
The University of Hong Kong 

Faculty of Engineering 

Department of Computer Science 

COMP 4801 Final year Project 2023/24 

 

 

Intelligent Robot Design and Implementation

Final report

 

Group: FYP23005 

Members: 

Kwok Ka Yan (3035705336) 

Leung Cham Chung Terry (3035704435) 

Tang Gillian (3035705130) 

Chan Hiu Tung (3035705180)  

 

Supervisors: 

Dr. T. W. Chim  

Mr. David Lee

Abstract

Living in an era filled with catastrophe, it is key to innovate technologies that could minimize

the loss of not only financial capital, but most importantly, human lives. To advance search

and rescue post natural disasters, where entrances of human beings could be risky and

unsafe, quadruped robots with equipped with tolerance to rough terrains of crocs could be

introduced as assistance for searching. Therefore, the project emphasizes on researching

computer vision and machine learning technologies that could be equipped to quadruped

robots. 3D scene reconstruction, autonomous navigation, dynamic object following and

frontier exploration are the key elements to install to a quadruped robot. The research also

includes the hardware composition using off-to-shelf materials that could provide accurate

sensor data and execute the prediction results of the high-level algorithms. Robot Operating

System (ROS) is the main platform to be researched to facilitate software and hardware

integration. This leads to a modular architecture of the project development. To eliminate

the technical barrier of robotics, the project includes on researching the development of a

user interface. The current state of the robot could be viewed with a well-designed user

interface without understanding the mechanical and algorithmic logics behind. Leveraging

the modularity of ROS, the researched software product of the project could possibly be

integrated to other robot models, that the barrier of robot acquirement could be reduced to

make a greater impact in aiding the search and rescue of natural disasters.

Acknowledgment

Thank you Dr. T. W. Chim and Mr David Lee for supervising the research of the project.

Gratitude is also directed to the second examiner, Dr. C. K. Chui.

Acronyms

2D 2-dimensional

3D 3-dimensional

CHAMP Cheetah-inspired Hopping and Maneuverable Platform

DMP Digital Motion Processor

DoF Degree-of-freedom

ESDF Euclidean Signed Distance Function

IK Inverse Kinematics

IMU Inertial measurement unit

PID Proportion-Integral-Derivative

PWM Pulse Width Modulation

RGB Red, Green and Blue

RGB-D Red, Green, Blue and Depth

ROS Robot Operating System

SDF Signed Distance Function

SLAM Simultaneous Localization and Mapping

TSDF Truncated Signed Distance Function

UI User interface

URDF Unified Robot Description Format

UX User experience

Table of Contents

1 Introduction 1

1.1 Background 1

1.2 Motivation 2

1.3 Objectives and Deliverables 4

1.4 Literature Review 4

1.4.1 Firmware 4
1.4.1.1 Cheetah-inspired Hopping and Maneuverable Platform (CHAMP) 4
1.4.1.2 Inverse Kinematics 6

1.4.2 Robot Operating System (ROS) 7

1.4.2.1 Unified Robot Description Format (URDF) 9
1.4.3 Simultaneous Localization and Mapping (SLAM) 10
1.4.4 Web Interface 11
1.4.5 Previous Projects 12

1.5 List of contributions 13

2 Methodologies 14

2.1 Design 14
2.1.1 Hardware 14

2.1.1.1 Electronics Components 14

2.1.1.2 3D Modeling 16
2.1.2 UI/UX Design 16

2.1.2.1 Design Elements 16
2.1.2.1.1 Typeface 17

2.1.2.1.2 Color 18
2.1.2.1.3 Logo 19

2.1.2.2 Prototype Design 20

2.2 Firmware 23

2.2.1 Programming Framework 23
2.2.2 PWM Digital Servos 23

2.2.3 Inertial Measurement Unit (IMU) 24
2.2.4 ROS Serial 24

2.3 Cheetah-inspired Hopping and Maneuverable Platform (CHAMP) 24

2.3.1 Hardware Interface 24
2.3.2 URDF Model 25
2.3.3 Self-balancing algorithm 26

2.4 Computer Vision and Machine Learning 27

2.4.1 3D Scene Reconstruction 27
2.4.2 Autonomous Navigation 29
2.4.3 Dynamic Object Following 30
2.4.4 Frontier Exploration 31

2.5 Object Detection 32

2.6 Web Application 32
2.6.1 Appearance 32

2.6.1.1 Mobile Responsiveness 33

2.6.2 Architecture 34
2.6.2.1 React Framework 34
2.6.2.2 ROS communication 35

2.6.3 Features 35

2.6.3.1 Live Camera Feed 35
2.6.3.2 Virtual Simulation 35
2.6.3.3 User Authentication System 36
2.6.3.4 Push Notifications 37

2.7 Collaboration Tools 37
2.7.1 Git 37
2.7.2 Docker Container 38

2.8 Development and deployment 38

3 Experiment and Result 39

3.1 Hardware 39
3.1.1 Robot Construction 39
3.1.2 3D Modeling 40

3.1.3 PWM Servos 42

3.1.4 IMU 43
3.1.5 Stereo camera 43
3.1.6 Single-board Computer 44

3.1.7 Self-balancing algorithm 44

3.2 Computer Vision and Machine Learning 46
3.2.1 Visual SLAM and Frontier Exploration 46
3.2.2 Dynamic Object following 47

3.3 Web Interface 48
3.3.1 ROS Connection 48
3.3.2 Live Camera Feed 48
3.3.3 Virtual Simulation 49

3.3.4 User Authentication System 50
3.3.5 User Interface 51

3.3.5.1 Mobile Responsiveness 52

3.4 Collaboration 53

3.4.1 Git 53
3.4.2 Docker 54

4 Future Work 55

4.1 Actuators 55

4.2 Sensor Fusion 55

4.3 Swarm Robots 56

4.4 User Interface 56

5 Conclusion 58

 1

1 Introduction

This section outlines the background of the project with the motivations that indicates the

interest in research, main objectives and targets to be delivered and a literature review of

relevant knowledge and projects.

1.1 Background

In the time of calamities, it is not unusual to be notified for another tragedy occurring around

our living circle. Disasters including earthquakes, landslides and tornadoes typically cause

huge damages to the affected areas, creating a scene of dilapidation filled by piles of crocs

(Guardian News and Media, 2008). These natural disasters could create huge tangible loss

to the impacted regions, which the search and rescue process with a high priority of saving

lives usually creates extra burden to those areas suffering from limited resources. With the

risk of building collapsing anytime amidst rescue and the destroy of infrastructure to the

emission of toxic substances, it is preferrable to use technologies to create automated

rescue processes to alleviate the damage to the rescue teams and victims, where robots

shall be introduced to assist and bring up its efficiency (Guardian News and Media, 2024;

Plant, 2014).

Robots are typically biologically inspired, focusing on some key human features to execute

physical actions by the computation of kinematics and calibration, serving the purpose of

helping humans to complete tasks that could be dangerous or risky to human beings (Garcia

et. al, 2007). There are various types of robots innovated during the journey of robot research

in the past century, including underwater robots, walking robots and humanoid robots,

which the choice of features usually depends on the goal the robot is set to achieve (Garcia

et. al, 2007). With the maturity of robotics research in the past decades, the application of

robots has become more extensive to serve more operations of humans, making people’s

daily lives more convenient (Garcia et. al, 2007).

 2

Despite robots usually being inspired by human biological features, there are various kinds

widely adopted by the research area, where quadruped robot is a prevalent kind with a long

research history, tracing back to 1900s (Biswal & Mohanty, 2021). Quadruped robots, built

with flexible 4 legs each having 3 DoFs, totaling 12 DoFs, along with customizable set of

sensors for detecting the surroundings, could compute thorough analysis and execute

useful actions by collecting environmental data from sensors (Garcia et. al, 2007; Biswal &

Mohanty, 2021). Leveraging their flexibility in locomotion, quadruped robots are well utilized

in rough surfaces with slopes or stairs, making omnidirectional movements to adapt to

various types of environments, where wheeled robots may struggle with matching its

stability (Garcia et. al, 2007). Quadruped robots having been extensively researched to enjoy

mature technologies, are usually used to explore difficult environments without stable wired

connection, having widely open spaces with rough terrains and slopes, for instance, natural

rural areas or disaster regions (Biswal & Mohanty, 2021).

1.2 Motivation

Robots are generally becoming more prevalent in the recent decade, having a wider range of

applications in day-to-day lives. Having a visual element to it, being able to explore the

theories and technologies behind controlling a robot’s movements, and the endless high-

level technologies the interactive to the real-life environment the robot can compute,

robotics is a mesmerizing topic to research on.

On top of that, having seen past incidents like the Sichuan and Fukushima earthquake,

where the whole region have been heavily destroyed, with the addition of emission of fatal

substances from the nuclear power plant, to the recent Hualien earthquake with over a

thousand of aftershocks spanning over the month, creating continuous casualties and

financial losses, it is crucial to introduce some automated solutions for search and rescue

to reduce the human involvement in the process for safety (Otani et. al, 2012; Yoshida, et.

al, 2014; Wong & Chung, 2024).

 3

Quadruped robots, having 4 individual legs to be controlled, are known for its stability and

flexibility in locomotion, which opens to more possibilities in the technologies it could apply

and real-life application. It enables opportunities of learning mechanics, 3D modelling,

machine learning, computer vision, web development and other valuable topics of the

computer science field. Nonetheless, the 4 separate legs significantly increase its difficulty

in modeling and calibration, having more components to cater and more variables to

diminish the accuracy of positions compared to the software simulations.

Despite the rigidness and variety in movements they may offer, the state-of-the-art models

of quadruped robots, for example, the MIT Cheetah, could be costly to acquire (Chu, 2019).

Therefore, the option of building a self-made robot using easily accessible materials

becomes a fascinating option, which enables the research on 3D modeling. Having known

the availability of the HKU MakerLab quadruped robot model for upgrading via 3D printing,

creating a customized robot with choices of sensors and compartments could be a cost-

effective option in the resource-limited circumstances.

The disaster areas are usually damaged all in a sudden, leading to the previous record of

environmental data may no longer apply that both humans and robots have no existing maps

to follow. Having a quadruped dog with agile movements, it is resilient to the unknown

terrains and excellent for exploring areas of without prior data of the actual environment.

Therefore, a 3D reconstruction of the surroundings could be useful for the search and

rescue team to follow to speed up their actions. Moreover, the discovery of living people may

be delayed due to limited manpower, not maximizing the ‘golden hours’, first 72 hours of

rescue for the highest survival rate (Montgomery, 2024). Thus, utilizing the robot dog to help

detect any possible living human beings could be helpful for more targeted and efficient

rescue. Acting as an assistant of the rescuer and not adding extra burden to him, allowing

the robot to exploit its ability of human detection and environmental knowledge could

enable the feature of it following its master (rescuer).

 4

1.3 Objectives and Deliverables

The overall objective of the project is to create a machine learning software package with

user interfacing, executed on a quadruped robot prototype to enhance the efficiency of

search and rescue post natural disasters.

There are 3 key deliverables of the project, dividing the project into 3 main parts. The first is

to design a quadruped robot with off-the-shelf components and inverse-kinematics

capabilities. Balancing algorithm for stability should also be applied. Followed by it is to

implement intelligent behaviors for a quadruped robot, which focuses on detecting an

environment without prior knowledge, achieve frontier exploration and track specified

objects. Finally, it is to create an interactive dashboard for high-level remote controls and

real-time visualization of robot state, where user experienced should also be considered.

The completed project should demonstrated functional robot with quality, demonstrating

the capabilities of the machine learning algorithms and have them reflected on the

interactive dashboard.

1.4 Literature Review

In an effort to have a better insight of quadruped robot development and its current

technological development, some technologies, theories and relevant projects have been

reviewed.

1.4.1 Firmware

1.4.1.1 Cheetah-inspired Hopping and Maneuverable Platform (CHAMP)

CHAMP is an open-source framework for developing the quadruped robots and the

corresponding control algorithm, based on a research project for highly dynamic

locomotion of quadruped robot, model MIT Cheetah, from the Massachusetts Institute of

Technology (Lee, 2013; chvmp, 2023). This framework utilizes stabilization tactics, ground

 5

reaction to forces and modulation of gait patterns to enhance the locomotion of quadruped

robots.

Quadruped robots, having 4 legs and 3 joints each, enjoys a total of 12 DoFs. However, this

could be an obstacle for correctly controlling the movement of robot by commanding with

high-level algorithm, as each joint is connected to its individual servo and motor. By

imposing inverse-kinematics methods, the joint angles could be calculated to find the

angles for desired movements. Nonetheless, the calibration for smooth locomotion

requires extra algorithmic efforts (Otten, 2003).

Therefore, CHAMP framework could be an improvement algorithm. It first divides the legs

into 2 phases, namely stance and swing, which are indicating the phases of the leg on the

ground and off in the air, due to the difference in dynamics (Lee, 2013). To specify the

changes in phases, 2 events are encoded to trigger any changes, LF and TD, which indicate

the leg lifting off the ground (stance to swing) and the leg touching the ground (swing to

stance) respectively (Lee, 2013).

Figure 1.1: Finite state machine for leg dynamics (Lee, 2013)

Another significant element in CHAMP is the virtual compliance mechanism, which caters

balance during the legs’ stance phase to prevent from slipping (Lee, 2013). The mechanism

is inspired by cheetahs’ leg movement that it could be denote as the change of leg’s

equilibrium, thus the mechanism’s goal is to maintain its leg equilibrium state against

external forces or rough terrains during the phase of stance. The mechanism assigns a

 6

reference leg (i.e. the front-right leg) to keep track of the velocity, gait pattern and the TD

event change, ensuring that the state operations are as expected (Lee, 2013). Then, the gait

patterns, converted to a series of swing and stance states, are assigned to the individual

legs with synchronization. The TD event tracking is crucial due to the possibility of having

external forces, that TD event trigger is the only way of moving the legs, and otherwise kept

stationary to minimize the external impact (Lee, 2013).

After that, there will be leg trajectory compiled according to the phases the legs are in. A

Bezier curve will be defined for legs in the swing phase aiming to give them sufficient grip to

the ground and retraction rate, while attempting to save energy (Lee, 2013). A sinusoidal

wave is utilized for better control the compliance force during the stance phase trajectory,

maintaining the ground reaction force with the sinusoid’s amplitude thus ensuring the

correctness of the virtual compliance (Lee, 2013).

Eventually, having the leg trajectory information from every leg, the torque commands to the

corresponding motors will be found by adopting the equations of motions and the actual

geometry of the robot (Lee, 2013). The joints will be rotating to the calculated angles

according to the feedback from sensors and forward kinematics (Lee, 2013).

1.4.1.2 Inverse Kinematics

Despite the CHAMP framework being responsible for obtaining the trajectories for the legs,

there is a process required for translating the algorithmic commands into low-level motor

controls. Consequently, an inverse kinematics algorithm could be found useful for

achieving it, with the formal mathematical definition as the follows (Aristidou, et. al, 2018):

s = (s1, s2, ..., sk)T denotes the desired end effector positions and θ = (θ1, θ2, ..., θn)T denotes

the column vector for all DoFs (Aristidou, et. al, 2018). The optimal solution for θ is to

achieve a smooth and stable locomotion (Aristidou, et. al, 2018).

 7

One of the approaches would be Jacobian inverse methods, which defines a Jacobian matrix

for representing the small changes in joint angles and its corresponding changes in end

effector’s orientations and positions (Aristidou, et. al, 2018). The information is used to

decide the joint parameters for the ideal poses. Using the inverse of the Jacobian matrix, the

end effector’s orientation and positions could be derived, providing a local linear

approximation (Aristidou, et. al, 2018). By iterating the algorithm, the joints movements

leads to progressively moving closer towards the target destination (Aristidou, et. al, 2018).

Nonetheless, when the matrix hits singular, there would be issues of inverting it and the

approximation would gradually make impact towards the accuracy of calculations

(Aristidou, et. al, 2018).

Another popular method would be the analytic solution. The θ is derived from the starting

position, length of links and rotational constraints of the legs, forming a closed-form

solution (Aristidou, et. al, 2018). Without the risk of experiencing matrix singularity, the

accurate angles could be derived from trigonometric calculations, given that each leg has 3

DoFs (Aristidou, et. al, 2018).

1.4.2 Robot Operating System (ROS)

ROS is an operating system dedicated to robots, intended to provide the essential tools for

seamless integration across different types of robots. It is an open-source library that is

available for both commercial and non-commercial usage (Quigley et. al, 2009). Robotic

application development could be done in a modular approach, annotating software

modules as nodes, the smooth communication between nodes creates a useful software

package (Quigley et. al, 2009). ROS acts a comprehensive middleware, which translates

between user commands and the signals to hardware (Macenski et. al, 2022). It handles the

firmware signals with hidden layers of API, that the client (developers) could simply use the

interfaces provided with processed data for calculations (Macenski et. al, 2022). There are

prebuild algorithms for commonly used for robotics, along with interfaces that translates

firmware input to standardize format of data, the robotic software development could focus

on creating useful tools to serve the application goal of the robot (Quigley et. al, 2009).

 8

Having a modulated organization, the packages could also be easily applied to other

application, which is especially suitable for using the software in different kinds of robots

(Macenski et. al, 2022).

In a complex system with multiple nodes, message is a key form of communication. They

are divided into different topics, which could be subscribed by other nodes to retrieve the

processed information published to the relevant topics (Macenski et. al, 2022). Having a

mature messaging system in ROS, it eases the complexity of interactions between modules.

In comparison to other frameworks and protocols commonly used for robotics, ROS is an

all-in-one platform for catering the needs as a middleware, development platform and

communication handler, with the virtue of modularity and reusability (Macenski et. al, 2022).

An example of alternative framework would be Yet Another Robot Platform, which shares

the benefit of modularity, yet mainly focuses on humanoid and legged robot specifically,

that the software packages could not enjoy the seamless adaption to other robot types

(Macenski et. al, 2022). Other instances include Open Robot Control Software and

Lightweight Communications and Marshalling, emphasizing on message handling and real-

time robotic control, lacking the holistic development experience handled on one single

platform (Macenski et. al, 2022).

Following the locomotion framework and executing the calibrated joint angles, CHAMP

package in ROS could be helpful for desirable end results. The package receives messages

that contains commands of algorithmic results of the position, orientation and velocities.

The joint angles will be calculated with inverse kinematics referencing to the current feet

positions, to be sent to the robots physical joints. There is also the information for the

odometry, which is essential for the estimation of the robot’s current position and

orientation compared to the beginning (chvmp, 2023). The information could be conducted

based on various sensors installed in the robot, such as IMU, stereo camera and infrared

sensors. To minimize the error during the inverse kinematics calculation process, a Kalman

filter could be a useful algorithm for reducing the errors of uncertainty (chvmp, 2023).

 9

The following is the list of useful parameters for gait configuration:

− Knee Orientation – The orientation for the knees, which knees could be bent leftwards,

rightwards, inwards, and outwards.

− Max Linear Velocity X (meters/second) – Robot's maximum forward and reverse

speed.

− Max Linear Velocity Y (meters/second) – Robot's maximum speed when moving

sideways.

− Max Angular Velocity Z (radians/second) – Robot's maximum rotation speed.

− Stance Duration (seconds) – The designated time of each leg spending on the ground

while walking.

− Leg Swing Height (meters) – Trajectory height during swing phase.

− Leg Stance Height (meters) – Trajectory depth during stance phase.

− Robot Walking Height (meters) - Distance from hip to the ground while walking.

− CoM X Translation (meters) – Translate reference point along x-axis, useful for

compensating weight if the center of mass deviates from the center of robot (from

front hip to rear hip).

− Odometry Scaler – Multiplier for the calculated velocities for dead reckoning, useful

for compensating odometry errors on open-loop systems.

1.4.2.1 Unified Robot Description Format (URDF)

URDF is a standardized format for storing the hierarchical and dynamic information of

physical robots. URDF models are used to state the hierarchy between the links and joints

of the robot (Tola & Corke, 2024). The information of collision and inertial frames are stored.

Between the links, there are joints used for defining the tree-like relationship between links,

in addition to the DoF and rotations (Tola & Corke, 2024). The model is adopted in ROS when

executing the CHAMP algorithms, defining the joint positions, limits and collision boxes for

 10

the physical robots, assisting the generation of configurations and launch files (CHAMP,

2023).

There are specific requirements for defining a URDF model in CHAMP, which includes not

allowing the rotational offsets of frames, restricting hip joint rotations in x-axis and lower leg

joint rotation in y-axis, and keeping actuator meshes centered during rotations (CHAMP,

2023).

1.4.3 Simultaneous Localization and Mapping (SLAM)

SLAM is a widely researched algorithm in robotics, which represents the process of

simultaneously estimating robot state and constructing map representing the explored

surroundings, supporting multifarious advanced robotic tasks, such as path planning

(Cadena, et. al, 2016). By localizing the estimation, the accumulated errors of sensor data

(i.e. the IMU data) could be reduced by relacing dead-reckoning that would create

noticeable drift shortly after launch (see figure 1.2) (Cadena, et. al, 2016). By detecting and

identifying a landmark set, priori, SLAM could localize robot state and the processed map

simultaneously (Cadena, et. al, 2016). Priori is independent from other types of sensor data,

which could create more realistic more maps, not hindered by the accumulated errors

(Cadena, et. al, 2016).

Figure 1.2: The comparison of maps constructed by odometry (left) and SLAM (right)

2 key components are demanded to properly execute SLAM, namely front-end and back-

end. Depth data are passed to the front-end component, that the priori would be returned.

 11

The back-end is responsible for extracting keyframes and estimating pose transformation in

between (Garigipati, 2022).

Visual SLAM is one the most popular frameworks of SLAM. It adopts the algorithm by imagery

data retrieved from sensors, which performance could not be guaranteed due to the varied

quality of imagery sensors. Monocular visual SLAM is a case in point, receiving one source

of image data. With the possibly inaccurate estimation of depth, limited information could

be used for deriving priori. Nonetheless, a stereo visual SLAM could compare the

synchronized image pairs to estimate disparities between matching key to conduct more

accurate depth estimation. Having an extra layer of color information, RGB-D visual SLAM

could derive an even more accurate map result.

1.4.4 Web Interface

Considering that not every user is equipped with technical skills to control the robot with

command-line code or other coding-heavy measures, an interface easily accessible to

users is necessary for maximizing the use cases of the robot. In spite of the locality and

content preloading of mobile applications, as the first phase of development, launching a

web application would be the most accessible to users across all platforms, with little

restriction in implementation and maintenance (Holzer & Ondrus, 2012). After browsing a

range of frameworks, for example, Vue.js and Angular.js, React.js is a suitable option to

develop a web interface. Compared to Vue.js and Angular.js, React.js is an industry favor

with the most starred and forked package on GitHub, while having the most node package

managers developed around it, showing its dominance in web development (Saks, 2019). In

React, components act as building blocks of the application as a while, allowing developers

to create reusable components to be rendered multiple times by not only the current project,

but also later projects with other requirements by parsing a couple of parameters for

customization (Saks, 2019). The user interface could also be independent from the backend

system, which could be done by parsing props from JavaScript, enhancing its flexibility and

reusability for better legacy, aligning with the project objective of a creating high-level

system applicable to multifarious types of robots (Saks, 2019). To create a coherent

 12

appearance of the interface, Material UI, a UI component package for React.js developed by

Google, could be an intuitive and efficient tool for creating React.js UI components (MUI

Team, 2024).

Meanwhile, ROS is a favorable tool for web development. In ROS, the package rosbridge

facilitates the communication between ROS and non-ROS programs, which creates web

sockets for a list of data useful for computation or display of the outside world (ROS.org,

2024). Therefore, by subscribing to the ROS topics needed to be used on the web interface,

messages are exported in readable format and data could be presented easily with on

various user interface elements. On top of it, the URDF model could be retrieved from ROS

messages in XML format, which could be interpreted by JavaScript code to make further user

interface customizations (ROS.org, 2024).

1.4.5 Previous Projects

After the Fukushima earthquake, where the destruction of the nuclear power plant led to

significant leakage of radiation, dangerous to human beings, there was a development of a

rescue robot model, Quince, a wheeled robot designed to travel on rough terrain, aiming to

capture the current view of the pos-disaster environment within the high radiation areas

(Yoshida, et. al, 2014). However, not only does it have the limitation of walking around

unexpected surfaces, but it does also not offer any high-level computational functions

which lacks the speediness of offering analyses to prompt rescue (Yoshida, et. al, 2014).

For Computer Science students from the University of Hong Kong, there are several recent

projects regarding quadruped robots that worth studying. One of which is the study of how

a quadruped robot traverse on challenging terrains, which mainly focuses on the design of

the hardware components of the robot to optimize the execution of simulated movements

on the software side, and its integration of low-level algorithms to achieve best physical

outcome (Chui, 2022). It uses C-based language for calibrating the motors by giving the

desired amount of power to the joint elements (Chui, 2022). This could be useful for real-life

application of complicated commands in the real-life environment, yet the complex analysis

 13

of the environment is not designed. Another project aims to design a quadruped robot dog

suitable for STEM education (Lee, 2022). It emphasizes on developing a self-balancing

algorithm for the quadruped robot to stand and walk on sloped terrain (Lee, 2022).

Nevertheless, it did not exploit the robot’s ability to travel around sloped areas to develop

high-level system solutions for other applications. Another project with a similar topic,

designing a quadruped robot for STEM education, focuses on using Arduino framework to

assign commands to the robot dog’s physical limbs, hoping to improve its ability to walk on

difficult terrains (Lau, 2023). Both projects develop their algorithms on Arduino framework.

Unlike ROS, which offers tools for standardized signal processing, allowing the compiled

software to be reapplied to other models of robots built with other sets of firmware, it is

unfortunate that Arduino framework does not offer high-level GPU-accelerated machine

learning features (ROS.org, 2024).

1.5 List of contributions

Task Contributor(s)

Joint Calibration James

Self-Balancing Algorithm James

3D Modeling James, Terry, Hilda, Gillian

3D Printing & Laser Cutting James, Terry, Hilda, Gillian

Scene Reconstruction Terry

Object Detection Terry

Dynamic Object Following Terry

UI/UX Design Gillian

Web Interface Development Hilda, Gillian

Table 1.1: List of contribution

 14

2 Methodologies

2.1 Design

2.1.1 Hardware

The formation of the final design of the physical robot comprises a selected set of electronic

components, 3D-printed materials, laser-cut acrylic boards and assembling parts (see

figure 2.1).

Figure 2.1: final composition of the quadruped robot

2.1.1.1 Electronics Components

Despite the inheritance of the HKU CS Makerlab model of robot dog, changes have been

made for the choice of electronic components due to the capacities and performances. The

 15

following is the table of all the electronic components adopted in the final design of

quadruped robot model (See Table 2.1):

Role Model Usage / Reason of Choice

Single-board
Computer

Nvidia Orin Jetson
Nano

To enjoy the built-in GPU for machine learning
processes with better performance while
having a light-weighted and compact design.

Microcontroller ESP32 To control firmware including IMU, servo
motors

Digital Servo TD-8135MG To serve the purpose of joint acuators

IMU,
accelerometer
and gyroscope

MPU-9250 To measure linear acceleration, angular
velocity and orientation

Stereo and
Infrared Camera

Intel Realsense
D435I

To capture the color and depth information of
the surroundings

Battery for
microcontroller

7V Lithium-ion
battery

To charge power for the microcontroller

Table 2.1: list of electronic components used in the robot

In is worth noting that to reduce the weight carried with the robot, the single-board computer

is powered by cable via the USB port, usually an external power bank for better mobility.

During the process of construction of the robot model, there are multiple electronic

components installed for performance testing, aiming to provide more accurate results to

the analysis of joint movements. For instance, foot sensors, which are responsible for

indicating the touch on and lift off the ground, are installed to provide another layer of

information to calculating the inverse kinematics. However, the responsiveness may vary

according to the reflection rate of different ground surfaces. Besides that, LiDAR was also

installed for a 360-degree depth detection, aiding the accuracy on reconstructing scenes

and avoiding obstacles. Nevertheless, the performance of the robot’s movement declines

attributed to the weight of the sensor.

 16

2.1.1.2 3D Modeling

The design of the 3D robot dog inherits the design from the HKU CS Makerlab, having its

outer 3D-printed and electronic compartments including the microcontroller, single board

computer, actuators and sensors. The 3D-modeled body parts designs are stored in the

form of STL files, leaving room for modifications of fine details. The components are 3D-

printed to fit the installation of the original design, which comprises of an Orange Pi as the

single-board computer, MG996R servos, which sizes and weights differ from the current set

of firmware, plus the new addition of stereo cameras, thus requiring modifications of the 3D

model.

To cater the heavier weights of the TD-8135MG servos, the model of the upper joints is

modified to allow smoother movements supported by the more powerful servos. The

modifications could be done by using the 3D modeling software, Blender, allowing edits of

individual vertices.

2.1.2 UI/UX Design

For the user-facing web application, UI/UX design is the key of structuring the application

well and present it to the users. User Interface (UI) is the visual representation of what users

need to know about the software, which the design focuses on the appearance and provides

easily understandable representations of complicated algorithmic processes (Bilousova, et.

al, 2021). User experience design is the navigation flow to build the interactions between the

users and the software, in consideration of the functionalities of the software (Bilousova, et.

al, 2021). The aim of the UI/UX design is to leave the users satisfying first impressions by

laying the key elements aligning with the branding style, being able to make interactions

intuitively (Bilousova, et. al, 2021).

2.1.2.1 Design Elements

In order to offer an appealing branding recognition to the audience, a set of design elements

is universally adopted in all visuals of the project.

 17

2.1.2.1.1 Typeface

Firstly, the typeface choice is Jura and Roboto, which the title font is the former and the

content font is the former. Both being free for use and distribution Jura is under the license

of SIL Open Font License and Roboto is under the license of Apache License 2.0, easing the

future adaption to commercial project. Meanwhile, Jura and Roboto are both available on

npm package fontsource-variable, easing import in React.js. Jura, a sans-serif font

constructed geometrically, has uniformed clean lines and sharp angles, offering a futuristic

and technical appeal, aligning with the branding of a robot dog. The design of the characters

is formed uniquely, distinguishing it from other fonts, while providing a modern and

simplistic look, along with multiple choice of font weights for design flexibility (see figure 2.2).

Despite the simplicity of Jura, it could lack readability in larger pieces or smaller sizes of

texts. Therefore, Roboto is chose to be the content font for any content details in the user

interface. The sans-serif font offers clarity and simplicity, with its versatility to switch

between font weights. The modern and technological appeal it gives aligns with the Jura and

branding of a robotic project (see figure 2.3).

Figure 2.2: sample text of Jura (Google Fonts)

 18

Figure 2.3: sample text of Roboto (Google Fonts)

2.1.2.1.2 Color

The color scheme is another determinant of the unity of branding style. In order to create a

4-point gradient as the main visual of the brand, 4 colors are chosen on a fixed brightness

color wheel, namely #524FA0, #B62467, #F05A22, and #C9DA2A in hexadecimal code

representation (see figure 2.4). A 4-point gradient dynamic aesthetics creates an appeal of

diverse capabilities and transformation, which is one of the development objectives of the

project. The 4 colors chosen spans widely on the color wheel, including relationships of

complementary, analogous and contrast, resulting in vibrant but harmonious visuals to the

audience.

 19

Figure 2.4: Color selection for branding design in color wheel representation

2.1.2.1.3 Logo

To create a professional-looking brand, a logo could be essential for brand recognition.

Utilizing the color scheme and font choices, the logo of the project is created. Attributed to

the vibrant and eye-catching background, white is the choice of geometries and texts. The

project name is kept simple on the logo. Taking the key physical features of the robot, stereo

cameras as the eyes and 4 limbs as the legs, inferring an abstract representation of a dog,

the project is named “Robot Dog”. In terms of geometrical elements, the front-view of the

robot is abstracted to 3 rounded elements, representing the body and the 2 front limbs

respectively (see figure 2.5). For a clearer first impression to the audience, the product name

is included in the logo. However, due to the limited size, the title is eliminated on the website

favicon and navigation bar logo (see figure 2.6). The logos and some relevant design

materials are created via Adobe Illustrator, a vector graphic design software. This could

ensure that the design materials will not become pixelated when enlarging in high-definition

viewports.

 20

Figure 2.5: Logo of the project

Figure 2.6: Web interface logo

2.1.2.2 Prototype Design

As a user-facing product the interface prototype design inherits all design elements to align

with its branding principles. To echo with the rounded design of the geometric elements of

the logo, rounded elemental designs are preferred over the ones with sharp edges,

enhancing its unity visually.

Initially, a mobile application was the choice of user interface due to the portability of mobile

phones and the local features mobile applications could enjoy. Apart from that, there is an

existing ROS mobile app (written in Android Studio) which provide some basic features of

robot controlling, including joystick control and connection configuration (ROS-mobile,

 21

2023). In an attempt to inherit the mobile app’s features, a prototype of mobile application

was designed in the earlier stage using Figma (see figure 2.7).

Figure 2.7: Initial prototype for user interface

As shown in Figure 2.7, features including joystick and natural language processing text-to-

control were intended to be included in the user interface. However, after thorough

 22

considerations, both features may not be a good fit of the project scope, which the former

requires manual control of robot, not feasible during search rescue where every minute

counts, and the latter serves more as an entertainment purpose, which could be replaced

by simpler commands like buttons or even making the robot fully automated.

Having done literature review and thorough analysis of the system design, it is concluded

that the user interface could focus on demonstrating the results of high-level machine

learning algorithms to show the simulation of the robot’s movements, the current view of

the robot’s stereo camera and notify users if any interesting objects are detected. In view of

the development flexibility and offering a seamless virtual remodeling of the robot, a web

interface was the final choice. Subsequently, a redesign of interface and navigation flow

prototype was built with Figma (see figure 2.8).

Figure 2.8: Web interface and flow prototype

To breakdown the prototype design shown in figure 11, the web interface comprises a

login/sign up page, a home page as a web dashboard and pages for individual elements,

 23

namely robot virtual simulator and live feed from the robot’s stereo camera. The layout

contains a top navigation bar and the main content section for easy traversal between pages.

It is disabled on the login page to avoid unauthorized access to the pages. The main

dashboard is divided into 2 sections in a horizontal layout, where the left consists of a live

capture from the stereo camera of the dog, and the right contains a virtual simulation of the

robot, along with an option for viewport control.

Considering intuitiveness of usage, some UX design tactics are included in the prototype

design. A case in point is the easiness in navigation between pages, where a navigation bar

is placed on top of the pages, allowing routes to other pages by one simple click. In the

meantime, to simplify inputs and reduce errors, UI elements such as a slide bar for adjusting

frame rate, a toggle to enable frontier exploration are contained and buttons for adjusting

viewing angles of simulator.

2.2 Firmware

2.2.1 Programming Framework

Arduino framework alongside PlatformIO IDE offers interfaces of handling electronics, that

several libraries could be found useful for catering the hardware model design. Adafruit

PWM Servo Driver Library, MPU-9250 Digital Motion Processing (DMP) Arduino Library and

Rosserial Arduino Library could be adopted to facilitate signals of the PWM driver chip

installed on the ESP32 development kit, signals of IMU and DMP, and messages from and to

ROS (Adafruit Industries, 2023; ROS Drivers, 2023; SparkFun Electronics, 2023).

2.2.2 PWM Digital Servos

By utilizing functions including setPWMFreq(freq) and setPWM(channel, on, off) from the

Adafruit PCA9685 PWM Servo Driver Library, desirable PWM signals could be translated and

sent to the PWM digital servos. On top of the conversion between Champ returns and PWM

signaling format, to reduce the impact of disturbance in real-life environment and physical

 24

limitations of hardware, a series of calibration calculations needs to be done in the

algorithm to optimize hardware performance.

2.2.3 Inertial Measurement Unit (IMU)

The IMU installed, MPU-9250 contains a digital motor processor, responsible for processing

the accelerometer, gyroscope and magnetometer data to place into DMP register for the

modified version SparkFun MPU-9250 DMP library to work with. Having pre-installed

calculation and calibration functions in the DMP, accurate orientation information could be

obtained.

2.2.4 ROS Serial

ROS serial is a package to serialize ROS message to be sent via multiple forms of

connections, e.g. serial, Wi-Fi and Bluetooth, facilitating communications between the

microcontroller and the single-board computer. Establishing a ROS serial node for the

microcontroller, it acts a hub of message publishing and listening.

In the current architecture design, connections via serial Wi-Fi and Bluetooth are

implemented, where configurations are done in the microcontroller with the NodeHandle

interface and ArduinoHardware object. Supported by proper initialization of individual types

of wired and wireless connections, e.g. SSID and password configuration for Wi-FI, the ROS

serial node could be accessed with ease (Espressif Systems).

2.3 Cheetah-inspired Hopping and Maneuverable Platform (CHAMP)

2.3.1 Hardware Interface

To facilitate control of hardware components connected to the ESP32 microcontroller, there

is an adoption of esp32_hw_controller package from ROS. Joint state controller

(sensor_msgs/JointState), Joint trajectory controller (sensor_msgs/JointTrajectory) and IMU

sensor controller (sensor_msgs/Imu) are controllers used with their corresponding

 25

message ROS topics. With ROS serial, the messages are forwarded and received by publish

and subscription of topics by the ESP32 microcontroller. The joint state controller is referring

to the trajectory commands due to the nature of servos being an internal closed loop. It is

noted that there could be error of estimation of the odometry (chvmp, 2023).

2.3.2 URDF Model

The URDF model is designed in the 3D modeling tool, Blender, by stacking STL files of 3D

models for individual link elements. Relationships between links and joints, offsets, rotation

axes and limits are defined during the composition of the URDF model (see figure 2.9).

-5

Figure 2.9: URDF model in tree structure

Base_link is the element indicating the origin of the robot, presumably locating in the center

of the robot, with row, pitch and yaw values set to 0. To configure the joint rotation limits,

they are all referencing against the legs being fully stretched out to the ground according to

their physical capabilities of mechanical design, blocking the inverse-kinematic engine to

assign joints to physically impossible positions, causing stalls of servos to eventually break

(see table 2.2).

 26

Joints Lower Limit Upper Limit

Hip joints -50 ֯ 50֯

Upped leg joints -60 ֯ 60֯

Lower leg joints -120֯ -60 ֯

Table 2.2: configuration for joint limits of URDF model

The configured URDF model is used for generating CHAMP configuration packages,

subsequently used in calibration for hardware with gait configurations (see table 2.3).

Parameter Value

Odometry scaler 0.9

Max linear velocity X 0.25m/s

Max linear velocity Y 0.25m/s

Max linear velocity Z 1.0m/s

Stance duration 0.20s

Leg swing height 0.05m

Leg stance height 0.24m

CoM X translation -0.025m

Swing depth 0.00m

Table 2.3: CHAMP gait configuration parameters

2.3.3 Self-balancing algorithm

Due to various limitations of the hardware components, including limited torque of PWM

servos, build quality of the 3D model and the absence of foot sensors to provide more

accurate locations of legs, despite the hierarchical control algorithm provided by the

CHAMP package, the balancing algorithm of may not execute as expected. Therefore, a self-

 27

defined self-balancing algorithm could be implemented for the IMU. By having a balanced

and leveled body, some sensors like the stereo camera may be able to capture more

accurate orientation data when the robot is moving.

Referencing from a two-wheeled robot self-balancing algorithm, robots are assumed to be

stable when the body is leveled. If the orientation quaternion retrieved from DMP is aligned

with base_link element of the URDF model, the orientation value of the IMU is true to reality.

Despite the hardware and external factors hampering the outcome, a PID Control algorithm

could integrate more realistic orientation.

After implementing the aforementioned algorithm, the IMU orientation values could be used

as controlled variables for the self-balancing algorithm. Considering that the rotation of z-

axis is unrestricted, x and y axes (roll and pitch) are the emphases of the algorithm design.

With the import on QuadrupedController::controlLoop_ in ROS package champ_base, the

algorithm retrieves the errors of roll and pitch values calculated by the sensor-based

orientation and position values. With PID control, roll and pitch commands could be

updated and be passed inverse-kinematics functions and commanding the robot’s

movements. The last step is to tune parameters of PID control, which is done by trial-and-

error.

2.4 Computer Vision and Machine Learning

2.4.1 3D Scene Reconstruction

Post disasters, the scene of affected areas could drastically change that in order to facilitate

tasks including scene visualization, frontier exploration and autonomous navigation,

reconstruction of the unknown scene could be an inevitable process. To minimize latency

of the machine learning algorithm, a GPU-accelerated library, Nvblox, could aid the task by

leveraging the GPU in the Nvidia Orin Jetson Nano.

 28

The SLAM package is a tool for constructing a sparse representation of the environment,

which the effectiveness was computing real-time localization and mapping tasks have been

proven. Despite that, to facilitate navigation, including exploration of the unknown

environment and dynamic object following, there is the requirement of an extra layer of

information, density of obstacle (Cadena et. al, 2016). SDF, a function that calculates the

orthogonal distance from a point to some given boundaries and returns whether the point is

within or outside the boundaries. TSDF and ESDF, variations of SDF computed by Nvblox,

which are the voxel array of distances to the nearest surfaces and the array of Euclidean

distances with a truncation filter of a threshold, are widely researched in robotics and

computer vision (Newcombe, 2011).

NVblox could work with depth information retrieved from infrared cameras and 3D LiDAR,

that it get depth and color input data from topics under sensor_msgs (see figure 2.10). Using

the synchronized combination of infrered depth images and embedded IMU data, detection

of visual landmarks could create an estimation of pose and odometry. Without sufficient

visual landmarks, the odometry information will rely on the IMU data.

Figure 2.10: ROS node diagram of Nvblox

The RGB colored information retrieved could be useful for detecting any dynamic object in

the environment, that the pixels could be isolated during the reconstruction of scene. Using

 29

the RGB input images, there could neural network involved to create an image segmentation

output for identification of dynamic objects, where used as a mask for scene reconstruction.

Having analyzed the pose information, depth and RGB image, they could be parsed as

camera extrinsic parameters that the 2D images could be deprojected into a colored point

cloud, which assists narrowing down voxels to be updated and prioritizing merge of TSDF by

processes like update looping, raycasting or projection mapping (Oleynikova, et. al, 2017).

Handled by Nvblox, there could be GPU-accelerated parallelization involved, giving better

performances in comparison to other libraries like Voxblox (Oleynikova, et. al, 2017).

Having acquired the TSDF of the scene, a 2D costmap could be generated by name slicing

with predefined minimum and maximum obstacle height, aggregating the voxel layer values,

subsequently indicating the occupancy of pixels in the explored scene. Meanwhile, with the

aid of the efficient marching cube algorithm, a visualized mesh could be constructed from

the TSDF. The algorithm iterates the process of determining a triangular pattern with 8 voxels

for the entire TSDF array (Lorensen & Cline, 1998).

2.4.2 Autonomous Navigation

Autonomous navigation is the foundation to foster intelligent tasks of the robot, including

dynamic object following and frontier exploration, which could be facilitated by Nav2 stack.

Nav2 stack is a modular behavior tree-based navigation stack, that behavior tree represents

the navigation logics based on a tree-based execution model, assisting the interpretation

from complicated navigation logics to readable format (Macenski, et. al, 2020;

Colledanchise & Ögren, 2018). The behavior tree could also make structured safety and

robustness analysis with state space description (Colledanchise & Ögren, 2018).

Nav2 is structured modularly, allowing switch of components with other compatible

alternatives. For instance, with a tuning radius near 0, Savizky-Golay smoother would be the

module of chouse to only reduce noise from the generated path (Macenski, et. al, 2020).

 30

2.4.3 Dynamic Object Following

To ensure monitoring of the robot without adding extra weight to the rescuers during search

and rescue, a dynamic object following feature to enable automatic following the footsteps

of human could be found useful. Apart from that, leverage the modularity of system design,

with simple modifications, the algorithm could be refined to tracking or following other

targets.

To successfully execute the dynamic object following module, the algorithm has to identify

human on screen with colored image, estimate his position in 2D coordinates, deproject it

into the 3D space and eventually derive the goal pose with the behavior tree (Minaee, et. al,

2021).

The first step, which is to check the existence of a human, could be done by using pretrained

models like PeopleSegNet ShuffleSeg model to create an image segmentation of the RGB

image from the sensor input, labeling the pixels to human and background (non-human)

(see figure 2.11)(Minaee, et. al, 2021).

Figure 2.11: example of human segmentation of RGB image (red as human and green as

background)

Each strongly-connected component in frame is considered an individual object of human.

To avoid confusion of having multiple humans in frame or objects created by

misclassification, the largest object found by OpenCV library is treated as the target, the

 31

centroid of which will be used as the targeted 2D coordinate to be deprojected in the 3D

scene (Bradski & Kaehler, 2000). Matching the RGB image with the simultaneous infrared

depth image, the depth of the coordinate could be obtained, facilitating a rescale to

deproject to the 3D landscape.

By acquiring camera intrinsic and extrinsic information by subscription of topic camera_info

and analysis of visual SLAM package, the goal pose could be derived and subsequently

creating a behavior tree for the navigation towards the targeted human. The planning server

would refresh its planned path with the constantly updated costmap, until the robot is a

meter away from the target. The goal would also be updated by subscribing to the ROS topic,

goal_update.

2.4.4 Frontier Exploration

Frontier exploration is a process to enhance the field mapping of 3D scene reconstruction

for unexplored areas, which the package explore_lite could be adopted (see figure 2.12).

Figure 2.12: architecture for frontier exploration package explore_lite

Explore_lite is a package that traces the costmap of interest by retrieving information from

message types nav_msgs/OccupancyGrid and map_msgs/OccupancyGridUpdate. A

breadth-first search is conducted with the availability information from the costmap,

returning an array of frontiers after a series of movement commands published to the

navigation server (Hörner, 2016). By defining parameters like potenrtial_scale,

orientation_scale and min_frontier_size, the robot would use a greedy algorithm to traverse

the designated unexplored areas to find all frontiers (see figure 2.13) (Hörner, 2016).

 32

Figure 2.13: Example of frontier exploration (blue boxes as explored frontiers)

2.5 Object Detection

In order to facilitate the exploration of possible human lives, object detection algorithms

could be utilized, which creates predictive bounding boxes of the identified objects from the

list of identifiable objects (Honer, 2016). Detection model usually make efficient

computation with the real-time YOLO detector, giving the detected objects classification

labels (Honer, 2016). The objects of interest could be filtered out and whenever there is a

new detection, a message could be published to relevant ROS topics.

2.6 Web Application

The web application is developed using the React.js framework with the assistance of

relevant node.js packages. Individual interface elements are defined as standalone

components, which are organized in a hierarchical approach, rendering from the bottom

elements all the way to the top of the hierarchy (Saks, 2019). For any state changes involved,

the useEffect method enables re-rendering of elements to ensure that the most updated

information is being shown on screen (React team, 2024).

2.6.1 Appearance

Following the UI/UX design mentioned in section 2.1.3, the appearance of the UI elements

and the navigation flow is developed based on the branding elements and prototype design.

 33

To achieve a unified appearance with efficiency, Material UI package is adopted for interface

element building. It enables a theme provider, allowing the customized definitions of color

scheme, transitional effects and more, fostering a unified appearance (MUI team, 2024).

Despite the wide usage of MUI, there are minor style definitions made by Cascading

Stylesheets (CSS).

2.6.1.1 Mobile Responsiveness

Despite the sole development of a web application, the mobile users are also targeted, thus

requiring some mobile responsive adaption in the user interface. To cater the vertical

viewport of mobile devices, some originally horizontal layouts are switched to vertical (see

figure 2.14 & 2.15).

Figure 2.14: Horizontal login page layout on desktop
Figure 2.15: vertical login page

layout on mobile devices

 Meanwhile, the top navigation bar is also modified to a vertical layout, which the horizontal

layout is replaced by a button-triggered drop-down menu, where the button is placed on the

top-left corner of the screen (see figure 2.16 & 2.17).

 34

Figure 2.16: Desktop view of navigation bar Figure 2.17: Mobile view of navigation bar

2.6.2 Architecture

2.6.2.1 React Framework

On top of the hierarchy, there is the App.jsx file which is responsible for universal elements

to be rendered on all web pages. For elements in the individual web pages, they are defined

by separate jsx files stored in the components folder.

To implement navigation between pages, the react-router-dom package is applied to define

the paths for each page (which is a react component). It creates an outlet element for the

main rendering component, App.jsx, which renders the elements according to the url paths.

However, since the navigation bar ought to be shown in all pages of the website except for

the login page, it is separately included in App.jsx and show according to a Boolean flag.

To facilitate the changes of variable values of elements under the elemental hierarchy, not

only could the value change be indicated by parsing parameters and returning values, but

contexts could also be defined for the universal management of value changes. In the web

application’s architecture, subscription to ROS web sockets (detailed in section 2.4.2.2) is

done by this means, that a context (RosContextProvider.jsx) is created, responsible for

 35

connection to the ROS provider, allowing other React elements to directly use the context

to subscribe the topics required, reducing the risk of establishing multiple connection to

create asynchronous issues.

2.6.2.2 ROS communication

After establishing a communication channel on the robot as a provider via port 9090, the

publish of ROS messages via the library rosbridge_suite could made to the non-ROS

environment, where the web application could connect and subscribe with the assistance

of the JavaScript package from ROS, roslibjs by sending JSON-based commands (ROS.org,

2024). The connection to the ROS provider in RosContextProvider utilizing roslibjs API

enables demonstration of node and topic information, and the subscription to various

topics. Having the ros1_bridge established, topics from both ROS1 and ROS2 could be

listened by the web application. If a React component requires specific ROS information, it

could import the useContext method to use the connection, then designate the topic name

and message type and create a listener to receive the specified details of the robot’s state.

2.6.3 Features

2.6.3.1 Live Camera Feed

To obtain the livestream of the stereo camera on the robot, the data could be retrieved from

the with the assistance of the web_video_server package from ROS by publishing an imagery

capture stream over HTTP. The stream render is done by feeding results of an HTTP request

to a UI element. The slider responsible for adjusting the frame rate is modifying the update

rate of the image feed, creating an illusion of it being a live video feed.

2.6.3.2 Virtual Simulation

To give user a visual understanding of the robot’s current position and movements, virtual

simulation is adopted in the web dashboard. To achieve that, there are 2 main parts of

development.

 36

The first part is retrieving the real-time link and joint information of the robot and information

of the odometry, which could be done by simply using the defined ROS provider context for

connection configuration and subscribing to the ‘joint_states’ and ‘odom’. The former

provides URDF data, showing the current positions of every joint, while the latter provides

the estimation of distance and orientation compared to the robot’s starting point.

The second part is the attempt to rebuild the visual appearance of the robot. Three.js is a

node package that could create 3D visual space on React, allowing a simulated experience

of traveling along with the robot (Three.js). Utilizing the node package URDFloader, by

importing STL 3D visuals with the URDF model representing the relations of links and joints,

coordinates of the joints could transform into a virtual robot (Johnson, 2023). To adapt to the

axes orientation of the Three.js differing from ROS, rotation of -90֯ in x and z-axis have been

made to base_link of the URDF model. Integrating with the information received from ROS

in real time, the robot could virtually move around the virtual space.

Despite the option to drag to move x-axis and y-axis of the view, to obtain a better point-of-

view of the robot’s current position especially when it traverses around, a view control panel

for the simulation space could be added. Leva, a graphical user interface that offers a

responsive control panel, allowing expansion and collapse on individual section could be a

convenient UI tool. With the predefined components from react-three-fiber from Three.js,

capable of orbit control, virtual scene construction and lighting adjustments, the buttons in

the Leva control panel could trigger different events, responsible for zooming, rotating,

positioning to center and more angle adjustments, where frontier exploration could also be

triggered by message publishing to ROS topic (Three.js).

2.6.3.3 User Authentication System

For better data security and privacy management, an account registration and login system,

where done on the landing page of the web. This could prevent the unauthorized access to

the information of the robots’ current locations and the risk of leakage of confidential

information captured during the exploration of the robot.

 37

To facilitate the authentication process, a backend server and account database are

required. To relief the strains of infrastructure setup and maintenance, Firebase

Authentication, an account management platform offered by Google, could be suitable for

the use case (Google). It handles the account authentication process for the system, while

integrating well with Google’s ecosystem to leverage the cloud storage and also providing

simplistic user interface for management (Google). It also offers extra features, such as

open authentication, allowing users to registering and signing in by connecting their

accounts to their Google accounts, enhancing the seamlessness of user experience

(Google).

To include Firebase Authentication to the system, it could be done by importing the firebase

node package, providing configuration details with simple JavaScript code (Google).

2.6.3.4 Push Notifications

To demonstrate the results of object detection feature, a push notification system is set up

for notifying users if there are any interesting objects detected by the system. A pop-up

message is shown on screen to instantly grasp the attention if users, which the information

is received from the listener of the ROS topic detections_output. This could be particularly

useful during search and rescue that if new potential lives are found, the team of monitoring

could be notified instantaneously (Nvidia, 2024).

2.7 Collaboration Tools

As a team of 4 with distinct operating systems involves (Windows, MacOS and Linux), an

organized resource sharing system is demanded, where some of the collaboration tools are

highlighted.

2.7.1 Git

Git is a version control system commonly used for team collaborative development, while

GitHub is an online platform for git repository management, free for code contribution for

 38

non-commercial use. By creating a repository on GitHub, teammates could all contribute

code and resources with Internet access. It offers user-friendly and flexible interfaces such

as desktop application and command line interface to allow a seamless contribution and

code merging experience (Software Freedom Conservancy). To maintain the robustness and

executability of code, developers could make changes locally, and commit to the repository

later, preventing instant synchronization that code could not be successfully compiled for

testing or deploying (Software Freedom Conservancy). To avert conflicts of code during

instantaneous development, there is the option to create new branches to let users make

changes based on a designated version of code, and merge or rebase after completion

(Software Freedom Conservancy). These features could elevate the collaborative

effectiveness of collaboration, especially on the project with a wide scope.

2.7.2 Docker Container

There is only one quadruped robot physically assembled, weighing over 10 kilograms.
Considering the physical constraints, solutions are needed for developing in remote
locations to facilitate testing of features. An image simulating the operation of ROS could be
defined by a dockerfile. With docker compose files to run containers on local computers,
simulation of ROS messaging system could be utilized for testing the connection via rosapi
on the ROS interface without operating system compatibility issues.

2.8 Development and deployment

Since the ROS packages being adopted in the project are divided in multiple ROS
distributions, there are multiple Docker images are built for launching the packages, which
is listed as the follows:

- ROS1 Melodic – to install the CHAMP and rosbridge_suite packages.
- ROS1/ROS2 bridge – to build the ros1_bridge package with the additional feature of

allowing customized message types.
- ROS2 Humble – to install the computer vision and Nav2 packages.

Docker compose files have been defined to launch the developer container for testing and
debugging.

 39

3 Experiment and Result

3.1 Hardware

3.1.1 Robot Construction

Despite experimenting the assemble robot, the key electronic components of the final

version include a single-board computer with an attached GPU, a stereo camera and 7V 2-

cell lithium battery (see figure 3.1).

Figure 3.1: Final version of robot construction

There was a series of experiments with the construction of the robot. Assembling all

purchased components, including the planar LiDAR and an external power bank to feed the

single-board computer could be made possible, but the accumulated weight could not be

borne by the 3D-printed limbs and power of the PWM servos. To minimize burden of the

robot, the LiDAR sensor is removed, and the power bank is detached from the construction.

 One of the previous versions of construction includes similar components, with the

addition of a planar LiDAR and a power bank, but it was removed due to the weight and servo

tolerance (see figure 3.2).

 40

Figure 3.2: robot installed with a planar LiDAR and power bank

3.1.2 3D Modeling

As mentioned in section 3.1.1, there was a range of electronic components installed and

tested during the development process, thus the 3D model inherited from the HKU CS

MakerLab have to make adjustments to fit the new components.

To enhance the robustness of 3D model, there were multiple attempts for refining the

individual models, stored in 3D model file extension, STL. In spite of novice of 3D modeling,

the model creation was done smoothly. However, the performance of 3D printers in both

HKU CS Makerlab and Innovation Wing vary, frustrates the remodeling of parts to find the

perfect fit into the robot model. This also affects the rigidity of the overall construction,

which could lead to larger vibrations during walks, affecting the accuracy of sensor data and

the execution of software command to navigate to a destination.

For example, the upper shoulder joint is modified to become thicker to prevent wearing

down during sideway movements due to the upgraded PWM digital servos for higher power

(See figure 3.3, 3.4 and 3.5).

 41

Figure 3.3: original design of upper

shoulder joint inherited from HKU CS

Makerlab

Figure 3.4: modified design of the upper

shoulder joint

Figure 3.5: printing results of upper shoulder joints

To give another example, in order to include the larger-sized single-board computer, NVidia

Orin Nano Jetson, there have been multiple attempts of replacing the top cover from HKU

CS Makerlab’s model (See Figure 3.6, 3.7 & 3.8). Due to the print size errors and time

consumption of the HKU CS Makerlab’s 3D printer, the design is formed by laser-cut acrylic

boards cut in HKU InnoWing and Copper stands for lifting and securing the boards’ positions

(See Figure 9).

 42

Figure 3.6: original model design of top

cover from HKU CS Makerlab

Figure 3.7: modified top cover model

Figure 3.8: discarded version of 3D model

of single-board computer holder

Figure 3.9: Final model design with laser-

cut acrylic boards and copper stands

3.1.3 PWM Servos

With the more demanding sensors and computational power, new modeling parts are

required to secure the positions of the PWM servos. One of the solutions was to create some

laser-cut platforms. They move accurately to the angles commanded by software signals

with the effort in calibrating the joints with the PCA9685 I2C PWM driver.

 43

Nevertheless, the power and torque is limited that the weight support and rotation may not

be sufficient, especially when the weight distribution was not thoroughly planned in the

construction stage.

3.1.4 IMU

The accurate orientation of the robot could be computed by the DMP on the MPU-9250.

However, due to the nature of the IMU and some physical limitations, there are encounters

of drifts during locomotion. The current setup is limited to finding the local orientation

relative to the robot, that inaccuracy may amplify by the accumulated error of orientation

estimation. One of the possible solutions is to enable a magnetometer to find the absolute

orientation.

3.1.5 Stereo camera

The stereo camera works as expected with environment of sufficient lights with simple

lighting setup. It requires much calibration when more environmental variables are added,

such as insufficient light and multiple sources of lighting (see figure 3.10). This could affect

any computer algorithm that involves the analysis of the depth image.

Figure 3.10: example of underexposed depth image

 44

3.1.6 Single-board Computer

Even with the GPU installed, the CPU (6-core ARM) and main memory (shared 8GB) may not

be sufficient for the nodes deployed on it using docker, including ROS1, ROS1-ROS2 Bridge,

ROS2 and the web server. Consequently, swaps of memory spaces may occur that could

weigh on the CPU, thus creating high latency. Fortunately, the computer vision and machine

learning modules runs individually on the GPU, that offloading the inverse-kinematics

engine and web server could show improvements in performance.

3.1.7 Self-balancing algorithm

In static positions, the robot could balance itself with leveled body in both sloped and

discontinuous terrains with PID control (see figure 3.11, 3.12 & 3.13).

Figure 3.11: robot balancing on sloped surface

 45

Figure 3.12: robot standing on a box (roll)

Figure 3.13: robot standing on a box (pitch)

In spite of the successful end result, there were multiple unsatisfying attempts. Without

controlling the integration value of PID control, the body might not be able to level despite

balancing on sloped surfaces (see figure 3.14).

 46

Figure 3.14: robot balancing on sloped surface with unleveled body

3.2 Computer Vision and Machine Learning

3.2.1 Visual SLAM and Frontier Exploration

The derivation of 2D costmap of the surrounding was satisfactory. Shown in figure 3.15, the

green dots represent low probability of being occupied, while the red ones represent the high

probability of the space being occupied, which is fairly true to reality compared to the RGB

image. The grayscale plane underneath the dots is a representation of the feasibility of

routing, which the darker it is, the less likely the robot routing system in going to direct it to.

Z-axis calibration was done for a more accurate estimation due to the placement of the

stereo camera (on top of the robot).

For frontier exploration, the robot was intended to traverse in the lighter areas of the

grayscale plane. Due to sensor limitation, the orientation measurements drifts during the

navigation along the planned route, leading to distorted costmap. One of the solutions

would be clearin the costmap once in a while, but redetection is required in the approach,

creating more distortions during the rotation.

 47

Figure 3.15: Result of visual SLAM and frontier exploration

3.2.2 Dynamic Object following

Human segmentation algorithm usually gives satisfying results, that the human is clearly

identified, in red in figure 3.16. With sufficient calibrations, the depth image could be

correctly shown. However, the estimation of the human in the 3D space could usually not

be made correctly (the purple dot of the 3D map in figure 3.16).

Figure 3.16 pose estimation result

 48

The undesirable performance could be attributed synchronization issues, refresh rate and

hardware limitation. The synchronization issue refers to the match of the segmented color

image and the depth image. As they are obtained from separate ROS topics, the update rate

may vary in the distributed ROS system. Therefore, the depth information may be misleading

especially when the human moves to a different depth. The refresh rate of the algorithm

could also make an impact when the target moves promptly. Moreover, when the robot is

attempting to navigate towards the target, the hardware limitation causes a lot of vibrations,

which affects the capture quality for the most updated imagery data.

3.3 Web Interface

3.3.1 ROS Connection

Assisted by rosapi, the connection to ROS has been successfully established, allowing

retrieval of lists of nodes and topics (see figure 3.17). Topic subscriptions of individual

elements have also been effective to display relevant data to be processed for UI rendering.

Figure 3.17: Demonstration of successful connection to ROS provider and get the list of

topics

3.3.2 Live Camera Feed

The imagery stream of the stereo camera of the robot is successfully pulled by HTTP

requests in the format of mjpeg. The stream is displayed on the dashboard according to the

 49

user-designated quality (a parameter of refresh rate input by the slider). Nonetheless, the

delay and refresh rate could be affected by the network stability (see figure 3.18).

Figure 3.18: an example of live feed from the robot’s stereo camera

3.3.3 Virtual Simulation

The virtual simulation of robot state is implemented on the web dashboard as expected,

reflecting the movements of the robot joints and the traversal from odometry (see figure 3.19

& 3.20).

Figure 3.19: an example of moving robot virtual simulation of web dashboard

 50

Figure 3.20: Demonstration of STL/URDF model loaded to simulator with view control

panel

3.3.4 User Authentication System

The user authentication system has been successfully implemented to the web application.

It could block unauthorized users from signing in (see figure 3.21). Registered users are

successfully stored on Firebase Authentication (see figure 3.22).

Figure 3.21: example of unauthorized account login

 51

Figure 3.22: demonstration of registered email and Google accounts stored on Firebase

(Google)

3.3.5 User Interface

The implementation of user interface design has mostly been successful by replicating the

prototype design (see figure 3.23 & 3.24). It is worth noting that the UI design of the control

panel does not align with the rest of the UI due to the restricted modifications that could be

made to the Leva control panel element (see figure 3.25).

Figure 3.23: appearance of login page on web interface

 52

Figure 3.24: appearance of the main dahsboard

Figure 3.25: the appearance of web dashboard control panel component

3.3.5.1 Mobile Responsiveness

Mobile responsive features have been successfully implemented according to the UI/UX

design (see figure 3.26 & 3.27). The top navigation bar, login page and main dashboard

change to vertical layout responsively to optimize the portrait view of mobile devices.

 53

Figure 3.26: Desktop view of navigation bar Figure 3.27: Mobile view of navigation bar

3.4 Collaboration

It was an overall collaborative experience with assistance of the collaboration tools adopted

in the project.

3.4.1 Git

Git and the corresponding GitHub repository were widely used to update new development

code, having each teammate contributing to code of their responsibility. It was tricky to

upload React.js code to the GitHub repository due to the large file size of node modules and

the node dependency changes after pulling, that .gitignore file has to be carefully configured

and install all dependencies before building. To avoid conflicted code development, branch

development was a frequent practice, consequently demanding constant rebase of code.

In spite of a smooth contribution experience, there were some conflicts encountered during

the merge of contributions, which have to be resolved manually (see figure 3.28).

 54

Figure 3.28: example of code conflict during Git merge.

3.4.2 Docker

The simulation of ROS by the docker container composed successfully facilitated testing

and debugging of the web application’s interactions with ROS messages.

 55

4 Future Work

4.1 Actuators

The adoption of PWM servos is due to the precision control it offers and limitation of

mechanical knowledge of the team that the servo model could be inherited. However,

servos are prone to stalling by its limited torque, abnormally pulling currents until breakage

when the required angles commanded could not be met. To solve the issue, digital motors

with higher torque could be considered. One of the alternatives would be a brushless motors,

the Robomaster M2006 from DJI, that speed could be controlled by PWM or CAN signal,

which integrates a motor encoder for locating the current motor position. With the

information, the accuracy of PID control could be improved from positional error. To make

the swap of actuators, there is a requirement of redesigning the motor housing for the robot.

4.2 Sensor Fusion

Despite the satisfying performance of DMP in finding orientation and the quality RGB-D

information obtained from the stereo camera, there are limitations in data retrieval when

relying on one type of sensor for 1 type of data. Therefore, a sensor-fusion approach could

be implemented to improve the understanding of the surrounding and subsequently

boosting the performance of machine learning algorithms. A case in point would be adding

a LiDAR sensor to the model, which adopting prevalent point fusion and voxel fusion models

like MV3D could offer a more comprehensive and accurate segmentation analysis and

object tracking (Zhong et. al, 2021).

Another sensor that worth integrating would be the foot sensors, which would give the

accurate feedback of foot positions to CHAMP. Nonetheless, there might be challenges in

finding a suitable sensor, with the requirements of being small, sensitive and free from

errors. For example, the accuracy of response of infrared sensor reactions varies from the

surfaces the robot is on (Lomba, et. al, 1998). Another obstacle to overcome would be the

 56

redesign of the leg 3D models to include the foot sensors. Taking advantage of the

modularity of ROS, the high-level machine learning algorithms could be adapted to other

hardware models of robots, which are equipped with more rigid structure and accurate

sensors.

4.3 Swarm Robots

Considering the limited battery life and exploration speed of a robot, swarm robots could be

introduced. Having a team of robots, robot models could be designed for shorter battery

lifetime to have a lighter weight. The swarm of robots could be allocated to different areas

of the site, via SLAM map merging and frontier exploration packages such as m-explore, the

entire scene could be reconstructed in the centralized server (Hrnčíř, 2023). To maintain the

user experience of the web dashboard, the virtual simulator should be upgraded to include

multiple robots.

4.4 User Interface

Despite the display of key robotic status on the current web dashboard, there are flaws in

the UI/UX design and the high-level algorithmic commands have not yet been included. To

offer a cohesive and non-confusing interface for better user interactions, the control panel

should be redesigned to using more precise indicators and unified color scheme. To stretch

the capabilities of the application, commands including trigger of 3-D map reconstruction,

object detection, and dynamic object following could be added on the control panel. The

result of 3D map reconstruction and the 2D costmap could also be displayed on the virtual

simulator with assistance of Three.js, allowing the hands-on rescuers to understand the

current environment of the area and risk of difference areas, fostering prompt search, and

rescue (Three.js). Moreover, to give users a more mobile experience, mobile applications for

android and iOS devices could be developed by using framework like react, native offering

preload contents, and utilizing native features like GPS for an extra layer of information.

 57

In the emergency environment, constant checks of mobile devices may not be very feasible,

taking advantage of the rosbridge message topic subscription format, other forms of

interfaces could also be considered, assisted by relevant ROS packages. For example,

creating an application for smart wearable devices, giving notifications for new object

detection, or using radio signals as transmission medium to Broadcast significant

discoveries to communication devices like walkie-talkies.

 58

5 Conclusion

Having researched on equipping computer vision and machine learning capabilities to a

quadruped robot with a user interface to facilitate environment exploration, object

identification and dynamic object following, the real-life execution of the software modules

developed could be highly restricted by the hardware formation of the quadruped robot

prototype. Nonetheless, the computer vision and machine learning algorithm results,

especially scene reconstruction and object detection resulted fairly true-to reality. The user

interface is also implemented that could serve the purpose of providing simplistic user

interactions with the software. It is believed that an improvement of hardware mechanics

could show significant improve of the algorithms developed.

References

Adafruit Industries. (2023). Adafruit-PWM-Servo-Driver-Library. Retrieved April 24, 2024,

from https://github.com/adafruit/Adafruit-PWM-Servo-Driver-Library

Aristidou, A., Lasenby, J., Chrysanthou, Y., & Shamir, A. (2018, September). Inverse

kinematics techniques in computer graphics: A survey. In Computer graphics forum (Vol. 37,

No. 6, pp. 35-58).

Bilousova, L. I., Gryzun, L. E., & Zhytienova, N. V. (2021). Fundamentals of UI/UX design as a

component of the pre-service specialist's curriculum.

Biswal, P., & Mohanty, P. K. (2021). Development of quadruped walking robots: A review. Ain

Shams Engineering Journal, 12(2), 2017-2031.

Bradski, G., & Kaehler, A. (2000). Dr. Dobb's journal of software tools. Dobb's Journal of

Software Tools.

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., ... & Leonard, J. J.

(2016). Past, present, and future of simultaneous localization and mapping: Toward the

robust-perception age. IEEE Transactions on robotics, 32(6), 1309-1332.

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., ... & Leonard, J. J.

(2016). Past, present, and future of simultaneous localization and mapping: Toward the

robust-perception age. IEEE Transactions on robotics, 32(6), 1309-1332.

Chu, J. (2019, March 4). Mini cheetah is the first four-legged robot to do a backflip. MIT News

| Massachusetts Institute of Technology. https://news.mit.edu/2019/mit-mini-cheetah-

first-four-legged-robot-to-backflip-0304

Chui. C. Y. (2022). END-TO-END DEVELOPMENT OF A ROBOTIC QUADRUPED FOR

TRAVERSING ON CHALLENGING TERRAINS. The University of Hong Kong.

https://wp.cs.hku.hk/2021/fyp21046/

chvmp. (2023). chvmp/champ. Retrieved April 24, 2024, from

https://github.com/chvmp/champ

Colledanchise, M., & Ögren, P. (2018). Behavior trees in robotics and AI: An introduction.

CRC Press.

E. Otten, “Inverse and forward dynamics: Models of multi–body systems,” Philosophical

Transactions of the Royal Society of London. Series B: Biological Sciences, vol. 358, no. 1437,

pp. 1493–1500, 2003.

Espressif Systems. (n.d.). Wi-Fi API - Arduino ESP32 latest documentation. Retrieved April

24, 2024, from https://docs.espressif.com/projects/arduino-esp32/en/latest/api/wifi.html

Garcia, E., Jimenez, M. A., De Santos, P. G., & Armada, M. (2007). The evolution of robotics

research. IEEE Robotics & Automation Magazine, 14(1), 90-103.

Garigipati, B., Strokina, N., & Ghabcheloo, R. (2022, July). Evaluation and comparison of

eight popular Lidar and Visual SLAM algorithms. In 2022 25th International Conference on

Information Fusion (FUSION) (pp. 1-8). IEEE.

Google Fonts. (n.d.). Jura. Retrieved April 24, 2024, from

https://fonts.google.com/specimen/Jura

Google Fonts. (n.d.). Roboto. Retrieved April 24, 2024, from

https://fonts.google.com/specimen/Roboto

Google. (n.d.). Firebase Authentication Documentation. Retrieved April 24, 2024, from

https://firebase.google.com/docs/auth

https://wp.cs.hku.hk/2021/fyp21046/
https://github.com/chvmp/champ
https://docs.espressif.com/projects/arduino-esp32/en/latest/api/wifi.html
https://fonts.google.com/specimen/Jura
https://fonts.google.com/specimen/Roboto
https://firebase.google.com/docs/auth

Guardian News and Media. (2008, August 14). Sichuan quake: China’s earthquake

reconstruction to cost $150bn. The Guardian.

https://www.theguardian.com/world/2008/aug/15/chinaearthquake.china

Guardian News and Media. (2024, April 3). “people were screaming”: Hualien residents in

shock after Taiwan earthquake. The Guardian.

https://www.theguardian.com/world/2024/apr/03/hualien-residents-in-shock-after-

taiwan-earthquake

H. Montgomery. (2024, January 5). Rescuers pull quake survivors from rubble in Japan as 72-

hour ‘golden period’ closes. CNN World. https://edition.cnn.com/2024/01/05/world/japan-

wajima-earthquake-rescue-intl-hnk/index.html

Holzer, A., & Ondrus, J. (2012). Mobile app development: Native or web?. In Proc. Workshop

eBus.(WeB).

Hörner, J. (2016). Map-merging for multi-robot system.

Hrnčíř, J. (2023). m-explore. Retrieved April 24, 2024, from https://github.com/hrnr/m-

explore

Johnson, G. K. (2023). urdf-loaders. Retrieved April 24, 2024, from

https://github.com/gkjohnson/urdf-loaders

Lau. T. Y. (2023). 3D printed Robot Dog Walking on Terrain for STEM education. The

University of Hong Kong. https://wp.cs.hku.hk/2022/fyp22066/ .

Lee, J. (2013). Hierarchical controller for highly dynamic locomotion utilizing pattern

modulation and impedance control: Implementation on the MIT Cheetah robot (Doctoral

dissertation, Massachusetts Institute of Technology).

Lee. C. K. D. (2022). 3D printed Robot Dog Walking on Terrain for STEM education. The

University of Hong Kong. https://wp.cs.hku.hk/2021/fyp21080/ .

https://www.theguardian.com/world/2008/aug/15/chinaearthquake.china
https://www.theguardian.com/world/2024/apr/03/hualien-residents-in-shock-after-taiwan-earthquake
https://www.theguardian.com/world/2024/apr/03/hualien-residents-in-shock-after-taiwan-earthquake
https://edition.cnn.com/2024/01/05/world/japan-wajima-earthquake-rescue-intl-hnk/index.html
https://edition.cnn.com/2024/01/05/world/japan-wajima-earthquake-rescue-intl-hnk/index.html
https://github.com/hrnr/m-explore
https://github.com/hrnr/m-explore
https://github.com/gkjohnson/urdf-loaders
https://wp.cs.hku.hk/2022/fyp22066/
https://wp.cs.hku.hk/2021/fyp21080/

Lomba, C. R., Valadas, R. T., & de Oliveira Duarte, A. M. (1998). Experimental

characterisation and modelling of the reflection of infrared signals on indoor surfaces. IEE

Proceedings-Optoelectronics, 145(3), 191-197.

Lorensen, W. E., & Cline, H. E. (1998). Marching cubes: A high resolution 3D surface

construction algorithm. In Seminal graphics: pioneering efforts that shaped the field (pp.

347-353).

Macenski, S., Foote, T., Gerkey, B., Lalancette, C., & Woodall, W. (2022). Robot Operating

System 2: Design, architecture, and uses in the wild. Science Robotics, 7(66), eabm6074–

eabm6074. https://doi.org/10.1126/scirobotics.abm6074

Macenski, S., Martín, F., White, R., & Clavero, J. G. (2020, October). The marathon 2: A

navigation system. In 2020 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS) (pp. 2718-2725). IEEE.

Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., & Terzopoulos, D. (2021). Image

segmentation using deep learning: A survey. IEEE transactions on pattern analysis and

machine intelligence, 44(7), 3523-3542.

MUI Team. (2024). MUI: The React component library you always wanted. Retrieved April 24,

2024, from https://mui.com/

Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., ... & Fitzgibbon,

A. (2011, October). Kinectfusion: Real-time dense surface mapping and tracking. In 2011

10th IEEE international symposium on mixed and augmented reality (pp. 127-136). Ieee.

NVIDIA. (2024, February 8). isaac_ros_yolov8. Retrieved April 24, 2024, from https://nvidia-

isaac-

ros.github.io/repositories_and_packages/isaac_ros_object_detection/isaac_ros_yolov8/in

dex.html#quickstart

https://doi.org/10.1126/scirobotics.abm6074
https://mui.com/
https://nvidia-isaac-ros.github.io/repositories_and_packages/isaac_ros_object_detection/isaac_ros_yolov8/index.html#quickstart
https://nvidia-isaac-ros.github.io/repositories_and_packages/isaac_ros_object_detection/isaac_ros_yolov8/index.html#quickstart
https://nvidia-isaac-ros.github.io/repositories_and_packages/isaac_ros_object_detection/isaac_ros_yolov8/index.html#quickstart
https://nvidia-isaac-ros.github.io/repositories_and_packages/isaac_ros_object_detection/isaac_ros_yolov8/index.html#quickstart

Oleynikova, H., Taylor, Z., Fehr, M., Siegwart, R., & Nieto, J. (2017, September). Voxblox:

Incremental 3d euclidean signed distance fields for on-board mav planning. In 2017

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1366-

1373). IEEE.

Otani, Y., Ando, T., Atobe, K., Haiden, A., Kao, S. Y., Saito, K., ... & Fukunaga, K. (2012).

Comparison of two large earthquakes: the 2008 Sichuan Earthquake and the 2011 East

Japan Earthquake. The Keio journal of medicine, 61(1), 35-39.

Plant, F. D. N. P. Improvements to the rescue robot Quince.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., ... & Ng, A. Y. (2009, May).

ROS: an open-source Robot Operating System. In ICRA workshop on open source software

(Vol. 3, No. 3.2, p. 5).

React team. (2024). React. Retrieved April 24, 2024, from https://react.dev/

ROS Drivers. (2023). rosserial. Retrieved April 24, 2024, from https://github.com/ros-

drivers/rosserial

ROS-Mobile. (2023). ROS-Mobile-Android. Retrieved April 24, 2024, from

https://github.com/ROS-Mobile/ROS-Mobile-Android

ROS.org. (2024). ROS. https://ros.org/

Saks, E. (2019). JavaScript Frameworks: Angular vs React vs Vue.

Software Freedom Conservancy. (n.d.). Git - Documentation. Retrieved April 24, 2024, from

https://git-scm.com/doc

SparkFun Electronics. (2023). SparkFun_MPU-9250-DMP_Arduino_Library. Retrieved April

24, 2024, from https://github.com/sparkfun/SparkFun_MPU-9250-DMP_Arduino_Library

https://react.dev/
https://github.com/ROS-Mobile/ROS-Mobile-Android
https://ros.org/

Three.js. (n.d.). Three.js – JavaScript 3D library. Retrieved April 24, 2024, from

https://threejs.org/

Tola, D., & Corke, P. (2024). Understanding URDF: A dataset and analysis. IEEE Robotics and

Automation Letters.

Wong, H., & Chung, L. (2024, April 23). Big aftershocks rock Hualien county in Taiwan weeks

after 7.3 earthquake. South China Morning Post.

https://www.scmp.com/news/china/politics/article/3259979/big-aftershocks-rock-

hualien-county-taiwan-weeks-after-72-earthquake

Yoshida, T., Nagatani, K., Tadokoro, S., Nishimura, T., Koyanagi, E. (2014). Improvements to

the Rescue Robot Quince Toward Future Indoor Surveillance Missions in the Fukushima

Daiichi Nuclear Power Plant. In: Yoshida, K., Tadokoro, S. (eds) Field and Service Robotics.

Springer Tracts in Advanced Robotics, vol 92. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-40686-7_2

Zhong, H., Wang, H., Wu, Z., Zhang, C., Zheng, Y., & Tang, T. (2021). A survey of LiDAR and

camera fusion enhancement. Procedia Computer Science, 183, 579-588.

https://threejs.org/
https://www.scmp.com/news/china/politics/article/3259979/big-aftershocks-rock-hualien-county-taiwan-weeks-after-72-earthquake
https://www.scmp.com/news/china/politics/article/3259979/big-aftershocks-rock-hualien-county-taiwan-weeks-after-72-earthquake
https://doi.org/10.1007/978-3-642-40686-7_2

	Abstract
	Acknowledgment
	1
	Acronyms
	Table of Contents
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Objectives and Deliverables
	1.4 Literature Review
	1.4.1 Firmware
	1.4.1.1 Cheetah-inspired Hopping and Maneuverable Platform (CHAMP)
	1.4.1.2 Inverse Kinematics

	1.4.2 Robot Operating System (ROS)
	1.4.2.1 Unified Robot Description Format (URDF)

	1.4.3 Simultaneous Localization and Mapping (SLAM)
	1.4.4 Web Interface
	1.4.5 Previous Projects

	1.5 List of contributions

	2 Methodologies
	2.1 Design
	2.1.1 Hardware
	2.1.1.1 Electronics Components
	2.1.1.2 3D Modeling

	2.1.2 UI/UX Design
	2.1.2.1 Design Elements
	2.1.2.1.1 Typeface
	2.1.2.1.2 Color
	2.1.2.1.3 Logo

	2.1.2.2 Prototype Design

	2.2 Firmware
	2.2.1 Programming Framework
	2.2.2 PWM Digital Servos
	2.2.3 Inertial Measurement Unit (IMU)
	2.2.4 ROS Serial

	2.3 Cheetah-inspired Hopping and Maneuverable Platform (CHAMP)
	2.3.1 Hardware Interface
	2.3.2 URDF Model
	2.3.3 Self-balancing algorithm

	2.4 Computer Vision and Machine Learning
	2.4.1 3D Scene Reconstruction
	2.4.2 Autonomous Navigation
	2.4.3 Dynamic Object Following
	2.4.4 Frontier Exploration

	2.5 Object Detection
	2.6 Web Application
	2.6.1 Appearance
	2.6.1.1 Mobile Responsiveness

	2.6.2 Architecture
	2.6.2.1 React Framework
	2.6.2.2 ROS communication

	2.6.3 Features
	2.6.3.1 Live Camera Feed
	2.6.3.2 Virtual Simulation
	2.6.3.3 User Authentication System
	2.6.3.4 Push Notifications

	2.7 Collaboration Tools
	2.7.1 Git
	2.7.2 Docker Container

	2.8 Development and deployment

	3 Experiment and Result
	3.1 Hardware
	3.1.1 Robot Construction
	3.1.2 3D Modeling
	3.1.3 PWM Servos
	3.1.4 IMU
	3.1.5 Stereo camera
	3.1.6 Single-board Computer
	3.1.7 Self-balancing algorithm

	3.2 Computer Vision and Machine Learning
	3.2.1 Visual SLAM and Frontier Exploration
	3.2.2 Dynamic Object following

	3.3 Web Interface
	3.3.1 ROS Connection
	3.3.2 Live Camera Feed
	3.3.3 Virtual Simulation
	3.3.4 User Authentication System
	3.3.5 User Interface
	3.3.5.1 Mobile Responsiveness

	3.4 Collaboration
	3.4.1 Git
	3.4.2 Docker

	3.5

	4 Future Work
	4.1 Actuators
	4.2 Sensor Fusion
	4.3 Swarm Robots
	4.4 User Interface

	5 Conclusion
	References

