
UNIVERSITY OF HONG KONG

FINAL YEAR PROJECT FINAL REPORT

Intelligent Robot Design and
Implementation

Author:
LEUNG Cham Chung, Terry

Supervisors:
Dr. Tat Wing CHIM

Mr. David LEE

Examiner:
Dr. Chun Kit CHUI

Department of Computer Science
Faculty of Engineering

April 27, 2024

http://
https://www.cs.hku.hk/~twchim
https://www.cs.hku.hk/~ckchui

i

Abstract

The project explores the possibilities of deploying quadrupedal robot for search
and rescue (SAR) operations. Given the high mobilities of quadrupedal robot in
rough terrain, it is believed that the deployment of quadrupedal robot in disas-
ter fields, the efficiency and safety of search and rescue operations can be signif-
icantly improved. To validate our hypothesis, a quadrupedal robot prototype
is assembled using 3D-printed materails and off the shelf components. The key
focus of the project is the potential capability to perform intelligent behaviours
to assist search and rescue missions. For example, allowing the quadrupedal
robot to explore unvisisted environment while reconstructing the 3D environ-
ment. Given the modularity nature of the software suite implemented, it is
believed that the high-level interaction package can be adapted to a variety of
production-ready robots impacting the research and innovation of robotics in
the of SAR.

ii

COPYRIGHT ©2024, BY LEUNG CHAM CHUNG, TERRY

ALL RIGHTS RESERVED.

iii

Contents

Abstract i

List of Figures v

List of Tables vii

List of Algorithms viii

List of Abbreviations ix

1 Introduction 1
1.1 Background . 1
1.2 Objectives . 1

2 Literature Review 3
2.1 Robot Operating System (ROS) . 3
2.2 Hierarchical Control Algorithm for Quadrupedal Locomotion . . 4

2.2.1 Hybrid Dynamic System . 4
2.2.2 Constrained Equations of Motion 5
2.2.3 Control Framework . 6

Framework Architecture . 6
Operator . 6
Gait Pattern Modulator . 8
Leg Trajectory Generator 8
Leg Controller . 9

2.3 Simultaneous Localization and Mapping (SLAM) 11
2.3.1 What is SLAM . 11
2.3.2 Types of SLAM . 12
2.3.3 Previous Works . 13

ORB-SLAM . 14
ROVIOLI . 14

iv

3 Project Methodology 17
3.1 Hardware . 17

3.1.1 Motion Processing Unit . 18
3.1.2 Servo Motors . 18
3.1.3 ESP32 Module . 18
3.1.4 NVIDIA Jetson Orin Nano 18
3.1.5 Depth Camera . 18

3.2 Software . 19
3.2.1 Quadrupedal Control Framework 19

Unified Robotics Description Format 19
Gait Configuration . 20

3.2.2 3D Scene Recontruction . 20
3.2.3 Autonomous Navigation 22
3.2.4 Dynamic Object Following 24
3.2.5 Frontier Exploration . 28
3.2.6 Object Detection . 29
3.2.7 Web Application . 30

Live Camera Feed . 31
Live Visualization . 31

3.3 Development and Deployment . 32

4 Results and Findings 33
4.1 Robot Construction . 33
4.2 3D Scene Reconstruction . 34
4.3 Dynamic Object Following . 34
4.4 Frontier Exploration . 36

5 Future Works 38
5.1 Instance Segmentation . 38
5.2 Sensor Fusion . 38
5.3 Reinforcement Learning . 39

Bibliography 41

v

List of Figures

2.1 ROS 2 node interfaces . 3
2.2 Finite state machine to model dynamics of legged mechanism . . 5
2.3 Architecture diagram of the hierarchical lcomotive framework [4] 7
2.4 Leg trajectory generator with Bezier curve control points [4] . . . 9
2.5 Stance trajectory design with equilibrium-point hypothesis [4] . . 9
2.6 Block diagram for leg control [4] 10
2.7 Left: map built from odometry, Right: map built from SLAM

which resets the localization errors [5] 11
2.8 Architecture diagram of a SLAM system [5] 12
2.9 Estimate disparities between matching key points to get depth

information [9] . 13
2.10 SLAM with 3D LiDAR [8] . 14
2.11 Architecture diagram for ORB-SLAM [10] 15
2.12 ORB-SLAM sample reconstruction [10] 15
2.13 Architecture diagram for ROVIOLI [12] 16

3.1 Picture of the quadrupedal robot 17
3.2 URDF model in a tree format . 19
3.3 Gait parameters for the quadrupedal robot 20
3.4 ROS Node diagram for Nvblox . 21
3.5 Illustration showing a slice of a TSDF constructed by Nvblox . . . 22
3.6 15 triangulated cube patterns in Marching Cubes Algorithm . . . 23
3.7 Nav2 architecture diagram . 23
3.8 Segmentation output from PeopleSegNet ShuffleSeg 25
3.9 Depth image obtained from Intel Realsense depth camera 26
3.10 Perspective projection . 26
3.11 Visualization of the 3D point representing the human object’s

centroid (purple sphere) . 27
3.12 Explore lite architecture diagram 28
3.13 Visualization of frontiers generated by explore lite (blue points) . 29
3.14 Prediction result evaluated by YOLO 30

vi

3.15 Illustration of the web application 30
3.16 Live camera streaming . 31
3.17 Live visualization with controls . 32

4.1 Quadrupedal robot with Jetson Nano, stereo camera, LiDAR, power
bank, and lithium battery . 33

4.2 Quadrupedal robot with Jetson Nano, stereo camera, and lithium
battery . 34

4.3 Scene reconstructed using Nvblox 35
4.4 Color and depth image pairs . 35
4.5 Pose estimation . 36
4.6 Exploration . 37

5.1 Occlusion Problem . 39
5.2 Standing on inclined surface . 40

vii

List of Tables

3.1 Configuration for joint limits . 19

viii

List of Algorithms

1 Generalized coordinates of the quadrupedal robot 6
2 Lagrange’s equation first kind . 6
3 Froude number . 7
4 Desired stance phase period . 8
5 Torque command . 10

ix

List of Abbreviations

IMU Inertial Measurement Uunit
IR Infrared
IK Inverse Kinematics
CNN Convolutional Neural Network
URDF Unified Robot Description Format
SLAM Simultaneous Localization Aand Mapping
LiDAR Light Detection Aand Ranging

1

Chapter 1

Introduction

1.1 Background

In disaster events, search and rescue operations have always depended on hu-
man involvement heavily. It is believed that the main reason behind such a
phenomenon is the lack of appropriate machines and tools. Besides, with the
risk of building collapsing in the event of earthquakes or landslides, it might
not be appropriate for search and rescue personnel to explore the unknown en-
vironment.

Commonly seen wheel robots are highly efficient in everyday life, where navi-
gation environment are often smooth and free with obstacles. However, in natu-
ral disasters, impacted regions are often unnavigable for conventional wheeled
robots. Therefore, quadrupedal robots, which demonstrates high mobilities in
rough terrains, would be a optimal solution to execute the search and rescue
tasks.

1.2 Objectives

The objective of the project is to implement a high-level interaction package that
performs intelligent tasks (e.g., exploration) and interact with operator facilitat-
ing search and rescue tasks.

First, the prototype quadrupedal robot would be assembled using 3D-printed
material with off the shelf electronics components. Then, by deploying an ap-
propriate control framework, the quadrupedal robot should be able to navigate
based on any movement command. Second, upon starting search and rescue
mission, the quadrupedal robot should be able to explore unknown environ-
ment while reconstructing a 3D representation of the environment.

Chapter 1. Introduction 2

In addition, if interested objects are detected, the quadrupedal robot should be
dynamically follow the object of interest. Apart from the quadrupedal robot’s
capabilities, a web-based dashboard should be implemented to enable visual-
ization of live information regarding the quadrupedal robot (e.g., live camera
feed, current position) and alert the operator for the detection of target objects.

3

Chapter 2

Literature Review

2.1 Robot Operating System (ROS)

Robot Operating System (ROS) is an open-source robot framework that pro-
vides a structured communications layer between computing nodes [1]. In the
field of robotics, numerous hardware configuration can be used to assemble a
purpose-built robot depsite most modern robots often use off the shelf compo-
nents to provide specific functionalities. The characteristics fo varying hard-
ware makes code reuse challenging [1]. The challenge presented hinders the
rapid prototyping and integration effort.

Figure 2.1: ROS 2 node interfaces

Chapter 2. Literature Review 4

To resolve these challenges, ROS introduces a modular and adaptable architec-
ture running on a peer-to-peer network as shown in Fig. 2.1 [1]. Each purpose-
built software would be run as an independent process known as node, com-
municating with a well-defined interfaces (e.g., topics, services, and action) [1]
[2]. The standardized messaging protocol enables end packages to be imple-
mented in a variety of programming languages inlcuding C++, Python, Octave,
and LISP [1].

In addition, ROS 2 offers a comprehensive software ecosystem including the
mentioned middleware, algorithms, and developer tools [2]. For instance, com-
monly used algorithms (e.g., perception, SLAM) can be readily deployed by
aligning the configuration with the hardware configuration. Meanwhile, the
standardized developer tools allows formal system analysis and debugging
processes across the field [2].

2.2 Hierarchical Control Algorithm for Quadrupedal Lo-
comotion

This subsection will cover the theories behind the hierarchical control algorithm
for quadrupedal locomotion. The discussion presented in this section formed
the basis of the open-source development framework for quadrupedal robots,
CHAMP [3].

Most of the widely studied and deployed land-based robots have uncompli-
cated dynamic systems and control algorithms. For instance, wheeled robots
can change their angular velocity by varying the relative rotational frequency.
However, quadrupedal robots typically have 12 degrees of freedom. Therefore,
they are often controlled by a complicated control algorithm involving leg tra-
jectory generation and gait pattern modulation. Therefore, it is essential to have
an efficient hierarchical control algorithm for quadrupedal locomotion which
will be discussed below.

2.2.1 Hybrid Dynamic System

The dynamics of quadrupedal robots can be described by a hybrid dynamic
system, which exhibits both continuous and discrete dynamic behavior. A clas-
sic hybrid dynamic system can be described by state machines and differential
equations simultaneously[4].

Chapter 2. Literature Review 5

To model the dynamics of quadruped robots, each of their legs would be de-
scribed as an isolated hybrid dynamic system. First, a state machine consisting
of swing (flight) phase and stance phase would be used to describe discrete
behavior. Then, touch down and lift off events would be detected by sensing
abrupt changes in ground reaction forces or foot sensor and hence state transi-
tion would be triggered. For continuous behavior, differential equations taking
one’s velocity and acceleration into account would be derived.

Figure 2.2: Finite state machine to model dynamics of legged mechanism

2.2.2 Constrained Equations of Motion

To realize the hybrid dynamic system mentioned above, multi-link rigid body
equations of motion would be derived through Lagrangian mechanics [4]. Then,
constrained equations of motion would preciously describe the posture and po-
sition of the quadrupedal robot in a controlled environment [4].

In classical mechanics, Lagrangian mechanics is a formulation that describes a
dynamic system using the energies in the system (e.g. kinetic energy, elastic
potential energy, gravitational potential energy) while Newtonian mechanics
describes a dynamic system using the forces in the system (e.g. ground reac-
tion force, gravitational force). Compared to Newtonian mechanics, Lagrangian
mechanics offers a systematic and efficient method to solve general mechani-
cal problems allowing equations of motion to be derived in an algorithmic ap-
proach.

To derive the equations of motion, the generalized coordinates of the quadrupedal
robot would be represented in a vector q

Chapter 2. Literature Review 6

q := [qpitch, q1,FR, q2,FR, . . . , q1,BL, q2,BL, x, y]T ∈ R11 (2.1)

Algorithm 1: Generalized coordinates of the quadrupedal robot

Then, a Lagrangian L is computed as the difference between the total kinetic
energy (T) and the total potential energy (V) of the system. Subsequently, sub-
stitute the Lagrangian L into the Lagrange’s equations of the first kind

d
dt

∂L(q, q̇)
∂q̇i

− ∂L(q, q̇)
∂q̇i

= Zi (2.2)

Algorithm 2: Lagrange’s equation first kind

, where t and Z represent time and the generalized forces of the system. Fi-
nally, second order differential equations for each coordinate can be derived by
solving the equation above and hence obtaining the equations of motion.

2.2.3 Control Framework

Several challenges are presented in designing an efficient control algorithm for
quadrupedal locomotion, which are namely stabilization of the quadrupedal
robot, control of ground reaction forces, and gait patterns modulation [4].

Therefore, the control framework used three strategies to address these chal-
lenges [4]. First, self-stabilization is achieved by implementing virtual com-
pliance in legs. Second, ground reaction forces are modulated by introducing
penetration depth in foot-end trajectories. Third, gait patterns are modulated
with respect to the targeted velocity and sensory feedback.

Framework Architecture

The structure of the control framework for quadrupedal locomotion is shown
below, in which the main components are operator, gait pattern modulator, leg
trajectory generator, and leg controller [4].

Operator

Within the control framework, operator is the first main component responsible
for outputting the desired velocity and the optimal gait pattern. According
to biological studies, the performance of quadrupedal locomotion is heavily
dependent on the modulation of gait patterns including walk, grot, and gallop

Chapter 2. Literature Review 7

Figure 2.3: Architecture diagram of the hierarchical lcomotive framework [4]

[4]. By setting the optimal gait pattern, one can exploit the potential advantage
of legged locomotion.

To determine the optimal gait pattern, one can evaluate the Froude number (Fr)
of the quadrupedal robot given desired velocity. Froude number is a speed-
length ratio that is strongly correlated to gait patterns. For example, quadrupedal
animals normally transit their gait from walk to trot at Fr = 1. The Froude num-
ber is calculated as

Fr =
v2

gh
(2.3)

Algorithm 3: Froude number

, where v is the desired velocity, g is the gravitational acceleration and h is the
characteristics length (hip length). Subsequently, the optimal gait pattern can
be chosen based on the Froude number calculated.

The target gait pattern would then be represented as a phase lag ∆S. Gait pat-
terns typically represent a set of predefined delays in leg motions. Meanwhile,
the foot-end trajectories generally remain unchanged. Taking the front right leg

Chapter 2. Literature Review 8

as the reference leg, one would then calculate the phase lag between the refer-
ence leg and the remaining legs and eventually output the phase lag ∆S as a
column vector along with the desired velocity.

Gait Pattern Modulator

The gait pattern modulator would then realize the desired velocity and target
gait pattern by outputting the phase signal S. To obtain the appropriate phase
signal S, the modulator would first calculate the desired stance phase period as

Ṫst =
2Lspan

vd
(2.4)

Algorithm 4: Desired stance phase period

where L is half of the stroke length and v is the desired velocity. Then, the
desired swing phase would be set to a constant of 0.25 seconds as proposed by
locomotion studies. Consequently, the phase signal Ss,i, indexed by both legs
and states (stance, swing), would be assigned.

Note that the gait pattern modulator is triggered by a touch down event as
seen in the structure diagram above. The algorithmic design enables the syn-
chronization of the quadrupedal robot’s legs with the physical environment.
Besides, the motion errors in foot-end trajectory can be addressed by sensing
the completion of swing phase.

Leg Trajectory Generator

Upon receiving phase signal S, the leg trajectory generator would generate the
desired trajectories for each foot-end. The trajectories are designed using the
Bezier curve defined by a set of 12 control points shown below.

The horizontal line passing through control points c0, c1, c10, and c11 at y
= 500 represents the ground. The Bezier curve above the line describes the
swing phase trajectories whereas the curve below modulates the ground re-
action forces parameterized by stroke length and penetration depth. The gen-
erator’s design is based on equilibrium point hypothesis, which suggests limb
dynamics can be studied as the movement of the equilibrium point simplifying
the complicated dynamics system of limbs and joints . The hypothesis further
proposed that virtual compliance can be realized through introducing penetra-
tion depth in trajectory planning . Virtual compliance stimulates elastic limb
motions and modulates ground reaction forces without external intervention.

Chapter 2. Literature Review 9

Figure 2.4: Leg trajectory generator with Bezier curve control points [4]

Self-stabilization can then be attained given that the unbalanced generalized
forces would be compensated by the ground reaction forces.

Figure 2.5: Stance trajectory design with equilibrium-point hypothesis [4]

Leg Controller

Given the desired leg trajectories, leg controller would calculate and send the
torque commands to motors through impedance control. Impedance control is
an approach to dynamically control the motions of a robotic system. Through

Chapter 2. Literature Review 10

impedance control, motion and interaction control in swing and stance phrases
can be achieved without inverse kinematics nor inverse dynamics.

Figure 2.6: Block diagram for leg control [4]

The working principle of the control algorithm can be described as such. First,
one can calculate the current foot-end position through joint angles measured
by rotary encoders and forward kinematics. Then, the position and velocity er-
rors can be obtained by determining the offset between the target foot-end po-
sition and the current foot-end position given the trajectory. Finally, the torque
command can be calculated for motors with the equation below

u = JT
polar

[
Kp,rer + Kd,r ėr
Kp,θeθ + Kd,θ ėθ

]
(2.5)

Algorithm 5: Torque command

, where J is Jacobian matrix in polar form, Kp,r, Kd,r, Kp,theta, Kd,theta are radial
stiffness, radial damping, angular stiffness and angular damping, and er, ėr, eθ ,

˙etheta are radial position error, radial velocity error, angular position error and
angular velocity error.

However, the impedance control approach requires a closed-loop control sys-
tem. As mentioned above, the leg controller depends on the joint information
collected from the rotary encoders to apply forward kinematics. Besides, the
torque commands are applicable to motors but not servos. Taking an alternate
approach, inverse kinematics can realize the motion control for servo-based
quadrupedal robots in an open-loop control system. First, the target foot-end

Chapter 2. Literature Review 11

position would be obtained from the desired trajectory. Then, the target joint an-
gles can be calculated by solving trigonometric equations, which would then be
outputs as PWM signals to servos. Although the inverse kinematics approach
has a higher computational cost compared to the impedance control approach,
it can be implemented on cost effective components without sensory feedback.

2.3 Simultaneous Localization and Mapping (SLAM)

Simultaneous Localization and Mapping (SLAM) is the process of concurrently
estimating the state of the robot and construct a representation of the environ-
ment surrounding the robot [5]. SLAM has always been one of the most critical
task in the field of robotics given that SLAM forms the foundation of a vari-
ety of tasks. For example, the constructed map can provide visualization for
human operators and enable path planning by informing the obstacle informa-
tion. Besides, localization estimates the cuurent state of the robot, which limits
the accumlated error of sensor data (e.g., IMU) [5]. Otherwise, dead-reckoning
would suffer from the accumlated errors quickly.

2.3.1 What is SLAM

Figure 2.7: Left: map built from odometry, Right: map built from SLAM which
resets the localization errors [5]

SLAM concurrently localize its state and map the surrounding environment
through detecting and identifying a set of landmarks known as a priori [5].
Using dead-reckoning, inertial odometry would dift noticably within a short
period because of the error accumlation nature. In contrast, the measurements
of other sensor data (e.g., image, LiDAR scan) are independent from all other
key frames. Therefore, the priori found by these types of sensor data would be
free from accumlated errors making it appropriate as ground truth to minimize
localization errors [5]. See Fig. 2.7 for an illustration of localization errors.

Chapter 2. Literature Review 12

Figure 2.8: Architecture diagram of a SLAM system [5]

To implement the mentioned SLAM system, two major components would be
implemented as shown in Fig. 2.8. First, visual sensor data and pointcloud data
from LiDAR scans would be forwarded into the front-end component. Within
the front-end component, the priori would be extracted from the sensor data
through methods like corner detection [6]. Then, features extracted between
keyframes would be associated to estimate the pose transform [6]. For pooint-
cloud data from LiDAR scans, they can be associated using variats of Iterative
Closest Point (ICP) [7].

2.3.2 Types of SLAM

Given the usefulness of SLAM, extensive researches have been carried out over
the last 30 years [5]. Several types of SLAM methods have arisen, which are
namely visual SLAM, LiDAR SLAM, and multi-sensor SLAM [8].

Visual SLAM involves extracting and associating image data from camera or
other image sensors [8]. Given the versatility of image sensors, the performance
of visual SLAM might vary. Taking monocular visual SLAM as an example, a
single image data making depth estimation challenging. Under such a config-
uration, limited methods can be used to extract the priori from the image (e.g.,
corner detection). In contrast, stereo visual SLAM can compute the depth infor-
mation given the image pairs by estimating disparities between matching key
points [9]. In addition, RGB-D visual SLAM can further extract and assoicate
features using the RGB information improving the accuracy while providing
colorized visualization to human operators.

Light detection and ranging (LiDAR) is another type of SLAM that have been

Chapter 2. Literature Review 13

Figure 2.9: Estimate disparities between matching key points to get depth in-
formation [9]

widely deployed. Compared to image sensors, LiDAR sensors have an unre-
stricted field of view (FOV) while maintaining high precision [8]. LiDAR sen-
sors can be further classified into two categories, which are planar LiDAR and
3D LiDAR. The former can effective collect occupancy status on a specific layer
height, which is appropriate for smooth surface and planar map reconstruction
[8]. On the other hand, 3D LiDAR provides point cloud data in a 3D space mak-
ing it superior in handling complex environmnet where coverage and precision
are highly prioritized [8]. For example, 3D LiDAR-based SLAM have been used
in self-driving vehicles and drones [8].

Finally, multi-sensor SLAM often incorporate sensor data from both image sen-
sors and LiDAR devices. The pose transform estimated from each sensor data
stream can be merged using a weighting approach to enhance the precision and
robustness of SLAM output [8]. For instance, the RGB-D camera might only
have a limited field of view (FOV) but generating colorized ouput while 3D Li-
DAR can provide unrestricted depth information of the surrounding with high
accuracy as a diverse and adaptable configuration.

2.3.3 Previous Works

In this subsection, multiple SLAM implementation would be discussed which
are namely ORB-SLAM, maplab, and voxblox.

Chapter 2. Literature Review 14

Figure 2.10: SLAM with 3D LiDAR [8]

ORB-SLAM

ORB-SLAM is a monocular SLAM system that achieves real-time performance
[10]. Oriented FAST and Roated BRIEF (ORB) are binary features that generally
remains constant depsite rotation and scaling [11]. ORB are chosen because it
is efficient to compute and match ORB from wide baselines [10]. Therefore,
three threads including tracking, local mapping and loop closing are running
in parallel using the same ORB enhancing efficiency and precision [10]. See
Fig. 2.11 for the architecture design of ORB-SLAM.

Given that ORB-SLAM offers robust real-time Localization and mapping ser-
vices using a monocular camra, it is state-of-the-art monocular SLAM system
available with minimum hardware requirment [10]. However, as ORB-SLAM
only tracks and maps the ORB features available map, the constructed point
map would be sparse. While a sparse point map would offer a decent perfor-
mance in localization tasks and resonable visualization, it is not ideal for nav-
igation tasks compared to dense map [10]. Fig. 2.12 is a sample reconstruction
of ORB-SLAM.

ROVIOLI

ROVIOLI is another open-source visual-inertial mapping framework for maplab
[12]. ROVIOLI is a lightweight and yet reliable SLAM system targeting mi-
cro aerial vehicle (MAV) [13]. To mitigate the impact of motion-blur on MAVs,

Chapter 2. Literature Review 15

Figure 2.11: Architecture diagram for ORB-SLAM [10]

Figure 2.12: ORB-SLAM sample reconstruction [10]

Chapter 2. Literature Review 16

ROVIOLI extracts trackable features from image patches [13]. Then, combin-
ing with IMU data, the system would be able to reconstruct a sparse point map
on a large-scale environment that is over 200 meters width [12]. However, the
trackable features extracted are often sparsely distributed making it not ideal
for navigation tasks like ORB-SLAM [13]. See Fig. 2.13 for the architecture de-
sign of ROVIOLI.

Figure 2.13: Architecture diagram for ROVIOLI [12]

17

Chapter 3

Project Methodology

3.1 Hardware

This section will cover the hardware design of the quadrupedal robot.

Figure 3.1: Picture of the quadrupedal robot

The frame of the robot is mainly composed of 3D-printed components, laser-cut
acrylic boards, and assembling parts. Then, a set of electronic components are
installed on the quadrupedal robot, which would be further described below.

Chapter 3. Project Methodology 18

3.1.1 Motion Processing Unit

A 9-axis motion processing unit MPU-9250 is used. The unit consists of a gy-
roscope, an accelerometer, and an onboard digital motion processor providing
orientation, liear accleartion, and angular velocity information.

3.1.2 Servo Motors

Servo motors TD-8135MG are used to support precise joint movements.

3.1.3 ESP32 Module

An ESP32 module is used to distribute power and control 12 servo motors in-
stalled. In addition, it is connected to the motion processing unit to forward
IMU messages.

3.1.4 NVIDIA Jetson Orin Nano

The quadrupedal robot is designed to be a self-contained agent. Therefore, com-
putations involving leg motion planning, path planning, and object classifica-
tion would be computed on device. Therefore, a GPU-equipped edge comput-
ing device, NVIDIA Jetson Orin Nano, has been installed on the quadrupedal
robot.

3.1.5 Depth Camera

Intel Realsense D435i has been installed to capture the RGB-D information of
the surroundings. In addition, the camera module is embedded with a iner-
tial measurement unit (IMU) to determine the camera position and orientation
information.

Chapter 3. Project Methodology 19

3.2 Software

This section will cover the software components of the quadrupedal robot.

3.2.1 Quadrupedal Control Framework

To coordinate the joint movements of the quadrupedal robot given a move-
ment command, a package named CHAMP has been used. CHAMP is an open
source development framework for quadrupedal robots basing on the hierar-
chical controller framework as reviewed in 2.

Unified Robotics Description Format

Figure 3.2: URDF model in a tree format

Using CHAMP to control a quadrupedal robot, a Unified Robotics Description
Format (URDF) should be created and loaded into CHAMP. URDF is a repre-
sentation that encodes the physical properties of a robot using XML format. In
the URDF model, links, represented by meshes or collision boxes, are connected
using joints while offsets and rotations define the range of motion.

Joints Lower Limit Upper Limit
Hip Joints -50 ◦ 50 ◦

Upper Leg Joints -60 ◦ 60 ◦

Lower Leg Joints -120 ◦ 60 ◦

Table 3.1: Configuration for joint limits

The above table shows the configuration for joint limits defining the range of
motion.

Chapter 3. Project Methodology 20

Figure 3.3: Gait parameters for the quadrupedal robot

Gait Configuration

Furthermore, depending on other physical properties (e.g., motor strength, floor
friction), the gait parameters have to be fine tuned to achieve an ideal result.

3.2.2 3D Scene Recontruction

3D scene reconstruction has been leveraged to support a number of tasks, namely
scene visualization for human operators, autonomous navigation, and frontier
exploration. As mentioned, one of the objectives is to deploy the quadrupedal
robot into unexplored environment implying that prior mapping information
are often unavailable. To faciliate 3D scene reconstruction in real time, a GPU-
acclearted library named Nvblox has been used.

As dicussed in the section of literature review 2, typical SLAM packages con-
struct a sparse representation of the environment. Thsee methods have been
proven effective for real-time localization and mapping tasks. However, nav-
igation tasks (e.g., exploration and dynamic object following) requires dense
obstacle information [5]. To support the desired use cases, Nvblox has been
leveraged to construct Truncated Signed Distance Function (TSDF) and Eu-
clidean Signed Distance Function (ESDF) [14]. Signed Distance Function (SDF)
computes the orthogonal distance of a given point from a predefined bound-
ary while the sign of the function output indicates the point is located inside
or outside the boundary (TODO). TSDF and ESDF are variations of SDF that
represent the 3D environment and have been extensively studied in the fields
of computer vision and robotics application [15]. TSDF would be a 3D voxel
array, in which each cell contains the distance from each voxel to the nearest
surface. While ESDF is closely related to TSDF, ESDF computes the Euclidean
distance without truncating the values below a predefined threshold and hence
requiring high memory usage.

Chapter 3. Project Methodology 21

Figure 3.4: ROS Node diagram for Nvblox

Nvblox library is designed to work with depth camera and possibly 3D LiDAR
as supplementary data. From Fig. 3.4, three inputs data are taken by Nvblox
which are pose, RGB image and depth image. First, the pose information of
the camera link can be obtained from the infrared image pairs with embedded
IMU data. It is commonly computed using visual SLAM, which estimate pose
by detecting visual landmarks in time-synchronized image pairs. If visual land-
marks are insufficient to determine current pose, IMU data would be fused to
create an estimate for odometry. Second, the RGB image would be passed into
Nvblox. Notice that in certain environment, there might be dynamic objects
(e.g., human) moving around. Under these circumstances, pixels that include
those dynamic objects would be isolated to avoid including them in the recon-
structed scene. Therefore, the RGB image would be processed by an image seg-
mentation neural network to intelligently identify dynamic objects, in which
the segmentation output would be evaluated as a mask during reconstruction.
Finally, the depth image obtain from the infrared image pair would be passed
into Nvblox.

Having RGB image, depth image, and pose information as camera extrinsic pa-
rameters, one can deproject the 2D images into a colored point cloud. Having
a point cloud for a particular update loop, raycasting or projection mapping
would be used to select the voxels that should be updated [16]. Finally, the sen-
sor data would be integrated into a TSDF by weighting and merging strategies
[16]. More importantly, Nvblox’s implementation achieved GPU paralleliza-
tion to enable real-time performance on edge device unlike previous works like
Voxblox [14] [16].

Upon computing a TSDF of the scene, a 2D costmap can be generated which

Chapter 3. Project Methodology 22

Figure 3.5: Illustration showing a slice of a TSDF constructed by Nvblox

describes the occupancy status in the scene. The conversion from a TSDF to a
2D costmap can be achieved through a process named slicing. As mentioned,
the distances between each voxel and the nearest surface are stored in a TSDF.
One can set desired minimum and maximum obstacle height and then simply
aggregate the voxel layers’ values in between. See Fig. 3.5 for illustration.

Apart from 2D costmap, a mesh can be constructed for visualization purposes.
A highly efficient marching cubes algorithm has been used to construct the
mesh from a TSDF. As descirbed in the algorithm, there is cube iterating through
the 3D voxel array in a TSDF [17]. For each iteration, 8 voxels would be evalu-
ated to determine the appropriate triangulation pattern [17].

3.2.3 Autonomous Navigation

Autonomous navigation offers the foundation of the quadrupedal robot’s in-
telligent behaviours (e.g., Frontier Exploration, Dynamic Object Following). To
enble autonomous navigation, Nav2 stack has been deployed to handle com-
plex navigation applications.

Nav2 is a modular behaviour tree-based navigation stack, in which behaviour

Chapter 3. Project Methodology 23

Figure 3.6: 15 triangulated cube patterns in Marching Cubes Algorithm

Figure 3.7: Nav2 architecture diagram

tree is a tree-based execution model to represent navigation logics [18]. By intro-
ducing the concept of behaviour tree, complex navigation logics can be encoded
in human-readable and expressive format [19]. For example, one robot might

Chapter 3. Project Methodology 24

have to go back to charging stations or play as an agent in a Pac-Man game.
Not only can behaviour tree create highly complex navigation system, human-
readable property of behaviour tree makes a formalized analysis possible using
a state space description to evaluate the safety and robustness of the robotics
system in critical situations [19]. In addition, custom plugins can be defined to
provide custom behaviour tree node maximizing extensibility.

Besides, as shown in Fig. 3.7, Nav2 is designed to be a modular navigation stack
in which individual component can be swapped out for a type-compatible com-
ponent. Take smoother server as an example, Savitzky-Golay smoother would
only reduce the noise from the path generated by planner server while Con-
strained smoother would maintain a minimum turning radius during optimiza-
tion [18]. Then, it would be more beneficial for a quadrupedal robot, which has
a turning radius close to 0, to use Savitzky-Golay smoother over Constrained
smoother. Similarly, other components can be customized to maximize the effi-
ciency of a certain robot configuration.

3.2.4 Dynamic Object Following

Upon deploying the quadrupedal robot to the field, the quadrupedal robot
should be able to maintain a close distance with the operator without any hu-
man interventions. Therefore, a dynamic object following algorithm has been
implemented to achieve the task. In addition, given the generalizability of the
algorithm, the dynamic object following algorithm can be easily modified to
track and follow different objects offering possbilities for a variety of use cases.

The algorithm can be broken into the following steps:

1. Identify the presence of human object in RGB image

2. Approximate the 2D coordinate of the human object

3. Deproject the 2D coordinate to 3D world coordinate

4. Update the goal pose with behaviour tree

To identify the presence of human object, an image segmentation neural net-
work would be deployed. Image segmentation is the process of partitioning
images into multiple segments, which represent classes or objects [20]. In other
words, each pixel would be assigned a class ID representing the respective la-
bel. The pretrained PeopleSegNet ShuffleSeg model has been chosen because
the training dataset includes a mix of camera heights, and field-of-view (FOV)

Chapter 3. Project Methodology 25

making it ideal for the camera configuration of the quadrupedal robot [21]. Be-
sides, the ShuffleSeg variation of the pretrained model implements grouped
convolution and channel shuffling in the encoders [22]. Hence, the model can
achieve real time inference on edge devices because of the improved computa-
tion efficiency. See Fig. 3.8 for sample segmentation output.

Figure 3.8: Segmentation output from PeopleSegNet ShuffleSeg

The 2D coordinate of the human object can be approximated form the segmen-
tation output. Given that the image segmentation model only assigns two class
labels (e.g., background, human), the segmentation output can be treated as a
binary mask [21]. Then, one can identify all connected components and sort
by their areas using OpenCV [11]. Finally, the 2D coordinate of the human ob-
ject can be computed as the centroid of the largest connceted component in the
mask. Several assumptions have been made in the algorithm. First, the target
human object should have the largest area in the RGB image given that misclas-
sified objects should have relatively small areas. Second, the RGB image only
include a single human object. Otherwise, occlusion problem might occur af-
fecting the calculation of the 2D coordinate while it is undetermined that which
human object should the quadrupedal robot follow.

Before proceeding to the deprojection step, the depth information of the 2D
coordinate has to be obtained. Notice that the dimensions of the segmentation
mask and the depth image may vary. The segmentation mask and its respective
2D coordinate have to be aligned with the depth image. Then, the depth value
can be accessed directly through the rescaled 2D coordinate.

Obtaining the 2D coordinate and its depth information, the target 2D point can
be deprojected into 3D world space. In addition to the mentioned information,

Chapter 3. Project Methodology 26

Figure 3.9: Depth image obtained from Intel Realsense depth camera

Figure 3.10: Perspective projection

the camera intrinsic and extrinsic parameters (e.g., focal length, image dimen-
sion, camera position, and camera orientation) are required. The camera in-
trinsic parameters can be subscribed through the "camera_info" topic while the
camera extrinsic parameters can be obtained as the pose information estimated
by visual SLAM package.

Finally, the 3D world coordinate would be transformed into a pose by setting
the appropriate x and y coordinates as the goal pose. As mentioned, Nav2 is a
behaviour tree-based navigation stack [18]. Therefore, a behaviour tree would
be configured to facilitate the dynamic object following behaviour. See below
for the definition of the behaviour tree.

<root BTCPP_format ="4" main_tree_to_execute =" MainTree">
<BehaviorTree ID=" MainTree">

<PipelineSequence name=" NavigateWithReplanning">
<ControllerSelector

selected_controller ="{ selected_controller }"
default_controller =" FollowPath"
topic_name =" controller_selector"

Chapter 3. Project Methodology 27

Figure 3.11: Visualization of the 3D point representing the human object’s cen-
troid (purple sphere)

/>
<PlannerSelector

selected_planner ="{ selected_planner }"
default_planner =" GridBased"
topic_name =" planner_selector"

/>
<RateController hz="1.0" >

<Sequence >
<GoalUpdater

input_goal ="{ goal}"
output_goal ="{ updated_goal }"

>
<ComputePathToPose

goal ="{ updated_goal }"
path ="{ path}"
planner_id ="{ selected_planner }"
error_code_id ="{ compute_path_error_code }"

/>
</GoalUpdater >

<TruncatePath
distance ="1.0"
input_path ="{ path}"
output_path ="{ truncated_path }"

/>
</Sequence >

</RateController >
<KeepRunningUntilFailure >

<FollowPath

Chapter 3. Project Methodology 28

path ="{ truncated_path }"
controller_id ="{ selected_controller }"
error_code_id ="{ follow_path_error_code }"

/>
</KeepRunningUntilFailure >

</PipelineSequence >
</BehaviorTree >

</root >

In short, the above behaviour tree would navigate to the input goal, which is
the current location of the human object. Then, the plannar server would replan
the path given that costmap information would be updated during navigation.
In addition, the goal is updated each second by subscribing to the /goal_update
topic. The navigation would then be terminated once the quadrupedal robot is
1 meter away from the destination or no available path is found.

3.2.5 Frontier Exploration

To effectively explore unvisited field, the quadrupedal robot should be capable
of frontier exploraion. The exploration process enables the quadrupedal robot
to effectively map the field with 3D scene reconstruction.

Figure 3.12: Explore lite architecture diagram

The package explore_lite would be used to achieve the task. As shown in
Fig. 3.12, the package subscribes to messages of types nav_msgs/OccupancyGrid
and
map_msgs/OccupancyGridUpdate to keep track of the costmap of interest. Then,
a breadth-first search would be performed on the costmap while considering
the occupancy status of each cell [23]. A list of frontiers would then be com-
puted and be explored by publishing movement commands to the navigation
server [23].

To configure the exploration behaviour, one can finetune the following param-
eters [23]

1. potential_scale: determines if the robot is prefered to explore distanced
frontiers

Chapter 3. Project Methodology 29

Figure 3.13: Visualization of frontiers generated by explore lite (blue points)

2. orientation_scale: determines if the robot is prefered to explore frontiers
ahead

3. min_frontier_size: determines the minimum frontier size to be explored,
which is essential to exploration task in restricted, indoor environment

By deploying the exploration node, the quadrupedal robot would greedily ex-
plore the unvisited field until all frontiers have been exhaustively explored.

3.2.6 Object Detection

During exploration tasks, it is essential for the quadrupedal robot to idnetify
potential hazards and injuried people. To achieve the task, object detection
can be leveraged. Object detection detect the presence of objects by output-
ing the bounding box representation with an associative confidence score [24].
See Fig. 3.14 for sample prediction.

Object detection models are often computational efficient with YOLO detector
being able to maintain a real-time performance [24]. The characteristics of ob-
ject detection models make it suitable to efficiently classify a number of objects
in real time. For example, there could be a large number of potentially haz-
ardous objects (e.g., pressurized gas cylinder, damaged transmission tower) in
a disaster field. Alerting operators about potential dangers in real time would
minimize the risk factor of the rescue team if human involvment is required.

Besides, the dataset preparation for training object detection models are less
costly. For example, one can collect a large amount of dataset by recording and
labelling farme within a video. The labelling process can be speed up through a
semi-automatic annotation in CVAT, in which only key frames have to be man-
ually annotated and the frames in between would be tracked automatically [25].

Chapter 3. Project Methodology 30

Figure 3.14: Prediction result evaluated by YOLO

The ease of dataset preparation enables object detectors to be trained on a cus-
tomized dataset for each event type of disaster enhancing the performance and
versatility of the object detector deployed.

3.2.7 Web Application

Figure 3.15: Illustration of the web application

To provide a interactive dashboard for human operators, a web dashboard has
been implemented using React JS. To connect the ROS network running on the

Chapter 3. Project Methodology 31

quadrupedal robot, the rosbridge_suite package is used, which starts a Web-
Socket server publishing client-requested topics. The web dashboard provides
several features including live camera feed and live visualization.

Live Camera Feed

To faciliate live camera streaming on web clients, a pacakge web_video_server
is installed and deployed on the ROS network. The package enables web clients
to subscribe to a image topic as a stream with various quality and encoding
format settings.

Figure 3.16: Live camera streaming

Live Visualization

To visualize the quadrupedal robot movement, a live simulator is implemented
using ThreeJS and URDF loader. When connected to the ROS network via Web-
Socket, the movement of the simulated quadrupedal robot would be synchro-
nized to that the real counterpart. Nevertheless, the top-right control panel
enables configuring field of view and toggling froniter exploration.

Chapter 3. Project Methodology 32

Figure 3.17: Live visualization with controls

3.3 Development and Deployment

Given that the installed ROS packages are distributed on distinct ROS distribu-
tions, multiple Docker container images have been built and deployed to launch
different packages. Below are the Docker containers created.

• ROS1 Melodic: Install CHAMP and rosbridge_suite packages

• ROS1/2 Bridge: Build ros1_bridge package from source to add bridging
capability for custom message types (e.g., "vision_msgs/BoundingBox2D")

• ROS1 Humble: Install computer vision and Nav2 packages

In addition, Docker compose files have been created to launch a developer con-
tainer for debugging purposes.

33

Chapter 4

Results and Findings

4.1 Robot Construction

Figure 4.1: Quadrupedal robot with Jetson Nano, stereo camera, LiDAR, power
bank, and lithium battery

Several robot configurations were tested. Take Fig. 4.1 as an example, the self-
contained robot configuration is equipped with both stereo camera and LiDAR.
Combining the sensor data from both stereo camera and LiDAR, one can see
the maximum potential in autonomous navigation and 2D mapping. However,
given the insufficient strength of the building material and the servo motors,
the motion of the quadrupedal robot is unfavourable as significantly movement
variations were observed using any movement commands.

Therefore, depsite the availability of planar LiDAR, it is decided to remove
planar LiDAR and the power bank to reduce the weight of the quadrupedal
robot. Under this configureation, a type-C to DC plug cable has to be connected
to the onboard Jetson for power supply. However, significant improvements

Chapter 4. Results and Findings 34

Figure 4.2: Quadrupedal robot with Jetson Nano, stereo camera, and lithium
battery

in motion execution have been observed. Notice that without the planar Li-
DAR, the obstacle detection capbility has decreased given the limited FOV of
the stereo camera. However, the performance of remaining computer vision
remains steady.

4.2 3D Scene Reconstruction

As mentioned in 3, the RGB-D sensor data have been used to reconstruct a 3D
represenetation of the environment using Nvblox. However, the quality of the
reconstructed scene vary across different environments.

The Fig. 4.3 shows the reconstructed map of the bedroom during testing. One
can observe the reconstructed mesh is smooth without minimal noise.

However, when performing tests in Computer Science lab, the quality of the
depth image obtained is poor depsite manually tuning the camera parameters.
Hence, the output mesh is often noisy. The issue further hinders the capability
of autonomous navigation as noise in the mesh has been mistakenly recognised
as obstacles.

4.3 Dynamic Object Following

A dynamic object following algorithm has been implemented to enable the
quadrupedal robot to maintain a close distance with the operator. However,

Chapter 4. Results and Findings 35

Figure 4.3: Scene reconstructed using Nvblox

Figure 4.4: Color and depth image pairs

during testing, depsite the robot identify the 3D coordinate of the tester, it fails
to navigate to the goal pose. It is believed that synchronization issues and hard-
ware invariance are the major issues.

First, as dicussed in 3, the detection of the human object is achieved by passing
the RGB image into the segmentation network. Not only the network imposes
a processing delay on the image, the camera module might not output the time

Chapter 4. Results and Findings 36

Figure 4.5: Pose estimation

synchronized RGB and depth image pairs. As a result, the centroid position
obtained from the segmentation output might not align with that of the depth
image resulting a drift in the predicted 3D coordinate. As shown in Fig. 4.5, the
purple sphere indicating the predictionn coordinate is on the left of the tester
(in red shirt).

Second, the robot fails to navigate to the goal pose depsite successful identi-
fication. The second issue might arise from inaccurate sensor data from IMU.
When moving, the quadrupedal experience significant vibration. Given that the
calculation of the target 3D coordinate depends on the camera extrinsic param-
eters (e.g., position, orientation), the predicted 3D coordinate would drift a lot
once it starts moving. This aligns to the observation that the prediction would
experience significant errors once started moving.

4.4 Frontier Exploration

During testing, the exploration process stops almost immediately. It is later
discovered that because of the limited FOV of the stereo camera. The robot
fails to determine if there are obstacle right in front of it. Therefore, the frontier
searching process is unable to proceed. However, by manually navigation to
the mapped zone, frontier exploration can be achived.

Chapter 4. Results and Findings 37

Figure 4.6: Exploration

38

Chapter 5

Future Works

5.1 Instance Segmentation

In the dynamic object following algorithm, it is assumed that only 1 human ob-
ject would appear in the RGB image. However, it is obvious that the assumption
is not realistic. See the figure below, when two human objects are close to each
other, a problem known as occlusion problem might happen. It affects the com-
putation of target 3D coordinate. Even worse when two human objects walk
in a opposite direction, it is uncertain whether the robot would follow which
person.

To solve this issue, it is believed that deploying an instance segmentation model
would be the solution. Apart from assigning each pixel a class label, it assigns
an instance ID. Using such a network, even if occlusion problem occurs, the
network would still be able to identify individual object.

Then, back to the two people walking in opposite direction problem, it can then
keep track of the target coordinate in the previous frame. For each frame, the
distance between the previous target and the new potential targets can be calcu-
lated. Finding the minimum distance can enable the robot confidently follows
the same person dynamically.

5.2 Sensor Fusion

In preivous section, it is discussed that hardware invariance issue might im-
pact performance on dynamic object following and 3D scene reconstruction. In
curent robot configuration, two IMU sensors are available in the system. To
minimize IMU errors, it is possible to apply a EKF filter to fuse readings from
multiple IMU sensors in addition to the magnetometer.

Chapter 5. Future Works 39

Figure 5.1: Occlusion Problem

Similar technique can be applied to depth sensing. With the limited FOV of
depth camera, the quadrupedal robot cannot percept the environment surround-
ing it. By installing planar or 3D LiDAR, the accuracy of depth sensing can be
significantly improved enhancing path planning tasks.

5.3 Reinforcement Learning

With 12 degree of freedom, determining the optimal leg movment can be a huge
challenge. Besides, it is currently assumed that the robot only works inclined
but even terrain. To dynamically determine the optimal leg movement across
a variety of terrain, it is recommended to use reinforcement learning to train a
optimized nerual network for this specific task. With the current advancement
of edge devices and GPU computing, it is believed that the RL approach would
significantly improve navigation performance on unseen terrain.

Chapter 5. Future Works 40

Figure 5.2: Standing on inclined surface

41

Bibliography

[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Ng. “ROS: an open-source Robot Operating System”. In: vol. 3.
Jan. 2009.

[2] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall. “Robot
Operating System 2: Design, architecture, and uses in the wild”. In: Sci-
ence Robotics 7.66 (2022), eabm6074. DOI: 10.1126/scirobotics.abm6074.
eprint: https://www.science.org/doi/pdf/10.1126/scirobotics.
abm6074. URL: https://www.science.org/doi/abs/10.1126/scirobotics.
abm6074.

[3] chvmp. chvmp/champ: MIT Cheetah I Implementation. 2024. URL: https://
github.com/chvmp/champ (visited on 04/17/2024).

[4] J. Lee. “Hierarchical controller for highly dynamic locomotion utilizing
pattern modulation and impedance control: Implementation on the MIT
Cheetah robot”. PhD thesis. Massachusetts Institute of Technology, 2013.

[5] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I.
Reid, and J. J. Leonard. “Past, Present, and Future of Simultaneous Lo-
calization and Mapping: Toward the Robust-Perception Age”. In: IEEE
Transactions on Robotics 32.6 (Dec. 2016), pp. 1309–1332. ISSN: 1941-0468.
DOI: 10.1109/tro.2016.2624754. URL: http://dx.doi.org/10.1109/
TRO.2016.2624754.

[6] B. Garigipati, N. Strokina, and R. Ghabcheloo. Evaluation and comparison
of eight popular Lidar and Visual SLAM algorithms. 2022. arXiv: 2208.02063
[cs.RO].

[7] S. Rusinkiewicz and M. Levoy. “Efficient variants of the ICP algorithm”.
In: Proceedings Third International Conference on 3-D Digital Imaging and
Modeling. 2001, pp. 145–152. DOI: 10.1109/IM.2001.924423.

[8] MathWorks. What is SLAM (Simultaneous Localization and Mapping (SLAM)
- MATLAB SimuLink). Last accessed 26 April 2024. 2024. URL: https :
//www.mathworks.com/discovery/slam.html.

https://doi.org/10.1126/scirobotics.abm6074
https://www.science.org/doi/pdf/10.1126/scirobotics.abm6074
https://www.science.org/doi/pdf/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://github.com/chvmp/champ
https://github.com/chvmp/champ
https://doi.org/10.1109/tro.2016.2624754
http://dx.doi.org/10.1109/TRO.2016.2624754
http://dx.doi.org/10.1109/TRO.2016.2624754
https://arxiv.org/abs/2208.02063
https://arxiv.org/abs/2208.02063
https://doi.org/10.1109/IM.2001.924423
https://www.mathworks.com/discovery/slam.html
https://www.mathworks.com/discovery/slam.html

Bibliography 42

[9] I. RealSense. The basics of stereo depth vision. Last accessed 26 April 2024.
2024. URL: https://www.intelrealsense.com/stereo-depth-vision-
basics/.

[10] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. “ORB-SLAM: A Versatile
and Accurate Monocular SLAM System”. In: IEEE Transactions on Robotics
31.5 (Oct. 2015), pp. 1147–1163. ISSN: 1941-0468. DOI: 10.1109/tro.2015.
2463671. URL: http://dx.doi.org/10.1109/TRO.2015.2463671.

[11] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools
(2000).

[12] T. Schneider, M. T. Dymczyk, M. Fehr, K. Egger, S. Lynen, I. Gilitschenski,
and R. Siegwart. “maplab: An Open Framework for Research in Visual-
inertial Mapping and Localization”. In: IEEE Robotics and Automation Let-
ters 3.3 (2018), pp. 1418–1425. DOI: 10.1109/LRA.2018.2800113.

[13] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart. “Robust visual inertial
odometry using a direct EKF-based approach”. In: 2015 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). 2015, pp. 298–
304. DOI: 10.1109/IROS.2015.7353389.

[14] A. Millane, H. Oleynikova, E. Wirbel, R. Steiner, V. Ramasamy, D. Tingdahl,
and R. Siegwart. nvblox: GPU-Accelerated Incremental Signed Distance Field
Mapping. 2024. arXiv: 2311.00626 [cs.RO].

[15] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davi-
son, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon. “KinectFusion:
Real-time dense surface mapping and tracking”. In: 2011 10th IEEE In-
ternational Symposium on Mixed and Augmented Reality. 2011, pp. 127–136.
DOI: 10.1109/ISMAR.2011.6092378.

[16] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto. “Voxblox: In-
cremental 3D Euclidean Signed Distance Fields for on-board MAV plan-
ning”. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, Sept. 2017. DOI: 10.1109/iros.2017.8202315. URL:
http://dx.doi.org/10.1109/IROS.2017.8202315.

[17] W. Lorensen and H. Cline. “Marching Cubes: A High Resolution 3D Sur-
face Construction Algorithm”. In: ACM SIGGRAPH Computer Graphics 21
(Aug. 1987), pp. 163–. DOI: 10.1145/37401.37422.

[18] S. Macenski, F. Martin, R. White, and J. Ginés Clavero. “The Marathon 2:
A Navigation System”. In: 2020 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). 2020.

https://www.intelrealsense.com/stereo-depth-vision-basics/
https://www.intelrealsense.com/stereo-depth-vision-basics/
https://doi.org/10.1109/tro.2015.2463671
https://doi.org/10.1109/tro.2015.2463671
http://dx.doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/LRA.2018.2800113
https://doi.org/10.1109/IROS.2015.7353389
https://arxiv.org/abs/2311.00626
https://doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1109/iros.2017.8202315
http://dx.doi.org/10.1109/IROS.2017.8202315
https://doi.org/10.1145/37401.37422

Bibliography 43

[19] M. Colledanchise and P. Ögren. Behavior Trees in Robotics and AI. July 2018.
DOI: 10.1201/9780429489105. URL: http://dx.doi.org/10.1201/
9780429489105.

[20] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Ter-
zopoulos. Image Segmentation Using Deep Learning: A Survey. 2020. arXiv:
2001.05566 [cs.CV].

[21] NVIDIA. PeopleSegNet Model Card | NVIDIA NGC. Last accessed 26 April
2024. 2024. URL: https://catalog.ngc.nvidia.com/orgs/nvidia/
teams/tao/models/peoplesegnet.

[22] M. Gamal, M. Siam, and M. Abdel-Razek. ShuffleSeg: Real-time Semantic
Segmentation Network. 2018. arXiv: 1803.03816 [cs.CV].

[23] J. Hörner. Map-merging for multi-robot system. Bachelor’s thesis. Prague,
2016. URL: https://is.cuni.cz/webapps/zzp/detail/174125/.

[24] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You Only Look Once:
Unified, Real-Time Object Detection. 2016. arXiv: 1506.02640 [cs.CV].

[25] B. Sekachev, N. Manovich, M. Zhiltsov, A. Zhavoronkov, D. Kalinin, B.
Hoff, TOsmanov, D. Kruchinin, A. Zankevich, DmitriySidnev, M. Markelov,
Johannes222, M. Chenuet, a-andre, telenachos, A. Melnikov, J. Kim, L.
Ilouz, N. Glazov, Priya4607, R. Tehrani, S. Jeong, V. Skubriev, S. Yonekura,
vugia truong, zliang7, lizhming, and T. Truong. opencv/cvat: v1.1.0. Ver-
sion v1.1.0. Aug. 2020. DOI: 10.5281/zenodo.4009388. URL: https://
doi.org/10.5281/zenodo.4009388.

https://doi.org/10.1201/9780429489105
http://dx.doi.org/10.1201/9780429489105
http://dx.doi.org/10.1201/9780429489105
https://arxiv.org/abs/2001.05566
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/tao/models/peoplesegnet
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/tao/models/peoplesegnet
https://arxiv.org/abs/1803.03816
https://is.cuni.cz/webapps/zzp/detail/174125/
https://arxiv.org/abs/1506.02640
https://doi.org/10.5281/zenodo.4009388
https://doi.org/10.5281/zenodo.4009388
https://doi.org/10.5281/zenodo.4009388

	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Introduction
	Background
	Objectives

	Literature Review
	Robot Operating System (ROS)
	Hierarchical Control Algorithm for Quadrupedal Locomotion
	Hybrid Dynamic System
	Constrained Equations of Motion
	Control Framework
	Framework Architecture
	Operator
	Gait Pattern Modulator
	Leg Trajectory Generator
	Leg Controller

	Simultaneous Localization and Mapping (SLAM)
	What is SLAM
	Types of SLAM
	Previous Works
	ORB-SLAM
	ROVIOLI

	Project Methodology
	Hardware
	Motion Processing Unit
	Servo Motors
	ESP32 Module
	NVIDIA Jetson Orin Nano
	Depth Camera

	Software
	Quadrupedal Control Framework
	Unified Robotics Description Format
	Gait Configuration

	3D Scene Recontruction
	Autonomous Navigation
	Dynamic Object Following
	Frontier Exploration
	Object Detection
	Web Application
	Live Camera Feed
	Live Visualization

	Development and Deployment

	Results and Findings
	Robot Construction
	3D Scene Reconstruction
	Dynamic Object Following
	Frontier Exploration

	Future Works
	Instance Segmentation
	Sensor Fusion
	Reinforcement Learning

	Bibliography

