 

unsafe, quadruped robots with equipped with tolerance to rough terrains of crocs could be 

introduced as assistance for searching. Therefore, the project emphasizes on researching 

computer vision and machine learning technologies that could be equipped to quadruped 

robots. 3D scene reconstruction, autonomous navigation, dynamic object following and 

frontier exploration are the key elements to install to a quadruped robot. The research also 

includes the hardware composition using off-to-shelf materials that could provide accurate 

sensor data and execute the prediction results of the high-level algorithms. Robot Operating 

System (ROS) is the main platform to be researched to facilitate software and hardware 

integration. This leads to a modular architecture of the project development. To eliminate 

the technical barrier of robotics, the project includes on researching the development of a 

user interface. The current state of the robot could be viewed with a well-designed user 

interface without understanding the mechanical and algorithmic logics behind. Leveraging 

the modularity of ROS, the researched software product of the project could possibly be 

integrated to other robot models, that the barrier of robot acquirement could be reduced to 

make a greater impact in aiding the search and rescue of natural disasters.  
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Acronyms 

2D 2-dimensional 

3D 3-dimensional 

CHAMP Cheetah-inspired Hopping and Maneuverable Platform 

DMP Digital Motion Processor 

DoF Degree-of-freedom 

ESDF Euclidean Signed Distance Function  
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1 Introduction 

This section outlines the background of the project with the motivations that indicates the 

interest in research, main objectives and targets to be delivered and a literature review of 

relevant knowledge and projects.  

1.1 Background 

In the time of calamities, it is not unusual to be notified for another tragedy occurring around 

our living circle. Disasters including earthquakes, landslides and tornadoes typically cause 

huge damages to the affected areas, creating a scene of dilapidation filled by piles of crocs 

(Guardian News and Media, 2008). These natural disasters could create huge tangible loss 

to the impacted regions, which the search and rescue process with a high priority of saving 

lives usually creates extra burden to those areas suffering from limited resources. With the 

risk of building collapsing anytime amidst rescue and the destroy of infrastructure to the 

emission of toxic substances, it is preferrable to use technologies to create automated 

rescue processes to alleviate the damage to the rescue teams and victims, where robots 

shall be introduced to assist and bring up its efficiency (Guardian News and Media, 2024; 

Plant, 2014). 

Robots are typically biologically inspired, focusing on some key human features to execute 

physical actions by the computation of kinematics and calibration, serving the purpose of 

helping humans to complete tasks that could be dangerous or risky to human beings (Garcia 

et. al, 2007). There are various types of robots innovated during the journey of robot research 

in the past century, including underwater robots, walking robots and humanoid robots, 

which the choice of features usually depends on the goal the robot is set to achieve (Garcia 

et. al, 2007). With the maturity of robotics research in the past decades, the application of 

robots has become more extensive to serve more operations of humans, making people’s 

daily lives more convenient (Garcia et. al, 2007).  
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Despite robots usually being inspired by human biological features, there are various kinds 

widely adopted by the research area, where quadruped robot is a prevalent kind with a long 

research history, tracing back to 1900s (Biswal & Mohanty, 2021). Quadruped robots, built 

with flexible 4 legs each having 3 DoFs, totaling 12 DoFs, along with customizable set of 

sensors for detecting the surroundings, could compute thorough analysis and execute 

useful actions by collecting environmental data from sensors (Garcia et. al, 2007; Biswal & 

Mohanty, 2021). Leveraging their flexibility in locomotion, quadruped robots are well utilized 

in rough surfaces with slopes or stairs, making omnidirectional movements to adapt to 

various types of environments, where wheeled robots may struggle with matching its 

stability (Garcia et. al, 2007). Quadruped robots having been extensively researched to enjoy 

mature technologies, are usually used to explore difficult environments without stable wired 

connection, having widely open spaces with rough terrains and slopes, for instance, natural 

rural areas or disaster regions (Biswal & Mohanty, 2021).  

1.2 Motivation 

Robots are generally becoming more prevalent in the recent decade, having a wider range of 

applications in day-to-day lives. Having a visual element to it, being able to explore the 

theories and technologies behind controlling a robot’s movements, and the endless high-

level technologies the interactive to the real-life environment the robot can compute, 

robotics is a mesmerizing topic to research on.  

On top of that, having seen past incidents like the Sichuan and Fukushima earthquake, 

where the whole region have been heavily destroyed, with the addition of emission of fatal 

substances from the nuclear power plant, to the recent Hualien earthquake with over a 

thousand of aftershocks spanning over the month, creating continuous casualties and 

financial losses, it is crucial to introduce some automated solutions for search and rescue 

to reduce the human involvement in the process for safety (Otani et. al, 2012; Yoshida, et. 

al, 2014; Wong & Chung, 2024). 
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Quadruped robots, having 4 individual legs to be controlled, are known for its stability and 

flexibility in locomotion, which opens to more possibilities in the technologies it could apply 

and real-life application. It enables opportunities of learning mechanics, 3D modelling, 

machine learning, computer vision, web development and other valuable topics of the 

computer science field. Nonetheless, the 4 separate legs significantly increase its difficulty 

in modeling and calibration, having more components to cater and more variables to 

diminish the accuracy of positions compared to the software simulations.  

Despite the rigidness and variety in movements they may offer, the state-of-the-art models 

of quadruped robots, for example, the MIT Cheetah, could be costly to acquire (Chu, 2019). 

Therefore, the option of building a self-made robot using easily accessible materials 

becomes a fascinating option, which enables the research on 3D modeling. Having known 

the availability of the HKU MakerLab quadruped robot model for upgrading via 3D printing, 

creating a customized robot with choices of sensors and compartments could be a cost-

effective option in the resource-limited circumstances.  

The disaster areas are usually damaged all in a sudden, leading to the previous record of 

environmental data may no longer apply that both humans and robots have no existing maps 

to follow. Having a quadruped dog with agile movements, it is resilient to the unknown 

terrains and excellent for exploring areas of without prior data of the actual environment. 

Therefore, a 3D reconstruction of the surroundings could be useful for the search and 

rescue team to follow to speed up their actions. Moreover, the discovery of living people may 

be delayed due to limited manpower, not maximizing the ‘golden hours’, first 72 hours of 

rescue for the highest survival rate (Montgomery, 2024). Thus, utilizing the robot dog to help 

detect any possible living human beings could be helpful for more targeted and efficient 

rescue. Acting as an assistant of the rescuer and not adding extra burden to him, allowing 

the robot to exploit its ability of human detection and environmental knowledge could 

enable the feature of it following its master (rescuer).  
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1.3 Objectives and Deliverables 

The overall objective of the project is to create a machine learning software package with 

user interfacing, executed on a quadruped robot prototype to enhance the efficiency of 

search and rescue post natural disasters.  

There are 3 key deliverables of the project, dividing the project into 3 main parts. The first is 

to design a quadruped robot with off-the-shelf components and inverse-kinematics 

capabilities. Balancing algorithm for stability should also be applied. Followed by it is to 

implement intelligent behaviors for a quadruped robot, which focuses on detecting an 

environment without prior knowledge, achieve frontier exploration and track specified 

objects. Finally, it is to create an interactive dashboard for high-level remote controls and 

real-time visualization of robot state, where user experienced should also be considered.  

The completed project should demonstrated functional robot with quality, demonstrating 

the capabilities of the machine learning algorithms and have them reflected on the 

interactive dashboard.  

1.4 Literature Review 

In an effort to have a better insight of quadruped robot development and its current 

technological development, some technologies, theories and relevant projects have been 

reviewed.  

1.4.1 Firmware 

1.4.1.1 Cheetah-inspired Hopping and Maneuverable Platform (CHAMP) 

CHAMP is an open-source framework for developing the quadruped robots and the 

corresponding control algorithm, based on a research project for highly dynamic 

locomotion of quadruped robot, model MIT Cheetah, from the Massachusetts Institute of 

Technology (Lee, 2013; chvmp, 2023). This framework utilizes stabilization tactics, ground 
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reaction to forces and modulation of gait patterns to enhance the locomotion of quadruped 

robots.  

Quadruped robots, having 4 legs and 3 joints each, enjoys a total of 12 DoFs. However, this 

could be an obstacle for correctly controlling the movement of robot by commanding with 

high-level algorithm, as each joint is connected to its individual servo and motor. By 

imposing inverse-kinematics methods, the joint angles could be calculated to find the 

angles for desired movements. Nonetheless, the calibration for smooth locomotion 

requires extra algorithmic efforts (Otten, 2003).  

Therefore, CHAMP framework could be an improvement algorithm. It first divides the legs 

into 2 phases, namely stance and swing, which are indicating the phases of the leg on the 

ground and off in the air, due to the difference in dynamics (Lee, 2013). To specify the 

changes in phases, 2 events are encoded to trigger any changes, LF and TD, which indicate 

the leg lifting off the ground (stance to swing) and the leg touching the ground (swing to 

stance) respectively (Lee, 2013). 

 

Figure 1.1: Finite state machine for leg dynamics (Lee, 2013) 

Another significant element in CHAMP is the virtual compliance mechanism, which caters 

balance during the legs’ stance phase to prevent from slipping (Lee, 2013). The mechanism 

is inspired by cheetahs’ leg movement that it could be denote as the change of leg’s 

equilibrium, thus the mechanism’s goal is to maintain its leg equilibrium state against 

external forces or rough terrains during the phase of stance. The mechanism assigns a 
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reference leg (i.e. the front-right leg) to keep track of the velocity, gait pattern and the TD 

event change, ensuring that the state operations are as expected (Lee, 2013). Then, the gait 

patterns, converted to a series of swing and stance states, are assigned to the individual 

legs with synchronization. The TD event tracking is crucial due to the possibility of having 

external forces, that TD event trigger is the only way of moving the legs, and otherwise kept 

stationary to minimize the external impact (Lee, 2013). 

After that, there will be leg trajectory compiled according to the phases the legs are in. A 

Bezier curve will be defined for legs in the swing phase aiming to give them sufficient grip to 

the ground and retraction rate, while attempting to save energy (Lee, 2013). A sinusoidal 

wave is utilized for better control the compliance force during the stance phase trajectory, 

maintaining the ground reaction force with the sinusoid’s amplitude thus ensuring the 

correctness of the virtual compliance (Lee, 2013).  

Eventually, having the leg trajectory information from every leg, the torque commands to the 

corresponding motors will be found by adopting the equations of motions and the actual 

geometry of the robot (Lee, 2013). The joints will be rotating to the calculated angles 

according to the feedback from sensors and forward kinematics (Lee, 2013).  

1.4.1.2 Inverse Kinematics 

Despite the CHAMP framework being responsible for obtaining the trajectories for the legs, 

there is a process required for translating the algorithmic commands into low-level motor 

controls. Consequently, an inverse kinematics algorithm could be found useful for 

achieving it, with the formal mathematical definition as the follows (Aristidou, et. al, 2018): 

 

s = (s1, s2, ..., sk)T denotes the desired end effector positions and θ = (θ1, θ2, ..., θn)T denotes 

the column vector for all DoFs (Aristidou, et. al, 2018). The optimal solution for θ is to 

achieve a smooth and stable locomotion (Aristidou, et. al, 2018).  
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One of the approaches would be Jacobian inverse methods, which defines a Jacobian matrix 

for representing the small changes in joint angles and its corresponding changes in end 

effector’s orientations and positions (Aristidou, et. al, 2018). The information is used to 

decide the joint parameters for the ideal poses. Using the inverse of the Jacobian matrix, the 

end effector’s orientation and positions could be derived, providing a local linear 

approximation (Aristidou, et. al, 2018). By iterating the algorithm, the joints movements 

leads to progressively moving closer towards the target destination (Aristidou, et. al, 2018). 

Nonetheless, when the matrix hits singular, there would be issues of inverting it and the 

approximation would gradually make impact towards the accuracy of calculations 

(Aristidou, et. al, 2018).  

Another popular method would be the analytic solution. The θ is derived from the starting 

position, length of links and rotational constraints of the legs, forming a closed-form 

solution (Aristidou, et. al, 2018). Without the risk of experiencing matrix singularity, the 

accurate angles could be derived from trigonometric calculations, given that each leg has 3 

DoFs (Aristidou, et. al, 2018). 

1.4.2 Robot Operating System (ROS) 

ROS is an operating system dedicated to robots, intended to provide the essential tools for 

seamless integration across different types of robots. It is an open-source library that is 

available for both commercial and non-commercial usage (Quigley et. al, 2009). Robotic 

application development could be done in a modular approach, annotating software 

modules as nodes, the smooth communication between nodes creates a useful software 

package (Quigley et. al, 2009). ROS acts a comprehensive middleware, which translates 

between user commands and the signals to hardware (Macenski et. al, 2022). It handles the 

firmware signals with hidden layers of API, that the client (developers) could simply use the 

interfaces provided with processed data for calculations (Macenski et. al, 2022). There are 

prebuild algorithms for commonly used for robotics, along with interfaces that translates 

firmware input to standardize format of data, the robotic software development could focus 

on creating useful tools to serve the application goal of the robot (Quigley et. al, 2009). 
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Having a modulated organization, the packages could also be easily applied to other 

application, which is especially suitable for using the software in different kinds of robots 

(Macenski et. al, 2022). 

In a complex system with multiple nodes, message is a key form of communication. They 

are divided into different topics, which could be subscribed by other nodes to retrieve the 

processed information published to the relevant topics (Macenski et. al, 2022). Having a 

mature messaging system in ROS, it eases the complexity of interactions between modules. 

In comparison to other frameworks and protocols commonly used for robotics, ROS is an 

all-in-one platform for catering the needs as a middleware, development platform and 

communication handler, with the virtue of modularity and reusability (Macenski et. al, 2022). 

An example of alternative framework would be Yet Another Robot Platform, which shares 

the benefit of modularity, yet mainly focuses on humanoid and legged robot specifically, 

that the software packages could not enjoy the seamless adaption to other robot types 

(Macenski et. al, 2022). Other instances include Open Robot Control Software and 

Lightweight Communications and Marshalling, emphasizing on message handling and real-

time robotic control, lacking the holistic development experience handled on one single 

platform (Macenski et. al, 2022).  

Following the locomotion framework and executing the calibrated joint angles, CHAMP 

package in ROS could be helpful for desirable end results. The package receives messages 

that contains commands of algorithmic results of the position, orientation and velocities. 

The joint angles will be calculated with inverse kinematics referencing to the current feet 

positions, to be sent to the robots physical joints. There is also the information for the 

odometry, which is essential for the estimation of the robot’s current position and 

orientation compared to the beginning (chvmp, 2023). The information could be conducted 

based on various sensors installed in the robot, such as IMU, stereo camera and infrared 

sensors. To minimize the error during the inverse kinematics calculation process, a Kalman 

filter could be a useful algorithm for reducing the errors of uncertainty (chvmp, 2023). 
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The following is the list of useful parameters for gait configuration: 

− Knee Orientation – The orientation for the knees, which knees could be bent leftwards, 

rightwards, inwards, and outwards.  

− Max Linear Velocity X (meters/second) – Robot's maximum forward and reverse 

speed.  

− Max Linear Velocity Y (meters/second) – Robot's maximum speed when moving 

sideways.  

− Max Angular Velocity Z (radians/second) – Robot's maximum rotation speed.  

− Stance Duration (seconds) – The designated time of each leg spending on the ground 

while walking.  

− Leg Swing Height (meters) – Trajectory height during swing phase.  

− Leg Stance Height (meters) – Trajectory depth during stance phase.  

− Robot Walking Height (meters) - Distance from hip to the ground while walking.  

− CoM X Translation (meters) – Translate reference point along x-axis, useful for 

compensating weight if the center of mass deviates from the center of robot (from 

front hip to rear hip).  

− Odometry Scaler – Multiplier for the calculated velocities for dead reckoning, useful 

for compensating odometry errors on open-loop systems.  

 

1.4.2.1 Unified Robot Description Format (URDF) 

URDF is a standardized format for storing the hierarchical and dynamic information of 

physical robots. URDF models are used to state the hierarchy between the links and joints 

of the robot (Tola & Corke, 2024). The information of collision and inertial frames are stored. 

Between the links, there are joints used for defining the tree-like relationship between links, 

in addition to the DoF and rotations (Tola & Corke, 2024). The model is adopted in ROS when 

executing the CHAMP algorithms, defining the joint positions, limits and collision boxes for 
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the physical robots, assisting the generation of configurations and launch files (CHAMP, 

2023).  

There are specific requirements for defining a URDF model in CHAMP, which includes not 

allowing the rotational offsets of frames, restricting hip joint rotations in x-axis and lower leg 

joint rotation in y-axis, and keeping actuator meshes centered during rotations (CHAMP, 

2023).  

1.4.3 Simultaneous Localization and Mapping (SLAM) 

SLAM is a widely researched algorithm in robotics, which represents the process of 

simultaneously estimating robot state and constructing map representing the explored 

surroundings, supporting multifarious advanced robotic tasks, such as path planning 

(Cadena, et. al, 2016). By localizing the estimation, the accumulated errors of sensor data 

(i.e. the IMU data) could be reduced by relacing dead-reckoning that would create 

noticeable drift shortly after launch (see figure 1.2) (Cadena, et. al, 2016).  By detecting and 

identifying a landmark set, priori, SLAM could localize robot state and the processed map 

simultaneously (Cadena, et. al, 2016). Priori is independent from other types of sensor data, 

which could create more realistic more maps, not hindered by the accumulated errors 

(Cadena, et. al, 2016).  

 

Figure 1.2: The comparison of maps constructed by odometry (left) and SLAM (right) 

2 key components are demanded to properly execute SLAM, namely front-end and back-

end. Depth data are passed to the front-end component, that the priori would be returned. 
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The back-end is responsible for extracting keyframes and estimating pose transformation in 

between (Garigipati, 2022).  

Visual SLAM is one the most popular frameworks of SLAM. It adopts the algorithm by imagery 

data retrieved from sensors, which performance could not be guaranteed due to the varied 

quality of imagery sensors. Monocular visual SLAM is a case in point, receiving one source 

of image data. With the possibly inaccurate estimation of depth, limited information could 

be used for deriving priori. Nonetheless, a stereo visual SLAM could compare the 

synchronized image pairs to estimate disparities between matching key to conduct more 

accurate depth estimation. Having an extra layer of color information, RGB-D visual SLAM 

could derive an even more accurate map result.   

1.4.4 Web Interface 

Considering that not every user is equipped with technical skills to control the robot with 

command-line code or other coding-heavy measures, an interface easily accessible to 

users is necessary for maximizing the use cases of the robot. In spite of the locality and 

content preloading of mobile applications, as the first phase of development, launching a 

web application would be the most accessible to users across all platforms, with little 

restriction in implementation and maintenance (Holzer & Ondrus, 2012). After browsing a 

range of frameworks, for example, Vue.js and Angular.js, React.js is a suitable option to 

develop a web interface. Compared to Vue.js and Angular.js, React.js is an industry favor 

with the most starred and forked package on GitHub, while having the most node package 

managers developed around it, showing its dominance in web development (Saks, 2019). In 

React, components act as building blocks of the application as a while, allowing developers 

to create reusable components to be rendered multiple times by not only the current project, 

but also later projects with other requirements by parsing a couple of parameters for 

customization (Saks, 2019). The user interface could also be independent from the backend 

system, which could be done by parsing props from JavaScript, enhancing its flexibility and 

reusability for better legacy, aligning with the project objective of a creating high-level 

system applicable to multifarious types of robots (Saks, 2019). To create a coherent 
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appearance of the interface, Material UI, a UI component package for React.js developed by 

Google, could be an intuitive and efficient tool for creating React.js UI components (MUI 

Team, 2024).  

Meanwhile, ROS is a favorable tool for web development. In ROS, the package rosbridge 

facilitates the communication between ROS and non-ROS programs, which creates web 

sockets for a list of data useful for computation or display of the outside world (ROS.org, 

2024). Therefore, by subscribing to the ROS topics needed to be used on the web interface, 

messages are exported in readable format and data could be presented easily with on 

various user interface elements. On top of it, the URDF model could be retrieved from ROS 

messages in XML format, which could be interpreted by JavaScript code to make further user 

interface customizations (ROS.org, 2024).  

1.4.5 Previous Projects 

After the Fukushima earthquake, where the destruction of the nuclear power plant led to 

significant leakage of radiation, dangerous to human beings, there was a development of a 

rescue robot model, Quince, a wheeled robot designed to travel on rough terrain, aiming to 

capture the current view of the pos-disaster environment within the high radiation areas 

(Yoshida, et. al, 2014). However, not only does it have the limitation of walking around 

unexpected surfaces, but it does also not offer any high-level computational functions 

which lacks the speediness of offering analyses to prompt rescue (Yoshida, et. al, 2014).  

For Computer Science students from the University of Hong Kong, there are several recent 

projects regarding quadruped robots that worth studying. One of which is the study of how 

a quadruped robot traverse on challenging terrains, which mainly focuses on the design of 

the hardware components of the robot to optimize the execution of simulated movements 

on the software side, and its integration of low-level algorithms to achieve best physical 

outcome (Chui, 2022). It uses C-based language for calibrating the motors by giving the 

desired amount of power to the joint elements (Chui, 2022). This could be useful for real-life 

application of complicated commands in the real-life environment, yet the complex analysis 
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of the environment is not designed. Another project aims to design a quadruped robot dog 

suitable for STEM education (Lee, 2022). It emphasizes on developing a self-balancing 

algorithm for the quadruped robot to stand and walk on sloped terrain (Lee, 2022). 

Nevertheless, it did not exploit the robot’s ability to travel around sloped areas to develop 

high-level system solutions for other applications. Another project with a similar topic, 

designing a quadruped robot for STEM education, focuses on using Arduino framework to 

assign commands to the robot dog’s physical limbs, hoping to improve its ability to walk on 

difficult terrains (Lau, 2023). Both projects develop their algorithms on Arduino framework. 

Unlike ROS, which offers tools for standardized signal processing, allowing the compiled 

software to be reapplied to other models of robots built with other sets of firmware, it is 

unfortunate that Arduino framework does not offer high-level GPU-accelerated machine 

learning features (ROS.org, 2024).  

1.5 List of contributions 

Task Contributor(s) 

Joint Calibration James 

Self-Balancing Algorithm James 

3D Modeling James, Terry, Hilda, Gillian 

3D Printing & Laser Cutting James, Terry, Hilda, Gillian 

Scene Reconstruction Terry 

Object Detection Terry 

Dynamic Object Following Terry 

UI/UX Design Gillian 

Web Interface Development Hilda, Gillian 

Table 1.1: List of contribution 
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2 Methodologies 

2.1 Design 

2.1.1 Hardware 

The formation of the final design of the physical robot comprises a selected set of electronic 

components, 3D-printed materials, laser-cut acrylic boards and assembling parts (see 

figure 2.1).  

 

Figure 2.1: final composition of the quadruped robot 

2.1.1.1 Electronics Components 

Despite the inheritance of the HKU CS Makerlab model of robot dog, changes have been 

made for the choice of electronic components due to the capacities and performances. The 
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following is the table of all the electronic components adopted in the final design of 

quadruped robot model (See Table 2.1): 

Role Model Usage / Reason of Choice 

Single-board 
Computer 

Nvidia Orin Jetson 
Nano 

To enjoy the built-in GPU for machine learning 
processes with better performance while 
having a light-weighted and compact design. 

Microcontroller ESP32 To control firmware including IMU, servo 
motors  

Digital Servo TD-8135MG To serve the purpose of joint acuators 

IMU, 
accelerometer 
and gyroscope 

MPU-9250 To measure linear acceleration, angular 
velocity and orientation 

Stereo and 
Infrared Camera 

Intel Realsense 
D435I 

To capture the color and depth information of 
the surroundings 

Battery for 
microcontroller 

7V Lithium-ion 
battery 

To charge power for the microcontroller 

Table 2.1: list of electronic components used in the robot 

In is worth noting that to reduce the weight carried with the robot, the single-board computer 

is powered by cable via the USB port, usually an external power bank for better mobility.  

During the process of construction of the robot model, there are multiple electronic 

components installed for performance testing, aiming to provide more accurate results to 

the analysis of joint movements. For instance, foot sensors, which are responsible for 

indicating the touch on and lift off the ground, are installed to provide another layer of 

information to calculating the inverse kinematics. However, the responsiveness may vary 

according to the reflection rate of different ground surfaces. Besides that, LiDAR was also 

installed for a 360-degree depth detection, aiding the accuracy on reconstructing scenes 

and avoiding obstacles. Nevertheless, the performance of the robot’s movement declines 

attributed to the weight of the sensor. 
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2.1.1.2 3D Modeling 

The design of the 3D robot dog inherits the design from the HKU CS Makerlab, having its 

outer 3D-printed and electronic compartments including the microcontroller, single board 

computer, actuators and sensors. The 3D-modeled body parts designs are stored in the 

form of STL files, leaving room for modifications of fine details. The components are 3D-

printed to fit the installation of the original design, which comprises of an Orange Pi as the 

single-board computer, MG996R servos, which sizes and weights differ from the current set 

of firmware, plus the new addition of stereo cameras, thus requiring modifications of the 3D 

model.  

To cater the heavier weights of the TD-8135MG servos, the model of the upper joints is 

modified to allow smoother movements supported by the more powerful servos. The 

modifications could be done by using the 3D modeling software, Blender, allowing edits of 

individual vertices. 

2.1.2 UI/UX Design 

For the user-facing web application, UI/UX design is the key of structuring the application 

well and present it to the users. User Interface (UI) is the visual representation of what users 

need to know about the software, which the design focuses on the appearance and provides 

easily understandable representations of complicated algorithmic processes (Bilousova, et. 

al, 2021). User experience design is the navigation flow to build the interactions between the 

users and the software, in consideration of the functionalities of the software (Bilousova, et. 

al, 2021). The aim of the UI/UX design is to leave the users satisfying first impressions by 

laying the key elements aligning with the branding style, being able to make interactions 

intuitively (Bilousova, et. al, 2021). 

2.1.2.1 Design Elements 

In order to offer an appealing branding recognition to the audience, a set of design elements 

is universally adopted in all visuals of the project.  
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2.1.2.1.1 Typeface 

Firstly, the typeface choice is Jura and Roboto, which the title font is the former and the 

content font is the former. Both being free for use and distribution Jura is under the license 

of SIL Open Font License and Roboto is under the license of Apache License 2.0, easing the 

future adaption to commercial project. Meanwhile, Jura and Roboto are both available on 

npm package fontsource-variable, easing import in React.js. Jura, a sans-serif font 

constructed geometrically, has uniformed clean lines and sharp angles, offering a futuristic 

and technical appeal, aligning with the branding of a robot dog. The design of the characters 

is formed uniquely, distinguishing it from other fonts, while providing a modern and 

simplistic look, along with multiple choice of font weights for design flexibility (see figure 2.2). 

Despite the simplicity of Jura, it could lack readability in larger pieces or smaller sizes of 

texts. Therefore, Roboto is chose to be the content font for any content details in the user 

interface. The sans-serif font offers clarity and simplicity, with its versatility to switch 

between font weights. The modern and technological appeal it gives aligns with the Jura and 

branding of a robotic project (see figure 2.3). 

 

Figure 2.2: sample text of Jura (Google Fonts) 
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Figure 2.3: sample text of Roboto (Google Fonts) 

2.1.2.1.2 Color 

The color scheme is another determinant of the unity of branding style. In order to create a 

4-point gradient as the main visual of the brand, 4 colors are chosen on a fixed brightness 

color wheel, namely #524FA0, #B62467, #F05A22, and #C9DA2A in hexadecimal code 

representation (see figure 2.4). A 4-point gradient dynamic aesthetics creates an appeal of 

diverse capabilities and transformation, which is one of the development objectives of the 

project. The 4 colors chosen spans widely on the color wheel, including relationships of 

complementary, analogous and contrast, resulting in vibrant but harmonious visuals to the 

audience.  
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Figure 2.4: Color selection for branding design in color wheel representation 

2.1.2.1.3 Logo 

To create a professional-looking brand, a logo could be essential for brand recognition. 

Utilizing the color scheme and font choices, the logo of the project is created. Attributed to 

the vibrant and eye-catching background, white is the choice of geometries and texts. The 

project name is kept simple on the logo. Taking the key physical features of the robot, stereo 

cameras as the eyes and 4 limbs as the legs, inferring an abstract representation of a dog, 

the project is named “Robot Dog”. In terms of geometrical elements, the front-view of the 

robot is abstracted to 3 rounded elements, representing the body and the 2 front limbs 

respectively (see figure 2.5). For a clearer first impression to the audience, the product name 

is included in the logo. However, due to the limited size, the title is eliminated on the website 

favicon and navigation bar logo (see figure 2.6). The logos and some relevant design 

materials are created via Adobe Illustrator, a vector graphic design software. This could 

ensure that the design materials will not become pixelated when enlarging in high-definition 

viewports.    
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Figure 2.5: Logo of the project 

 

Figure 2.6: Web interface logo 

2.1.2.2 Prototype Design 

As a user-facing product the interface prototype design inherits all design elements to align 

with its branding principles. To echo with the rounded design of the geometric elements of 

the logo, rounded elemental designs are preferred over the ones with sharp edges, 

enhancing its unity visually.  

Initially, a mobile application was the choice of user interface due to the portability of mobile 

phones and the local features mobile applications could enjoy. Apart from that, there is an 

existing ROS mobile app (written in Android Studio) which provide some basic features of 

robot controlling, including joystick control and connection configuration (ROS-mobile, 
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2023). In an attempt to inherit the mobile app’s features, a prototype of mobile application 

was designed in the earlier stage using Figma (see figure 2.7).  

   

  

Figure 2.7: Initial prototype for user interface 

As shown in Figure 2.7, features including joystick and natural language processing text-to-

control were intended to be included in the user interface. However, after thorough 



 22 

considerations, both features may not be a good fit of the project scope, which the former 

requires manual control of robot, not feasible during search rescue where every minute 

counts, and the latter serves more as an entertainment purpose, which could be replaced 

by simpler commands like buttons or even making the robot fully automated.  

Having done literature review and thorough analysis of the system design, it is concluded 

that the user interface could focus on demonstrating the results of high-level machine 

learning algorithms to show the simulation of the robot’s movements, the current view of 

the robot’s stereo camera and notify users if any interesting objects are detected. In view of 

the development flexibility and offering a seamless virtual remodeling of the robot, a web 

interface was the final choice. Subsequently, a redesign of interface and navigation flow 

prototype was built with Figma (see figure 2.8).  

 

Figure 2.8: Web interface and flow prototype 

To breakdown the prototype design shown in figure 11, the web interface comprises a 

login/sign up page, a home page as a web dashboard and pages for individual elements, 
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namely robot virtual simulator and live feed from the robot’s stereo camera. The layout 

contains a top navigation bar and the main content section for easy traversal between pages. 

It is disabled on the login page to avoid unauthorized access to the pages. The main 

dashboard is divided into 2 sections in a horizontal layout, where the left consists of a live 

capture from the stereo camera of the dog, and the right contains a virtual simulation of the 

robot, along with an option for viewport control.  

Considering intuitiveness of usage, some UX design tactics are included in the prototype 

design. A case in point is the easiness in navigation between pages, where a navigation bar 

is placed on top of the pages, allowing routes to other pages by one simple click. In the 

meantime, to simplify inputs and reduce errors, UI elements such as a slide bar for adjusting 

frame rate, a toggle to enable frontier exploration are contained and buttons for adjusting 

viewing angles of simulator.   

2.2 Firmware 

2.2.1 Programming Framework 

Arduino framework alongside PlatformIO IDE offers interfaces of handling electronics, that 

several libraries could be found useful for catering the hardware model design. Adafruit 

PWM Servo Driver Library, MPU-9250 Digital Motion Processing (DMP) Arduino Library and 

Rosserial Arduino Library could be adopted to facilitate signals of the PWM driver chip 

installed on the ESP32 development kit, signals of IMU and DMP, and messages from and to 

ROS (Adafruit Industries, 2023; ROS Drivers, 2023; SparkFun Electronics, 2023).  

2.2.2 PWM Digital Servos 

By utilizing functions including setPWMFreq(freq) and setPWM(channel, on, off) from the 

Adafruit PCA9685 PWM Servo Driver Library, desirable PWM signals could be translated and 

sent to the PWM digital servos. On top of the conversion between Champ returns and PWM 

signaling format, to reduce the impact of disturbance in real-life environment and physical 
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limitations of hardware, a series of calibration calculations needs to be done in the 

algorithm to optimize hardware performance.  

2.2.3 Inertial Measurement Unit (IMU) 

The IMU installed, MPU-9250 contains a digital motor processor, responsible for processing 

the accelerometer, gyroscope and magnetometer data to place into DMP register for the 

modified version SparkFun MPU-9250 DMP library to work with. Having pre-installed 

calculation and calibration functions in the DMP, accurate orientation information could be 

obtained.  

2.2.4 ROS Serial 

ROS serial is a package to serialize ROS message to be sent via multiple forms of 

connections, e.g. serial, Wi-Fi and Bluetooth, facilitating communications between the 

microcontroller and the single-board computer. Establishing a ROS serial node for the 

microcontroller, it acts a hub of message publishing and listening.  

In the current architecture design, connections via serial Wi-Fi and Bluetooth are 

implemented, where configurations are done in the microcontroller with the NodeHandle 

interface and ArduinoHardware object. Supported by proper initialization of individual types 

of wired and wireless connections, e.g. SSID and password configuration for Wi-FI, the ROS 

serial node could be accessed with ease (Espressif Systems).  

2.3 Cheetah-inspired Hopping and Maneuverable Platform (CHAMP) 

2.3.1 Hardware Interface 

To facilitate control of hardware components connected to the ESP32 microcontroller, there 

is an adoption of esp32_hw_controller package from ROS. Joint state controller 

(sensor_msgs/JointState),  Joint trajectory controller (sensor_msgs/JointTrajectory) and IMU 

sensor controller (sensor_msgs/Imu) are controllers used with their corresponding 
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message ROS topics. With ROS serial, the messages are forwarded and received by publish 

and subscription of topics by the ESP32 microcontroller. The joint state controller is referring 

to the trajectory commands due to the nature of servos being an internal closed loop. It is 

noted that there could be error of estimation of the odometry (chvmp, 2023).  

2.3.2 URDF Model 

The URDF model is designed in the 3D modeling tool, Blender, by stacking STL files of 3D 

models for individual link elements. Relationships between links and joints, offsets, rotation 

axes and limits are defined during the composition of the URDF model (see figure 2.9). 

-5

 

Figure 2.9: URDF model in tree structure 

Base_link is the element indicating the origin of the robot, presumably locating in the center 

of the robot, with row, pitch and yaw values set to 0. To configure the joint rotation limits, 

they are all referencing against the legs being fully stretched out to the ground according to 

their physical capabilities of mechanical design, blocking the inverse-kinematic engine to 

assign joints to physically impossible positions, causing stalls of servos to eventually break 

(see table 2.2). 
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Joints Lower Limit Upper Limit 

Hip joints -50 ֯ 50֯ 

Upped leg joints  -60 ֯ 60֯ 

Lower leg joints -120֯ -60 ֯ 

Table 2.2: configuration for joint limits of URDF model 

The configured URDF model is used for generating CHAMP configuration packages, 

subsequently used in calibration for hardware with gait configurations (see table 2.3). 

Parameter Value 

Odometry scaler 0.9 

Max linear velocity X  0.25m/s 

Max linear velocity Y 0.25m/s 

Max linear velocity Z 1.0m/s 

Stance duration 0.20s 

Leg swing height 0.05m 

Leg stance height 0.24m 

CoM X translation -0.025m 

Swing depth 0.00m 

Table 2.3: CHAMP gait configuration parameters 

2.3.3 Self-balancing algorithm 

Due to various limitations of the hardware components, including limited torque of PWM 

servos, build quality of the 3D model and the absence of foot sensors to provide more 

accurate locations of legs, despite the hierarchical control algorithm provided by the 

CHAMP package, the balancing algorithm of may not execute as expected. Therefore, a self-
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defined self-balancing algorithm could be implemented for the IMU. By having a balanced 

and leveled body, some sensors like the stereo camera may be able to capture more 

accurate orientation data when the robot is moving. 

Referencing from a two-wheeled robot self-balancing algorithm, robots are assumed to be 

stable when the body is leveled. If the orientation quaternion retrieved from DMP is aligned 

with base_link element of the URDF model, the orientation value of the IMU is true to reality. 

Despite the hardware and external factors hampering the outcome, a PID Control algorithm 

could integrate more realistic orientation. 

After implementing the aforementioned algorithm, the IMU orientation values could be used 

as controlled variables for the self-balancing algorithm. Considering that the rotation of z-

axis is unrestricted, x and y axes (roll and pitch) are the emphases of the algorithm design. 

With the import on QuadrupedController::controlLoop_ in ROS package champ_base, the 

algorithm retrieves the errors of roll and pitch values calculated by the sensor-based 

orientation and position values. With PID control, roll and pitch commands could be 

updated and be passed inverse-kinematics functions and commanding the robot’s 

movements. The last step is to tune parameters of PID control, which is done by trial-and-

error. 

2.4 Computer Vision and Machine Learning 

2.4.1 3D Scene Reconstruction 

Post disasters, the scene of affected areas could drastically change that in order to facilitate 

tasks including scene visualization, frontier exploration and autonomous navigation, 

reconstruction of the unknown scene could be an inevitable process. To minimize latency 

of the machine learning algorithm, a GPU-accelerated library, Nvblox, could aid the task by 

leveraging the GPU in the Nvidia Orin Jetson Nano.  
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The SLAM package is a tool for constructing a sparse representation of the environment, 

which the effectiveness was computing real-time localization and mapping tasks have been 

proven.  Despite that, to facilitate navigation, including exploration of the unknown 

environment and dynamic object following, there is the requirement of an extra layer of 

information, density of obstacle (Cadena et. al, 2016). SDF, a function that calculates the 

orthogonal distance from a point to some given boundaries and returns whether the point is 

within or outside the boundaries. TSDF and ESDF, variations of SDF computed by Nvblox, 

which are the voxel array of distances to the nearest surfaces and the array of Euclidean 

distances with a truncation filter of a threshold, are widely researched in robotics and 

computer vision (Newcombe, 2011).  

NVblox could work with depth information retrieved from infrared cameras and 3D LiDAR, 

that it get depth and color input data from topics under sensor_msgs (see figure 2.10).  Using 

the synchronized combination of infrered depth images and embedded IMU data, detection 

of visual landmarks could create an estimation of pose and odometry. Without sufficient 

visual landmarks, the odometry information will rely on the IMU data.  

 

Figure 2.10: ROS node diagram of Nvblox 

The RGB colored information retrieved could be useful for detecting any dynamic object in 

the environment, that the pixels could be isolated during the reconstruction of scene. Using 
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the RGB input images, there could neural network involved to create an image segmentation 

output for identification of dynamic objects, where used as a mask for scene reconstruction.  

Having analyzed the pose information, depth and RGB image, they could be parsed as 

camera extrinsic parameters that the 2D images could be deprojected into a colored point 

cloud, which assists narrowing down voxels to be updated and prioritizing merge of TSDF by 

processes like update looping, raycasting or projection mapping (Oleynikova, et. al, 2017). 

Handled by Nvblox, there could be GPU-accelerated parallelization involved, giving better 

performances in comparison to other libraries like Voxblox (Oleynikova, et. al, 2017). 

Having acquired the TSDF of the scene, a 2D costmap could be generated by name slicing 

with predefined minimum and maximum obstacle height, aggregating the voxel layer values, 

subsequently indicating the occupancy of pixels in the explored scene. Meanwhile, with the 

aid of the efficient marching cube algorithm, a visualized mesh could be constructed from 

the TSDF. The algorithm iterates the process of determining a triangular pattern with 8 voxels 

for the entire TSDF array (Lorensen & Cline, 1998).   

2.4.2 Autonomous Navigation 

Autonomous navigation is the foundation to foster intelligent tasks of the robot, including 

dynamic object following and frontier exploration, which could be facilitated by Nav2 stack. 

Nav2 stack is a modular behavior tree-based navigation stack, that behavior tree represents 

the navigation logics based on a tree-based execution model, assisting the interpretation 

from complicated navigation logics to readable format (Macenski, et. al, 2020; 

Colledanchise & Ögren, 2018). The behavior tree could also make structured safety and 

robustness analysis with state space description (Colledanchise & Ögren, 2018). 

Nav2 is structured modularly, allowing switch of components with other compatible 

alternatives. For instance, with a tuning radius near 0, Savizky-Golay smoother would be the 

module of chouse to only reduce noise from the generated path (Macenski, et. al, 2020). 
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2.4.3 Dynamic Object Following  

To ensure monitoring of the robot without adding extra weight to the rescuers during search 

and rescue, a dynamic object following feature to enable automatic following the footsteps 

of human could be found useful. Apart from that, leverage the modularity of system design, 

with simple modifications, the algorithm could be refined to tracking or following other 

targets.  

To successfully execute the dynamic object following module, the algorithm has to identify 

human on screen with colored image, estimate his position in 2D coordinates, deproject it 

into the 3D space and eventually derive the goal pose with the behavior tree (Minaee, et. al, 

2021). 

The first step, which is to check the existence of a human, could be done by using pretrained 

models like PeopleSegNet ShuffleSeg model to create an image segmentation of the RGB 

image from the sensor input, labeling the pixels to human and background (non-human) 

(see figure 2.11)(Minaee, et. al, 2021). 

 

Figure 2.11: example of human segmentation of RGB image (red as human and green as 

background) 

Each strongly-connected component in frame is considered an individual object of human. 

To avoid confusion of having multiple humans in frame or objects created by 

misclassification, the largest object found by OpenCV library is treated as the target, the 
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centroid of which will be used as the targeted 2D coordinate to be deprojected in the 3D 

scene (Bradski & Kaehler, 2000). Matching the RGB image with the simultaneous infrared 

depth image, the depth of the coordinate could be obtained, facilitating a rescale to 

deproject to the 3D landscape.  

By acquiring camera intrinsic and extrinsic information by subscription of topic camera_info 

and analysis of visual SLAM package, the goal pose could be derived and subsequently 

creating a behavior tree for the navigation towards the targeted human. The planning server 

would refresh its planned path with the constantly updated costmap, until the robot is a 

meter away from the target. The goal would also be updated by subscribing to the ROS topic, 

goal_update. 

2.4.4 Frontier Exploration 

Frontier exploration is a process to enhance the field mapping of 3D scene reconstruction 

for unexplored areas, which the package explore_lite could be adopted (see figure 2.12). 

 

Figure 2.12: architecture for frontier exploration package explore_lite 

Explore_lite is a package that traces the costmap of interest by retrieving information from 

message types nav_msgs/OccupancyGrid and map_msgs/OccupancyGridUpdate. A 

breadth-first search is conducted with the availability information from the costmap, 

returning an array of frontiers after a series of movement commands published to the 

navigation server (Hörner, 2016). By defining parameters like potenrtial_scale, 

orientation_scale and min_frontier_size, the robot would use a greedy algorithm to traverse 

the designated unexplored areas to find all frontiers (see figure 2.13) (Hörner, 2016). 
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Figure 2.13: Example of frontier exploration (blue boxes as explored frontiers) 

2.5 Object Detection 

In order to facilitate the exploration of possible human lives, object detection algorithms 

could be utilized, which creates predictive bounding boxes of the identified objects from the 

list of identifiable objects (Honer, 2016). Detection model usually make efficient 

computation with the real-time YOLO detector, giving the detected objects classification 

labels (Honer, 2016). The objects of interest could be filtered out and whenever there is a 

new detection, a message could be published to relevant ROS topics.  

2.6 Web Application 

The web application is developed using the React.js framework with the assistance of 

relevant node.js packages. Individual interface elements are defined as standalone 

components, which are organized in a hierarchical approach, rendering from the bottom 

elements all the way to the top of the hierarchy (Saks, 2019). For any state changes involved, 

the useEffect method enables re-rendering of elements to ensure that the most updated 

information is being shown on screen (React team, 2024). 

2.6.1 Appearance 

Following the UI/UX design mentioned in section 2.1.3, the appearance of the UI elements 

and the navigation flow is developed based on the branding elements and prototype design. 
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To achieve a unified appearance with efficiency, Material UI package is adopted for interface 

element building. It enables a theme provider, allowing the customized definitions of color 

scheme, transitional effects and more, fostering a unified appearance (MUI team, 2024). 

Despite the wide usage of MUI, there are minor style definitions made by Cascading 

Stylesheets (CSS). 

2.6.1.1 Mobile Responsiveness 

Despite the sole development of a web application, the mobile users are also targeted, thus 

requiring some mobile responsive adaption in the user interface. To cater the vertical 

viewport of mobile devices, some originally horizontal layouts are switched to vertical (see 

figure 2.14 & 2.15). 

 
 

Figure 2.14: Horizontal login page layout on desktop 
Figure 2.15: vertical login page 

layout on mobile devices 

 

 

 Meanwhile, the top navigation bar is also modified to a vertical layout, which the horizontal 

layout is replaced by a button-triggered drop-down menu, where the button is placed on the 

top-left corner of the screen (see figure 2.16 & 2.17).  
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Figure 2.16: Desktop view of navigation bar Figure 2.17: Mobile view of navigation bar 

 

2.6.2 Architecture 

2.6.2.1 React Framework 

On top of the hierarchy, there is the App.jsx file which is responsible for universal elements 

to be rendered on all web pages. For elements in the individual web pages, they are defined 

by separate jsx files stored in the components folder.  

To implement navigation between pages, the react-router-dom package is applied to define 

the paths for each page (which is a react component). It creates an outlet element for the 

main rendering component, App.jsx, which renders the elements according to the url paths. 

However, since the navigation bar ought to be shown in all pages of the website except for 

the login page, it is separately included in App.jsx and show according to a Boolean flag. 

To facilitate the changes of variable values of elements under the elemental hierarchy, not 

only could the value change be indicated by parsing parameters and returning values, but 

contexts could also be defined for the universal management of value changes. In the web 

application’s architecture, subscription to ROS web sockets (detailed in section 2.4.2.2) is 

done by this means, that a context (RosContextProvider.jsx) is created, responsible for 
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connection to the ROS provider, allowing other React elements to directly use the context 

to subscribe the topics required, reducing the risk of establishing multiple connection to 

create asynchronous issues.  

2.6.2.2 ROS communication 

After establishing a communication channel on the robot as a provider via port 9090, the 

publish of ROS messages via the library rosbridge_suite could made to the non-ROS 

environment, where the web application could connect and subscribe with the assistance 

of the JavaScript package from ROS, roslibjs by sending JSON-based commands (ROS.org, 

2024). The connection to the ROS provider in RosContextProvider utilizing roslibjs API 

enables demonstration of node and topic information, and the subscription to various 

topics. Having the ros1_bridge established, topics from both ROS1 and ROS2 could be 

listened by the web application. If a React component requires specific ROS information, it 

could import the useContext method to use the connection, then designate the topic name 

and message type and create a listener to receive the specified details of the robot’s state.  

2.6.3 Features 

2.6.3.1 Live Camera Feed 

To obtain the livestream of the stereo camera on the robot, the data could be retrieved from 

the with the assistance of the web_video_server package from ROS by publishing an imagery 

capture stream over HTTP. The stream render is done by feeding results of an HTTP request 

to a UI element. The slider responsible for adjusting the frame rate is modifying the update 

rate of the image feed, creating an illusion of it being a live video feed.  

2.6.3.2 Virtual Simulation 

To give user a visual understanding of the robot’s current position and movements, virtual 

simulation is adopted in the web dashboard. To achieve that, there are 2 main parts of 

development. 
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The first part is retrieving the real-time link and joint information of the robot and information 

of the odometry, which could be done by simply using the defined ROS provider context for 

connection configuration and subscribing to the ‘joint_states’ and ‘odom’. The former 

provides URDF data, showing the current positions of every joint, while the latter provides 

the estimation of distance and orientation compared to the robot’s starting point. 

The second part is the attempt to rebuild the visual appearance of the robot. Three.js is a 

node package that could create 3D visual space on React, allowing a simulated experience 

of traveling along with the robot (Three.js). Utilizing the node package URDFloader, by 

importing STL 3D visuals with the URDF model representing the relations of links and joints, 

coordinates of the joints could transform into a virtual robot (Johnson, 2023). To adapt to the 

axes orientation of the Three.js differing from ROS, rotation of -90֯ in x and z-axis have been 

made to base_link of the URDF model. Integrating with the information received from ROS 

in real time, the robot could virtually move around the virtual space. 

Despite the option to drag to move x-axis and y-axis of the view, to obtain a better point-of-

view of the robot’s current position especially when it traverses around, a view control panel 

for the simulation space could be added. Leva, a graphical user interface that offers a 

responsive control panel, allowing expansion and collapse on individual section could be a 

convenient UI tool. With the predefined components from react-three-fiber from Three.js, 

capable of orbit control, virtual scene construction and lighting adjustments, the buttons in 

the Leva control panel could trigger different events, responsible for zooming, rotating, 

positioning to center and more angle adjustments, where frontier exploration could also be 

triggered by message publishing to ROS topic (Three.js).  

2.6.3.3 User Authentication System 

For better data security and privacy management, an account registration and login system, 

where done on the landing page of the web. This could prevent the unauthorized access to 

the information of the robots’ current locations and the risk of leakage of confidential 

information captured during the exploration of the robot. 
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To facilitate the authentication process, a backend server and account database are 

required. To relief the strains of infrastructure setup and maintenance, Firebase 

Authentication, an account management platform offered by Google, could be suitable for 

the use case (Google). It handles the account authentication process for the system, while 

integrating well with Google’s ecosystem to leverage the cloud storage and also providing 

simplistic user interface for management (Google).  It also offers extra features, such as 

open authentication, allowing users to registering and signing in by connecting their 

accounts to their Google accounts, enhancing the seamlessness of user experience 

(Google).  

To include Firebase Authentication to the system, it could be done by importing the firebase 

node package, providing configuration details with simple JavaScript code (Google).  

2.6.3.4 Push Notifications 

To demonstrate the results of object detection feature, a push notification system is set up 

for notifying users if there are any interesting objects detected by the system. A pop-up 

message is shown on screen to instantly grasp the attention if users, which the information 

is received from the listener of the ROS topic detections_output. This could be particularly 

useful during search and rescue that if new potential lives are found, the team of monitoring 

could be notified instantaneously (Nvidia, 2024).   

2.7 Collaboration Tools 

As a team of 4 with distinct operating systems involves (Windows, MacOS and Linux), an 

organized resource sharing system is demanded, where some of the collaboration tools are 

highlighted.  

2.7.1 Git 

Git is a version control system commonly used for team collaborative development, while 

GitHub is an online platform for git repository management, free for code contribution for 
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non-commercial use. By creating a repository on GitHub, teammates could all contribute 

code and resources with Internet access. It offers user-friendly and flexible interfaces such 

as desktop application and command line interface to allow a seamless contribution and 

code merging experience (Software Freedom Conservancy). To maintain the robustness and 

executability of code, developers could make changes locally, and commit to the repository 

later, preventing instant synchronization that code could not be successfully compiled for 

testing or deploying (Software Freedom Conservancy). To avert conflicts of code during 

instantaneous development, there is the option to create new branches to let users make 

changes based on a designated version of code, and merge or rebase after completion 

(Software Freedom Conservancy). These features could elevate the collaborative 

effectiveness of collaboration, especially on the project with a wide scope.  

2.7.2 Docker Container 

There is only one quadruped robot physically assembled, weighing over 10 kilograms. 
Considering the physical constraints, solutions are needed for developing in remote 
locations to facilitate testing of features. An image simulating the operation of ROS could be 
defined by a dockerfile. With docker compose files to run containers on local computers, 
simulation of ROS messaging system could be utilized for testing the connection via rosapi 
on the ROS interface without operating system compatibility issues. 

2.8 Development and deployment 

Since the ROS packages being adopted in the project are divided in multiple ROS 
distributions, there are multiple Docker images are built for launching the packages, which 
is listed as the follows: 

- ROS1 Melodic – to install the CHAMP and rosbridge_suite packages. 
- ROS1/ROS2 bridge – to build the ros1_bridge package with the additional feature of 

allowing customized message types. 
- ROS2 Humble – to install the computer vision and Nav2 packages. 

Docker compose files have been defined to launch the developer container for testing and 
debugging. 
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3 Experiment and Result 

3.1 Hardware 

3.1.1 Robot Construction 

Despite experimenting the assemble robot, the key electronic components of the final 

version include a single-board computer with an attached GPU, a stereo camera and 7V 2-

cell lithium battery (see figure 3.1). 

 

Figure 3.1: Final version of robot construction 

There was a series of experiments with the construction of the robot. Assembling all 

purchased components, including the planar LiDAR and an external power bank to feed the 

single-board computer could be made possible, but the accumulated weight could not be 

borne by the 3D-printed limbs and power of the PWM servos. To minimize burden of the 

robot, the LiDAR sensor is removed, and the power bank is detached from the construction. 

 One of the previous versions of construction includes similar components, with the 

addition of a planar LiDAR and a power bank, but it was removed due to the weight and servo 

tolerance (see figure 3.2). 



 40 

 

Figure 3.2: robot installed with a planar LiDAR and power bank 

3.1.2 3D Modeling 

As mentioned in section 3.1.1, there was a range of electronic components installed and 

tested during the development process, thus the 3D model inherited from the HKU CS 

MakerLab have to make adjustments to fit the new components.  

To enhance the robustness of 3D model, there were multiple attempts for refining the 

individual models, stored in 3D model file extension, STL. In spite of novice of 3D modeling, 

the model creation was done smoothly. However, the performance of 3D printers in both 

HKU CS Makerlab and Innovation Wing vary, frustrates the remodeling of parts to find the 

perfect fit into the robot model. This also affects the rigidity of the overall construction, 

which could lead to larger vibrations during walks, affecting the accuracy of sensor data and 

the execution of software command to navigate to a destination. 

For example, the upper shoulder joint is modified to become thicker to prevent wearing 

down during sideway movements due to the upgraded PWM digital servos for higher power 

(See figure 3.3, 3.4 and 3.5).  
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Figure 3.3: original design of upper 

shoulder joint inherited from HKU CS 

Makerlab 

Figure 3.4: modified design of the upper 

shoulder joint 

 

Figure 3.5: printing results of upper shoulder joints 

To give another example, in order to include the larger-sized single-board computer, NVidia 

Orin Nano Jetson, there have been multiple attempts of replacing the top cover from HKU 

CS Makerlab’s model (See Figure 3.6, 3.7 & 3.8). Due to the print size errors and time 

consumption of the HKU CS Makerlab’s 3D printer, the design is formed by laser-cut acrylic 

boards cut in HKU InnoWing and Copper stands for lifting and securing the boards’ positions 

(See Figure 9).  
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Figure 3.6: original model design of top 

cover from HKU CS Makerlab 

Figure 3.7: modified top cover model 

 
 

Figure 3.8: discarded version of 3D model 

of single-board computer holder 

Figure 3.9: Final model design with laser-

cut acrylic boards and copper stands 

3.1.3 PWM Servos 

With the more demanding sensors and computational power, new modeling parts are 

required to secure the positions of the PWM servos. One of the solutions was to create some 

laser-cut platforms. They move accurately to the angles commanded by software signals 

with the effort in calibrating the joints with the PCA9685 I2C PWM driver.  
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Nevertheless, the power and torque is limited that the weight support and rotation may not 

be sufficient, especially when the weight distribution was not thoroughly planned in the 

construction stage. 

3.1.4 IMU 

The accurate orientation of the robot could be computed by the DMP on the MPU-9250. 

However, due to the nature of the IMU and some physical limitations, there are encounters 

of drifts during locomotion. The current setup is limited to finding the local orientation 

relative to the robot, that inaccuracy may amplify by the accumulated error of orientation 

estimation. One of the possible solutions is to enable a magnetometer to find the absolute 

orientation. 

3.1.5 Stereo camera 

The stereo camera works as expected with environment of sufficient lights with simple 

lighting setup. It requires much calibration when more environmental variables are added, 

such as insufficient light and multiple sources of lighting (see figure 3.10). This could affect 

any computer algorithm that involves the analysis of the depth image. 

 

Figure 3.10: example of underexposed depth image 
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3.1.6 Single-board Computer 

Even with the GPU installed, the CPU (6-core ARM) and main memory (shared 8GB) may not 

be sufficient for the nodes deployed on it using docker, including ROS1, ROS1-ROS2 Bridge, 

ROS2 and the web server. Consequently, swaps of memory spaces may occur that could 

weigh on the CPU, thus creating high latency. Fortunately, the computer vision and machine 

learning modules runs individually on the GPU, that offloading the inverse-kinematics 

engine and web server could show improvements in performance. 

3.1.7 Self-balancing algorithm 

In static positions, the robot could balance itself with leveled body in both sloped and 

discontinuous terrains with PID control (see figure 3.11, 3.12 & 3.13). 

 

Figure 3.11: robot balancing on sloped surface 
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Figure 3.12: robot standing on a box (roll) 

 

Figure 3.13: robot standing on a box (pitch) 

In spite of the successful end result, there were multiple unsatisfying attempts. Without 

controlling the integration value of PID control, the body might not be able to level despite 

balancing on sloped surfaces (see figure 3.14). 
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Figure 3.14: robot balancing on sloped surface with unleveled body 

 

3.2 Computer Vision and Machine Learning 

3.2.1 Visual SLAM and Frontier Exploration 

The derivation of 2D costmap of the surrounding was satisfactory. Shown in figure 3.15, the 

green dots represent low probability of being occupied, while the red ones represent the high 

probability of the space being occupied, which is fairly true to reality compared to the RGB 

image. The grayscale plane underneath the dots is a representation of the feasibility of 

routing, which the darker it is, the less likely the robot routing system in going to direct it to. 

Z-axis calibration was done for a more accurate estimation due to the placement of the 

stereo camera (on top of the robot).  

For frontier exploration, the robot was intended to traverse in the lighter areas of the 

grayscale plane. Due to sensor limitation, the orientation measurements drifts during the 

navigation along the planned route, leading to distorted costmap. One of the solutions 

would be clearin the costmap once in a while, but redetection is required in the approach, 

creating more distortions during the rotation. 
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Figure 3.15: Result of visual SLAM and frontier exploration 

3.2.2 Dynamic Object following 

Human segmentation algorithm usually gives satisfying results, that the human is clearly 

identified, in red in figure 3.16. With sufficient calibrations, the depth image could be 

correctly shown. However, the estimation of the human in the 3D space could usually not 

be made correctly (the purple dot of the 3D map in figure 3.16). 

 

Figure 3.16 pose estimation result 
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The undesirable performance could be attributed synchronization issues, refresh rate and 

hardware limitation. The synchronization issue refers to the match of the segmented color 

image and the depth image. As they are obtained from separate ROS topics, the update rate 

may vary in the distributed ROS system. Therefore, the depth information may be misleading 

especially when the human moves to a different depth. The refresh rate of the algorithm 

could also make an impact when the target moves promptly. Moreover, when the robot is 

attempting to navigate towards the target, the hardware limitation causes a lot of vibrations, 

which affects the capture quality for the most updated imagery data.  

3.3 Web Interface 

3.3.1 ROS Connection 

Assisted by rosapi, the connection to ROS has been successfully established, allowing 

retrieval of lists of nodes and topics (see figure 3.17). Topic subscriptions of individual 

elements have also been effective to display relevant data to be processed for UI rendering.  

 

Figure 3.17: Demonstration of successful connection to ROS provider and get the list of 

topics 

3.3.2 Live Camera Feed 

The imagery stream of the stereo camera of the robot is successfully pulled by HTTP 

requests in the format of mjpeg. The stream is displayed on the dashboard according to the 
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user-designated quality (a parameter of refresh rate input by the slider). Nonetheless, the 

delay and refresh rate could be affected by the network stability (see figure 3.18).  

 

Figure 3.18: an example of live feed from the robot’s stereo camera 

3.3.3 Virtual Simulation 

The virtual simulation of robot state is implemented on the web dashboard as expected, 

reflecting the movements of the robot joints and the traversal from odometry (see figure 3.19 

& 3.20). 

 

Figure 3.19: an example of moving robot virtual simulation of web dashboard 
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Figure 3.20: Demonstration of STL/URDF model loaded to simulator with view control 

panel 

3.3.4 User Authentication System 

The user authentication system has been successfully implemented to the web application. 

It could block unauthorized users from signing in (see figure 3.21). Registered users are 

successfully stored on Firebase Authentication (see figure 3.22).  

 

Figure 3.21: example of unauthorized account login 
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Figure 3.22: demonstration of registered email and Google accounts stored on Firebase 

(Google) 

 

3.3.5 User Interface 

The implementation of user interface design has mostly been successful by replicating the 

prototype design (see figure 3.23 & 3.24). It is worth noting that the UI design of the control 

panel does not align with the rest of the UI due to the restricted modifications that could be 

made to the Leva control panel element (see figure 3.25). 

 

Figure 3.23: appearance of login page on web interface 
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Figure 3.24: appearance of the main dahsboard 

 

Figure 3.25: the appearance of web dashboard control panel component 

3.3.5.1 Mobile Responsiveness 

Mobile responsive features have been successfully implemented according to the UI/UX 

design (see figure 3.26 & 3.27). The top navigation bar, login page and main dashboard 

change to vertical layout responsively to optimize the portrait view of mobile devices.   
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Figure 3.26: Desktop view of navigation bar Figure 3.27: Mobile view of navigation bar 

3.4  Collaboration 

It was an overall collaborative experience with assistance of the collaboration tools adopted 

in the project. 

3.4.1 Git 

Git and the corresponding GitHub repository were widely used to update new development 

code, having each teammate contributing to code of their responsibility. It was tricky to 

upload React.js code to the GitHub repository due to the large file size of node modules and 

the node dependency changes after pulling, that .gitignore file has to be carefully configured 

and install all dependencies before building. To avoid conflicted code development, branch 

development was a frequent practice, consequently demanding constant rebase of code. 

In spite of a smooth contribution experience, there were some conflicts encountered during 

the merge of contributions, which have to be resolved manually (see figure 3.28). 
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Figure 3.28: example of code conflict during Git merge. 

3.4.2 Docker 

The simulation of ROS by the docker container composed successfully facilitated testing 

and debugging of the web application’s interactions with ROS messages.  
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4 Future Work 

4.1 Actuators 

The adoption of PWM servos is due to the precision control it offers and limitation of 

mechanical knowledge of the team that the servo model could be inherited. However, 

servos are prone to stalling by its limited torque, abnormally pulling currents until breakage 

when the required angles commanded could not be met. To solve the issue, digital motors 

with higher torque could be considered. One of the alternatives would be a brushless motors, 

the Robomaster M2006 from DJI, that speed could be controlled by PWM or CAN signal, 

which integrates a motor encoder for locating the current motor position. With the 

information, the accuracy of PID control could be improved from positional error. To make 

the swap of actuators, there is a requirement of redesigning the motor housing for the robot. 

4.2 Sensor Fusion 

Despite the satisfying performance of DMP in finding orientation and the quality RGB-D 

information obtained from the stereo camera, there are limitations in data retrieval when 

relying on one type of sensor for 1 type of data. Therefore, a sensor-fusion approach could 

be implemented to improve the understanding of the surrounding and subsequently 

boosting the performance of machine learning algorithms. A case in point would be adding 

a LiDAR sensor to the model, which adopting prevalent point fusion and voxel fusion models 

like MV3D could offer a more comprehensive and accurate segmentation analysis and 

object tracking (Zhong et. al, 2021). 

Another sensor that worth integrating would be the foot sensors, which would give the 

accurate feedback of foot positions to CHAMP. Nonetheless, there might be challenges in 

finding a suitable sensor, with the requirements of being small, sensitive and free from 

errors. For example, the accuracy of response of infrared sensor reactions varies from the 

surfaces the robot is on (Lomba, et. al, 1998). Another obstacle to overcome would be the 
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redesign of the leg 3D models to include the foot sensors. Taking advantage of the 

modularity of ROS, the high-level machine learning algorithms could be adapted to other 

hardware models of robots, which are equipped with more rigid structure and accurate 

sensors. 

4.3 Swarm Robots 

Considering the limited battery life and exploration speed of a robot, swarm robots could be 

introduced. Having a team of robots, robot models could be designed for shorter battery 

lifetime to have a lighter weight. The swarm of robots could be allocated to different areas 

of the site, via SLAM map merging and frontier exploration packages such as m-explore, the 

entire scene could be reconstructed in the centralized server (Hrnčíř, 2023). To maintain the 

user experience of the web dashboard, the virtual simulator should be upgraded to include 

multiple robots.  

4.4 User Interface 

Despite the display of key robotic status on the current web dashboard, there are flaws in 

the UI/UX design and the high-level algorithmic commands have not yet been included. To 

offer a cohesive and non-confusing interface for better user interactions, the control panel 

should be redesigned to using more precise indicators and unified color scheme. To stretch 

the capabilities of the application, commands including trigger of 3-D map reconstruction, 

object detection, and dynamic object following could be added on the control panel. The 

result of 3D map reconstruction and the 2D costmap could also be displayed on the virtual 

simulator with assistance of Three.js, allowing the hands-on rescuers to understand the 

current environment of the area and risk of difference areas, fostering prompt search, and 

rescue (Three.js). Moreover, to give users a more mobile experience, mobile applications for 

android and iOS devices could be developed by using framework like react, native offering 

preload contents, and utilizing native features like GPS for an extra layer of information.  
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In the emergency environment, constant checks of mobile devices may not be very feasible, 

taking advantage of the rosbridge message topic subscription format, other forms of 

interfaces could also be considered, assisted by relevant ROS packages. For example, 

creating an application for smart wearable devices, giving notifications for new object 

detection, or using radio signals as transmission medium to Broadcast significant 

discoveries to communication devices like walkie-talkies.  
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5 Conclusion 

Having researched on equipping computer vision and machine learning capabilities to a 

quadruped robot with a user interface to facilitate environment exploration, object 

identification and dynamic object following, the real-life execution of the software modules 

developed could be highly restricted by the hardware formation of the quadruped robot 

prototype. Nonetheless, the computer vision and machine learning algorithm results, 

especially scene reconstruction and object detection resulted fairly true-to reality. The user 

interface is also implemented that could serve the purpose of providing simplistic user 

interactions with the software. It is believed that an improvement of hardware mechanics 

could show significant improve of the algorithms developed.  
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