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Abstract 

Indoor positioning and navigation remain a considerable challenge for engineers. This engineering 

problem especially applies to the campus of the University of Hong Kong (HKU) due to its 

complex building layout. The common approach is to use GPS-based navigation applications 

(apps), such as Google Maps. However, the existing apps could only guide users to buildings rather 

than specific rooms or lecture venues. Additionally, research suggests that GPS is unreliable for 

indoor usage. This project aims to develop a vision-based navigation system to guide visitors within 

the HKU campus. This paper demonstrates the designs of the system structure and the computer 

vision (CV) model structure. The client-server structured system was designed as a combination of 

a mobile app, a backend service, a mapping service, and a CV model. The development of the 

mobile application and backend service is approaching the stage of completion, providing a strong 

foundation for the project. An object detection model has been selected as the initial 

implementation. To increase the model's accuracy, various solutions are proposed to be added. 

Thus, apart from integrating the mapping and navigation function into the app, the next step of the 

project will be evaluating a cost-effective approach to enhance the CV model's performance. The 

analysis in model building will provide insights into CV model training for positioning purposes. 
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1 Introduction 
1.1 Background 

As one of the well-recognized universities, the campus of the University of Hong Kong (HKU) 

experiences a significant daily influx of individuals. Statistics [1] state that HKU has over 13,000 

new students a year. Moreover, the university hosts a multitude of events, including talks, 

ceremonies, and workshops, occurring with great frequency. These events serve as a significant 

draw for visitors to the campus. Newcomers to the university often encounter confusion when they 

are presented with venue names and codes, leaving them uncertain about how to navigate their way 

to the designated venues before they get familiar with the campus. Nevertheless, the university 

currently lacks a dedicated navigation tool. Instead, visitors are compelled to rely on generic GPS-

based navigation apps such as Google Maps, along with text-based guides sourced from the 

university's websites. Regrettably, these existing apps fail to provide visual representations of the 

indoor environments within the campus. Furthermore, research findings [2] indicate the inherent 

limitations of GPS technology in accurately determining precise indoor locations. As a result, there 

is a noticeable demand for a system to provide a substantial number of visitors with enhanced 

navigation experiences. 

 

1.2 Existing Approach: GPS-based Navigation Applications 

As delineated in Section 1.1, individuals depend on GPS-based navigation apps as their primary 

means of navigating within the HKU campus. However, these existing apps exhibit several 

limitations, including restricted functionality, deficient visualization capabilities, and unreliable 

navigation performance. Their reliance on satellite and aerial imagery to generate maps renders 

them incapable of comprehensively representing indoor environments. These apps are only able to 

identify the buildings but lack the capacity to ascertain the specific locations of individual rooms 

within said buildings. Consequently, users are left devoid of any visual depiction and information 

of the indoor spaces. Furthermore, papers [3], [4], [5] have substantiated the insufficiency and 

inaccuracy of GPS location information for indoor navigation. GPS signals are susceptible to 

interference from obstacles and adverse atmospheric conditions, thereby rendering their accuracy 

unreliable. The intricate building complex of the HKU campus exacerbates this issue, amplifying 

the challenges faced by users.  
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1.3 Motivation on developing vision-based navigation system 

The motivation behind developing a vision-based navigation app stems from the limitations of the 

existing solutions mentioned in Section 1.2. A new navigation system can provide HKU visitors 

with user-friendly experiences, along with additional functionality.  

 

The computer vision approach stands out among indoor navigation technologies due to its high 

accuracy, robustness, infrastructure flexibility, and additional functionalities.  

 

Vision-based indoor positioning can leverage features like object recognition, depth sensing, and 

motion tracking to provide precise location estimates. The estimations are less susceptible to 

interference from environmental factors like signal attenuation, multi-path propagation, or radio 

frequency interference [3]. Furthermore, vision-based systems do not require the installation of 

additional infrastructure or hardware, like beacons or RFID tags [4]. Also, vision-based systems 

can provide additional functionalities beyond just positioning, like object tracking, gesture 

recognition, activity monitoring, and augmented reality overlays, enhancing the overall user 

experience [6]. Considering the rapid development and growing popularity of computer vision 

applications, a vision-based system has a large extendibility and a great potential to combine with 

different devices and technologies. 

 

1.4 Objectives 

The primary objective of this project is to deliver a dedicated mobile app that caters to the 

navigation needs of both students and visitors at HKU. The app should be able to facilitate precise 

detection of users' locations, efficient path navigation, and intuitive visualization of detection 

results and navigational guidance.  

 

Another objective is to evaluate the cost-effectiveness of the computer vision method in 

comparison to other navigation approaches. This evaluation will encompass the optimization of 

each step involved in model development, including data collection, data processing, model 

training, and model fitting. By conducting a comprehensive cost-effectiveness analysis, this project 

aims to provide valuable insights and contribute to the existing body of knowledge on computer 

vision applications, particularly for Visual Positioning System (VPS). 
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1.5 Outline 

The report is structured into 6 chapters. Chapter 1 outlines the project's motivation and objectives. 

In Chapter 2, the design details of the system, app, and model are presented. Chapter 3 focuses on 

the early-stage results obtained thus far. Chapter 4 highlights the encountered difficulty and the 

corresponding responses formulated. Chapter 5 discusses the proposed schedule and the coming 

tasks. Finally, Chapter 6 concludes the report, summarizing the project's progress up to the current 

stage. 
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2 Methodology 

This chapter provides a detailed discussion of the project's design and implementation. It begins 

with the system architecture (Section 2.1) and app design (Section 2.2), followed by an exploration 

of the mapping and navigation component (Section 2.3) and the backend service (Section 2.4). 

Moreover, the chapter introduces the model design (Section 2.5) and the data processing flow 

(Section 2.6).  

 

2.1 System Architecture 

The section presents an overview of the system architecture, followed by the selection of the 

backend development tool and server hosting. 

 

2.1.1 System Overview 

As shown in Figure 1, the system uses the client-server structure. The client side has the mobile 

app user interface (UI). Further details regarding the app UI are discussed in Section 2.2. The app 

is linked to Google Maps Service and FengMap Service via corresponding APIs. The mapping and 

navigation services are further explained in Section 2.3. The server handles the backend service 

and the CV model. More information about the backend service and the CV model is discussed in 

Section 2.4 and Section 2.5, respectively. Data for training the model is processed with the 

assistance of Roboflow, which is presented in Section 2.6. 

 

Figure 1 System structure diagram 



 4 

2.1.2 System Flow 

2.1.2.1 Client Side 

As illustrated in Figure 2, the client-side functionality of the system follows the subsequent steps. 

Upon launching the app, the connectivity status is verified. If an active connection to the server is 

detected, the app initiates the streaming of videos to the server and awaits a response. Conversely, 

in offline mode, users can set their current location using manual input. Once the current location 

is established and the destination is provided by the user, the mapping algorithm is executed to 

optimize the generated path. The resulting optimized path is then rendered and displayed on the 

app UI. 

 
Figure 2 Flowchart of the client side 

 

2.1.2.2 Server Side  

The server-side workflow, as depicted in Figure 3, commences upon receiving a request from the 

client. The server establishes a connection and begins to receive the streamed photos. Subsequently, 

the received videos are sequentially decoded and processed by the object detection model. The 
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model outputs the location estimation and associated scores. The server transmits the location result 

back to the client when the model returns the result. 

 
Figure 3 Flowchart of the server side

 

2.2 Mobile Application 

This section starts with a brief introduction to the mobile app, followed by the features of the app. 

Additionally, the chapter discusses the selection of the development framework, considering the 

factors that influenced this decision. 

 

2.2.1 App Introduction 

The proposed app encompasses a UI that facilitates the visualization of a virtual map, the camera 

feed, and the inclusion of user controls. Additionally, the app is responsible for implementing 

pathfinding functionality, and providing information about the campus. 

 

2.2.2 App Features 

The app offers 2 major features: vision-based positioning and path finding. Some additional 

features are implemented to facilitate users’ navigation experience in HKU. 
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 2.2.2.1 Vision-based Positioning 

The app employs the camera of the user's smartphone to capture images of the surroundings at a 

predefined frame rate. These images are securely transmitted to the server and processed using the 

VC model. Once a sufficient number of images have been analyzed, and the model's confidence 

level has been met, the resulting location is displayed on the map. This location information can 

be utilized for path finding purposes as well. 

 

Figure 4 Sequence diagram for Vision-based Positioning 

2.2.2.2 Path Finding 

The app enables users to use their location and desired destination to navigate within the HKU 

campus. It then optimizes the best route and displays it on the map, providing navigational cues 

for guidance. This versatile approach ensures seamless navigation within the HKU campus, 

regardless of indoor or outdoor environment. 
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Figure 5 Sequence diagram for Path Finding 

 

2.2.2.3 Additional Feature: Accessing HKU Campus information 

The app offers users a page to access comprehensive information about the HKU campus. This 

page provides details about various buildings, including pictures, locations, departments, websites, 

and available facilities for visitors. Users can effortlessly explore the campus while navigating 

with the app, enhancing their overall experience. 

 

2.2.3 Selection for Frontend Development Framework: React Native 

React Native is chosen for the mobile app UI development. React Native is elected for its cross-

platform nature, the vast ecosystem, and the large community. It allows developers to write code 

once and deploy the code on both Android and iOS, saving time and effort compared to developing 

separate apps for each platform using other frameworks. Moreover, the extensive library of pre-

built components available in the React Native ecosystem can be easily integrated into applications, 

reducing the need for building UI elements from scratch and accelerating development speed. 

Additionally, React Native has a large and active community. The strong community support adds 

value to React Native by providing a rich pool of resources and making it easier for developers to 

find solutions to challenges during the app development process. 
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2.3 Mapping and Navigation Component 

This section describes the use of the mapping and navigation component and explains the selection 

of the development tool for the component.  

 

2.3.1 Mapping and Navigation Component Introduction 

The mapping and navigation component is responsible for mapping users’ locations onto the 

campus map and optimizing the paths to the destination. The map should cover the scope of the 

project, that is the Main Building. This component will be using online mapping services to ensure 

the campus map is standardized and up to date.  

 

2.3.2 Selection of Development Tool 

There are a number of choices for the mapping development tool, including Google Maps, 

FengMap, Mapbox, OpenStreetMap, IndoorAtlas, MappedIn, and ArcGIS. Considering factors for 

the tool selection are accessibility, money cost, development complexity, and performance. Table 

1 shows the comparisons of the shortlisted tools. More details about the development tools are 

included in Appendix A – E.  

 

Tool Accessibility Money Cost Development Complexity Performance 

Google Maps 
 

Map: Free 

API: Pay As 

You Go 

- Easy 

- Dependent to Google 

Maps Team 

- Integrated with the map outside campus  

- Place to Place navigation  

- No Control to Map  

- No visualisation for indoor environment 

FengMap 
 

Map: Fiexed 

Cost 

API: Free to 

Use 

- Draw map from scratch  

- Well support for 

mapping and navigation 

- Poorly integrated with the map outside 

campus  

- Point to Point navigation  

- Good Indoor Map Visualisation 

Mapbox 
 

Expensive 

- Draw map from scratch  

- Well support for 

mapping and navigation 

- Integrated with the map outside campus  

- No visualisation for indoor environment 
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OpenStreetMap 
 

Free (Open 

Source) 

- Draw map from scratch  

- Poor support for 

mapping  

- Required an additional 

navigation solution 

- No Navigation  

- No visualisation for indoor environment 

(Floor plan) 

IndoorAtlas 
 

Expensive 

- Draw map from scratch  

- Well support for 

mapping and navigation 

- Poorly integrated with the map outside 

campus  

- Point to Point Navigation  

- Good Indoor Map Visualisation 

ArcGIS 
 

Expensive 

- Draw map from scratch  

- Well support for 

mapping and navigation 

- Poorly integrated with the map outside 

campus  

- Point to Point Navigation  

- Good Indoor Map Visualisation 

MappedIn 

No Access 

in Hong 

Kong 

NA NA NA 

Table 1 Comparisons of development tools for mapping and navigation 

 

2.3.2.1 Google Maps 

Google Maps services offer user-friendly interfaces and reasonable costs, making them easily 

accessible. Google Maps provides an indoor map for the Main Building, which saves effort for the 

project. Moreover, users are generally already familiar with the Google Maps interface. 

Implementing Google Maps services in the app would eliminate the need for users to acquaint 

themselves with a new map, resulting in a seamless user experience. 

 

However, it should be noted that the completion of building navigation within the Main Building 

is a task that extends beyond the scope and timeline of this final-year project. Achieving this would 

require providing additional information to the Google Maps team and collaborating closely with 

them. Consequently, considering the limitations and constraints of the project, Google Maps may 

not be the optimal solution for fulfilling the project requirements. 

 

2.3.2.2 FengMap, Mapbox, IndoorAtlas, and ArcGIS 

FengMap, Mapbox, IndoorAtlas, and ArcGIS are notable providers of specialized services for 

indoor map development and navigation. These platforms offer robust support for creating visually 

appealing indoor maps, optimizing paths, and incorporating features like floor selectors.  
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However, it should be noted that building indoor maps from scratch using these tools can be time-

consuming, requiring significant development efforts. Another aspect to consider is the cost 

associated with these development tools, which unfortunately exceeds the project's allocated 

budget. While all four platforms provide similar services, FengMap stands out as the most cost-

effective option among them. 

 

2.3.2.3 OpenStreetMap 

OpenStreetMap is an open-source resource that can be used to develop and view indoor maps. 

However, it provides the least support for development, and it must work with various additional 

tools to provide mapping and navigation functions, rendering an extremely high development 

complexity. 

 

2.3.2.4 Proposed Solution 

The shortlisted development tools exhibit varying performance in outdoor and indoor scenarios. 

To address this, a hybrid approach is proposed, allowing users to seamlessly switch between an 

outdoor map and an indoor map. For the outdoor map, Google Maps is chosen due to its extensive 

maturity and widespread user familiarity. On the other hand, for the indoor map, FengMap is 

selected as the most cost-effective option among specialized indoor mapping tools. 

 

However, it should be noted that the allocated budget remains insufficient to develop the entire 

indoor map for the Main Building. Consequently, only 2 floors will be included in the map, and 

there may be limitations in achieving an accurate scale due to budget constraints. Nevertheless, it 

is important to highlight that the scale of the map does not impact the visualization or other 

essential features provided by the map. 

 

By combining Google Maps for the outdoor map and FengMap for the indoor map, the proposed 

hybrid approach aims to strike a balance between user familiarity, functionality, and cost-

effectiveness. While limitations exist, this approach optimizes the available resources to provide 

users with a comprehensive navigation experience encompassing both outdoor and limited indoor 

areas of the Main Building. 
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2.4 Backend Service 

This section discusses the development framework and the transmission technology selected for 

the backend service of the project. This section also describes the implementation of the backend 

service. 

 

2.4.1 Selection of Backend Development Framework: Flask 

The chosen backend development framework is Flask. Flask is a lightweight and flexible Python 

framework specifically designed for building RESTful APIs and backend services. Its simplicity 

and ease of use make it ideal for rapid prototyping and development of backend functionality in 

the system. Flask's extensive ecosystem of extensions and libraries further enhances its capabilities, 

enabling seamless integration with the CV model and data management requirements of the project. 

By utilizing Flask, the system can leverage the robustness and efficiency of Python while 

benefiting from Flask's simplicity and flexibility. 

 

2.4.2 Selection of Transmission Technology: WebSocket 

WebSocket is the chosen communication protocol for the project. WebSocket provides a persistent, 

full-duplex communication channel over a single TCP connection. This enables real-time, 

bidirectional communication between clients and the server. WebSocket has low latency and 

eliminates the need for frequent HTTP request-response cycles, resulting in faster and more 

efficient communication. WebSocket also offers enhanced scalability and resource utilization. Its 

event-driven model reduces unnecessary requests and server load, allowing servers to handle a 

larger number of concurrent connections with lower resource consumption. Furthermore, 

WebSocket supports cross-origin communication, enabling clients from different domains to 

establish secure connections and exchange data. 

Socket.IO is used to establish the WebSocket connection. Socket.IO simplifies the implementation 

of real-time, bidirectional communication using WebSocket. It offers compatibility with various 

browsers and environments, automatic reconnection, and event-based messaging, which align with 

the project requirement. 
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2.4.3 Backend Service Implementation 

The WebSocket connection is initiated upon launching the app. During active camera usage by 

users to scan their surroundings, short video clips captured by the phone camera are transmitted 

to the server in base64 format. Upon receipt of these video messages, the server proceeds to 

process the encoded data strings and fit them into the model. Upon deriving the output of the 

model, denoting the detected location, the server transmits the result back to the client through 

the existing WebSocket connection. The resulting message encapsulates a unique message ID, 

the success state, the coordinates, and the corresponding location name. 

 

Figure 6 Flow chart for the flow of captured videos to the model 

 

2.5 Model Design 

This section explains the decision made for the model structure, followed by the selection of the 

building tools. 

 

2.5.1 Model Selection and Structure Design 

For the computer vision model, three kinds of algorithms are shortlisted for selection: image 

similarity algorithm, image classification algorithm and object detection algorithm. 

  

Image classification algorithms and image similarity algorithms consider detection from the image 

content level while object detection algorithms rely on the object features. Moreover, both image 

classification and image similarity algorithms are unable to provide localization information from 

the detection.  

 

On the other hand, object detection algorithms can handle multiple detection at the same time. 

Object detection algorithm can provide real time tracking features on video, with location 

information such as coordinates on image, while image classification algorithm and image 
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similarity algorithm detect perform detailed analysis on image content. As our project primarily 

aims to provide localization and navigation clues to users with the computer vision approach, 

object detection algorithms are the best option as our model algorithms. 

 

The object detection layer serves to detect buildings, markers, and other features within the images. 

However, single-layer model yielded suboptimal outputs in terms of accuracy. Therefore, a 

supplementary image similarity layer is proposed. By filtering out irrelevant objects, such as 

humans, with object detection layer, the accuracy of the model is expected to improve. 

Furthermore, the object detection layer aids in the selection of images for subsequent comparison 

within the image similarity layer. This strategic image selection shall significantly reduce the 

computational burden and running time of the additional layer. This refined architecture may 

demonstrate a more comprehensive approach to the vision-based navigation system, improving its 

overall accuracy and efficiency. 

 

The finalized selection for the object detection model is discussed in Section 2.5.2. Shortlisted 

frameworks for building the additional image similarity layer are OpenCV and ResNet. The final 

selection will be determined after testing. 

2.5.2 Object Detection Model Selection 

 

Figure 7 Performance metrics chart for different object detection models 

For the object detection model, numerous algorithms have been introduced to the public. In Figure 

7, a comparison of object detection and recognition performance that has been conducted by Sorin 

[7], You-only-look-once (YOLO) algorithms have a better performance in high frames-per-
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seconds (FPS) rate. YOLO being a single-stage detector, has a relatively lower complexity than 

second-stage detectors such as RefineNet, CornerNet, etc. This allows YOLO to provide faster 

detection results, supporting real-time detection. This feature aligns with our project requirements 

– to provide real-time localization and navigation assistance. 

 

YOLO is selected for implementing the object detection layer of the model. 

 

2.5.2.1 YOLO 

YOLO is a real-time object detection model that uses a single neural network to directly predict 

class labels, enabling the model to recognize multiple objects within an image at a faster pace. The 

fast-paced real-time navigation reduces the time needed for computing the location result. This 

computing efficiency becomes a compelling justification for selecting YOLO, as it ensures a 

responsive user experience during navigation tasks. 

 

In our project, the latest version of YOLO (YOLOv8), provided by Ultralytics, has been selected 

for implementation. Ultralytics is a software company that publishes open-source YOLO models 

to the public. The application interface (API) provided extensive and efficient functionality for 

users to build customized object detection models. Contributing to the wide community of YOLO 

users, guidelines and support are available online. In addition, according to official documents 

released by Ultralytics, YOLOv8 has a low hardware requirement: GPU with a minimum of 8GB 

of memory. The low hardware requirement is favorable for the implementation of our project under 

the scope of Final Year Project. 

 

2.5.2.2 Optimizer 

API provided by Ultralytics allows users to select suitable optimizer algorithms, such as Stochastic 

Gradient Descent (SGD), Adaptive Momentum Estimation (Adam), Adam with Infinity Norm 

(Adamax), Adam with Weight Decay (AdamW), Nesterov-accelerated Adam (Nadam), Rectified 

Adam and Root-mean-square Propagation (RMSprop). The decision of the optimizer algorithm 

will be based on the results, further discussed in section Section 3.2, after testing. To evaluate the 

effect of the corresponding optimizer algorithm, testing with the same hyperparameters (listed in 

Appendix F) and the same dataset will be used in the model training process with 300 epochs. 
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2.6 Data Flow 

To prepare quality data for training the CV model, every data must go through these 4 phases: data 

collection, data processing, data labelling, and data augmentation, before fitting into the model.  

 

 

Figure 8 Demonstration of the 4 phases data workflow 

 

2.6.1 Data Collection 

In order to collect data for our research, we considered several sources including online sources, 

past research, internal sources, and primary data sources. Upon examination, we found that the 

image quality of online sources was poor for our topic and past research internal sources were not 

disclosed to the public for easy access, making it difficult to gather up-to-date information. 

Therefore, we decided that the primary data source would be the best option as it provides us with 

better control over both the quantity and quality of the images. 

 

In the data collection phase, image data is collected manually through phone cameras, taking 

photos one by one. However, we soon discovered that this method was inefficient. Therefore, we 

conducted a data experiment and found that a more efficient method was needed to improve the 

data collection process. 

 

To enhance the effectiveness of data collection, a more efficient method is proposed and 

implemented: videos are taken and used to extract images framewise. This approach generated 

hundreds of images quickly, significantly shortening the time it took to complete the data 

collection process.  

 

2.6.2 Data Processing 

Data processing includes data cleaning, image compression, and image formatting. Data cleaning 

involves the removal of noise, outliers, and artifacts from the acquired data to ensure its quality 
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and integrity. Image compression techniques are applied to reduce the storage and computational 

requirements. Image formatting is performed to standardize the images and facilitate seamless 

integration with the 2 layers, ensuring consistent results.  

 

2.6.3 Data Labelling 

Data labelling generally requires a large amount of human effort and time. To speed up the 

development, we chose to label our data on RoboFlow, a modern data workflow management tool 

[8]. It not only allows annotating on images but also reviewing the summary of the annotated 

dataset and updating the data whenever needed.  The integration of RoboFlow in the data labelling 

process streamlines the annotation workflow, enhances efficiency, and maintains the quality and 

consistency of the labelled data.  

 

2.6.4 Data Augmentation 

Data augmentation is employed in the project to increase the diversity and robustness of the 

training data. By applying transformations such as cropping, flipping, rotation, scaling, and 

adjusting brightness, the augmented dataset introduces variations and simulates real-world 

conditions. This technique enhances the models' ability to generalize and accurately classify 

objects in different scenarios, improving the overall reliability and robustness of the navigation 

system. 

3 Interim Results 

This chapter discusses the progress for the data collected, optimizer algorithm evaluation, the 

mobile application implementation, and the indoor map development. 

 

3.1 Data Collection 

After capturing videos among 40 places within the HKU main building, thousands of images are 

extracted from it. Images with low quality are filtered and the remaining are labelled with the 

corresponding location tags. Examples of tag names are “room201”, “room202”, “room203”, etc. 

Lastly, by applying some data augmentation techniques, namely rotation variation and brightness 
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variation, a total of 5978 images are generated from 2264 raw images. These images are then split 

into training dataset, validation dataset and testing dataset in the ratio of 8:1:1 respectively. 

 

3.2 Optimizer Algorithm 

An experiment was conducted to investigate the impact of optimizer algorithms on the accuracy 

of object detection during model training. Table 2 below shows the overall class accuracy 

(Precision) using different optimizer algorithms. 

 

Optimizer Precision 

SGD 0.965 

AdamW 0.958 

Adamax 0.956 

RAdam 0.944 

NAdam 0.942 

Adam 0.934 

RMSProp 0.517 

Table 2 Overall class precision for YOLOv8 training with different optimizer algorithms 

Based on the overall class detection accuracy, RMSProp has the worst performance among all. 

The precision of 0.517 indicates that the model trained with RMSProp in the given conditions is 

not accurate enough to support precise and fast object detection. On the contrary, other optimizer 

algorithms have a better performance in terms of overall class accuracy, ranging from 0.934 to 

0.965. Of the seven optimizer algorithms tested, SGD performed the best. A more detailed 

evaluation of the different optimizer algorithms is provided in the following sections. 

 

3.2.1 Evaluation Metrics 

In the following sections, we will evaluate each optimizer’s performance in the model training 

process based on corresponding Precision curve, Recall Curve and Precision-Recall Curve. 

 

The precision curve allows us to have an understanding of how precision (ability to make positive 

predictions) varies as the detection threshold changes, providing insight into the ability to make 

positive predictions. 
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The recall curve illustrates the variation of recall (ability to make true positive value comparing 

with positive instances, true positives and false negatives) value at different detection threshold 

values, establishing the performance of the model in correctly identifying objects. 

 

Precision-Recall curve showcases the trade-offs between precision and recall at varied confidence 

thresholds. From the precision-recall curve, we may derive the value of mean average precision at 

an Intersection over Union (IoU) threshold of 0.5 (mAP@0.5). This metric evaluates the average 

performance in terms of the trade-off between precision and recall when the level of overlapping 

predicted bounding boxes and ground truth bounding boxes exceeded the threshold of 0.5. 

 

3.2.2.1 SGD 

 

Figure 9 Precision-Confidence Curve for model using SGD 

From Figure 9, precision curves for each class are establishing an overall upward trend at a high 

precision value. The blue curve indicates the overall class precision curve for the model. As the 

confidence threshold value increases, the precision of the model increases correspondingly and 

achieves maximum precision (precision = 1.0) when the confidence level is set as 0.943. 
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Figure 9 Recall-Confidence Curve for model using SGD 

The presented recall curve, as depicted in Figure 10, corresponds to the performance of a model 

that has employed the stochastic gradient descent (SGD) optimizer algorithm. The curve shows a 

perfect recall value of 1.0 when the confidence threshold is set between 0.0 and 0.4, indicating that 

the model's performance is optimal when the threshold is lenient. As the confidence threshold value 

increases, a slight decline in the recall curve is observed. However, when the confidence threshold 

value reaches 0.8, the recall curve exhibits a gradual decline, indicating that the model's ability to 

make true positive predictions decreases as the threshold becomes stringent. 
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Figure 11 Precision-Recall Curve for model using SGD 

Figure 11 illustrates the trade-off for precision and recall for the model trained with SGD as the 

optimizer algorithm. The overall class precision-recall curve indicated that the model has a high 

precision value and high recall value at most of the threshold values. From the graph, we obtained 

mAP@0.5 is equal to 0.987 which shows that the model has a very good performance in terms of 

the trade-off between precision and recall. The precision-recall curve for the model is almost 

identical to the precision-recall curve of an ideal detector, high precision value and high recall 

value at all confidence thresholds. 
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3.2.2.2 Adam 

 

Figure 10 Precision-Confidence Curve for model using Adam 

From the precision curve (Figure 12), the precision curve of the overall classes established a general 

upward trend and achieved 1.0 precision at a 0.863 confidence level. By looking at the precision 

curve for individual classes, a fluctuating and inconsistent pattern is observed. Precision curve of 

individuals classes reaches 0.0 precision at confidence score threshold ranged from 0.7-0.8. It 

indicates that the model performance in terms of precision for individual classes is not consistently 

reliable and precise. 
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Figure 11 Recall-Confidence Curve for model using Adam 

Above is the Recall curve obtained after the model training using Adam as the optimizer algorithm. 

It has a very similar trend to the recall curve for the model using SGD (Figure 10). However, the 

perfect recall value is only maintained when the confidence is set between 0.0 – 0.3. The recall 

curve declined as the confidence threshold value increased and drastically dropped when the 

confidence threshold was set between 0.75 - 0.85. From the graph, some classes even result in 0.0 

recall at a 0.62 confidence threshold. It shows that the model may not be able to be detected in a 

stringent confidence threshold. 
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Figure 12 Precision-Recall Curve for model using Adam 

Figure 14 depicts a similar precision-recall curve pattern as shown in Figure 11. The overall class 

precision-recall curve indicated that the model has a high precision value and high recall value at 

most of the threshold values. The mAP@0.5 value obtained from the precision-recall curve is 0.981, 

indicating the model has an acceptably good performance in terms of precision-recall trade-off. 
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3.2.2.3 AdamW 

 

Figure 13 Precision-Confidence Curve for model using AdamW 

In Figure 15, the blue curve representing the precision curve for overall classes establishes an 

upward trend. The model obtained a precision score of 1.0 when the confidence score threshold 

was set to 0.951. However, for some classes, the precision fluctuated as the confidence score 

threshold increased. 

 

Figure 14 Recall-Confidence Curve for model using AdamW 
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By comparing the above figure with the recall curve for the model using SGD (Figure 10), a similar 

pattern is observed. Both curves display comparatively high recall values at lenient confidence 

threshold levels. As the confidence threshold becomes stricter, the recall value drops drastically 

from the 0.75-0.9 confidence threshold level. The recall curve demonstrates that the model has an 

overall good performance in terms of recall at different confidence thresholds. 

 

Figure 15 Precision-Recall Curve for model using AdamW 

The presented analysis depicts a precision-recall curve pattern in Figure 17 that is analogous to the 

one shown in Figure 10. The overall precision-recall curve reveals high precision and recall values 

for the model at most threshold values. The mAP@0.5 value obtained from the precision-recall 

curve is 0.984, indicating the model has an acceptably good performance in terms of precision-

recall trade-off. 
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3.2.2.4 Adamax 

 

Figure 16 Precision-Confidence Curve for model using Adamax 

In Figure 18, the blue curve demonstrates an upward trend for the overall class precision. Moreover, 

the perfect value of the overall class precision is retained when the confidence score threshold is 

equal to or greater than 0.931. It is noteworthy that as the confidence score threshold value 

increases, there is a steady improvement in precision observed for each class. 

 

Figure 17 Recall-Confidence Curve for model using Adamax 
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From Figure 19, high recall values are obtained when the confidence threshold value is lenient (0.0 

– 0.6). The recall curve gradually declined when the confidence threshold value became stringent, 

decreasing when the confidence was set between 0.75 - 0.9. Moreover, some classes, represented 

by the grey curve, result in a relatively low recall value at lenient confidence threshold values. It 

indicates that, for some of the classes, the detection may not be able to discover targeted features 

successfully. 

 

Figure 18 Precision-Recall Curve for model using Adamax 

Figure 20 depicts the precision-recall curve for the model using Adamax. The mAP@0.5 value is 

0.987, which is the same as the mAP@0.5 score for the model using SGD (see Figure 11), for the 

overall class performance. Moreover, by comparing the pattern of the individual class’s precision-

recall curve from both figures, the model using Adamax as an optimizer algorithm demonstrates a 

better performance in terms of the trade-off between precision and recall. 
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3.2.2.5 RAdam 

 

Figure 19 Precision-Confidence Curve for model using RAdam 

The precision curve shown in Figure 21 illustrates an upward trend. The precision for all classes 

achieves 1.0 when the confidence threshold value is equal to or greater than 0.89. Further looking 

into the precision performance of individual classes, abnormal cases, where the precision fluctuated 

drastically, are observed. The presence of the pit in the precision-confidence curve suggests that 

the model is struggling with making correct predictions in a certain range of confidence score 

threshold for some of the classes. Therefore, there is still room for improvement in terms of 

prediction accuracy. 
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Figure 20 Recall-Confidence Curve of model using RAdam 

The recall-confidence curve shown in Figure 22 follows a similar pattern as the ones obtained from 

models that use different optimizers. The performance, measured in terms of overall class recall, 

is good for lenient confidence threshold levels. As the confidence level becomes more stringent, 

the recall value decreases. Notably, the overall class recall value is not as high as that of other 

optimizers, where maximum recall value is 1.0, whereas the model has a maximum recall value of 

0.99. The slight difference suggests that both the model and dataset may require further 

improvement to provide better results. 
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Figure 23 Precision-Recall Curve of model using RAdam 

The precision-recall curve in Figure 23 provides an approximately ideal model performance in 

terms of the trade-off between precision and recall. The precision value remains high for most of 

the recall values. The mAP@0.5 value obtained from the figure is 0.985. 

 

3.2.2.6 NAdam 

 

Figure 21 Precision-Confidence Curve of model using NAdam 
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The overall class precision observed in Figure 24 shows an upward trend as the confidence 

threshold value increases. The model achieved a precision value of 1.0 at a confidence threshold 

value equal to 0.923 for all classes. However, the precision-confidence curve for individual classes 

fluctuates. This suggests that the accuracy of precision provided by the model in different classes 

can be inaccurate and unreliable. 

 

Figure 22 Recall-Confidence Curve of model using NAdam 

The recall-confidence curve in Figure 25 drops slowly from confidence threshold 0.0 to confidence 

threshold 0.6. It declines drastically from confidence threshold 0.75 – 0.9. Additionally, the grey 

curves that represent the recall-confidence curves for individual classes display distinct fluctuations. 

Some of the classes exhibit a noteworthy decline, achieving only 0.8 recall at lenient confidence 

threshold level. These observations suggest that the machine learning model may not provide 

accurate predictions for some of the classes. 
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Figure 23 Precision-Recall Curve of model using NAdam 

The above figure showcases the precision and recall trade-off of the model using NAdam. The 

representing precision-recall curve demonstrates a good performance: high precision value at 

different recall values. The mAP@0.5 obtained is equal to 0.982. However, the precision-recall 

curves for individual classes established a diversified and dispersed pattern. For some individuals, 

the precision value dropped at a recall level of 0.2. It implies that the trade-off between precision 

and recall for some of the classes may be dissatisfying. In other words, the detection results will be 

unreliable as the precision and recall is affected. 
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3.2.2.7 RMSProp 

 

Figure 24 Precision-Confidence Curve of model using RMSProp 

In Figure 277, the overall precision performance is demonstrated. The overall precision achieves 

a maximum of 0.81 at the confidence threshold value of 0.505. It indicates that the model is 

struggling to make highly confident and precise results. The grey curves representing individual 

classes display an unstable and fluctuating precision-confidence pattern, further indicating that the 

model training with RMSProp under the given conditions may not be capable of delivering 

accurate predictions. 
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Figure 25 Recall-Confidence Curve of model using RMSProp 

The Recall-Confidence Curve in Figure 28 has an exponential decay pattern. The overall class 

recall value dropped from 0.59 to 0.0 across the confidence threshold value. This suggests that the 

model is incapable of identifying or capturing positive instances and making accurate predictions. 

 
Figure 26 Precision-Recall Curve of mode using RMSProp 

Figure 29 displays a mAP@0.5 value of 0.386 and a precision-recall trade-off curve that is non-

smooth and exhibits low values for precision and recall. This indicates a poor performance of the 
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model, as reflected by the low mAP@0.5 value. The model's predictions do not meet the desired 

performance standards, being both inaccurate and incomplete. 

 

3.2.2.8 Decision 

After testing different optimizer algorithms, it was found that the model using SGD achieved the 

best results during training. Based on Table x, the model that used SGD attained the highest overall 

class precision score of 0.965. Both the precision and recall curves showed that the model using 

SGD was able to make accurate and sensitive predictions. Moreover, the precision-recall curve 

demonstrated an excellent trade-off between precision and recall. Therefore, we have decided to 

use SGD as the optimizer algorithm for our object detection model. Further hyperparameter fine-

tuning will be performed in the future. 
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3.3 Mobile Application 

The UI consists of 3 pages, implementing vision-based positioning, path finding, and accessing 

campus information respectively.  

 

3.3.1 Vision-based positioning 

As shown in Figure 30 to Figure 32, the app accesses the phone camera for image capturing. If the 

connection to the server fails, an error message will be prompted, as demonstrated in Figure 30. 

Figure 31 shows the reminder message to the users if the location detection continues to fail. Upon 

receipt of the location result from the server, as shown in Figure 32, a message will be prompted 

to indicate the detected location. Users can choose to keep capturing or go to the “Map” page with 

the detected location. For the latter option, the UI would direct to the “Map” page and set the 

detected location as the current location.  

 

 
Figure 30 The "Camera" page – 

Connection error 

 
Figure 31 The "Camera" page –  

Reminder message 

 
Figure 32 The "Camera" page – 

Successful detection 
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3.3.2 Path finding 

As illustrated in Figure 33, the “Map” page allows users to input source location and destination. 

When users are inputting in the boxes, a suggestion list of venue names will be provided. Users 

have to choose from the suggestion list to finish inputting. This serves as a way of input validation. 

The navigation service will be integrated into the app to visualize the optimized path on the page.  

 

 
Figure 27 The "Map" page 

 

3.3.3 Access to campus information 

Figure 34 shows the “Info” page that provides users with various information about the campus of 

HKU. Basic information about the campus, including locations of buildings, departments, facilities, 

and transport, can be accessed through this page. 
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Figure 28 The "Info" page 

3.4 Campus Map 

The indoor map for the main building has been structured. A floor selector is provided for selecting 

the floor to display. Routes are added so that indoor navigation powered by FengMap can be used. 

The remaining works are labelling room names, optimizing layouts, and integrating the mapping 

and navigation service into the app. 

 

Figure 29 Demonstration of an indoor map built using FengMap (2/F, Main Building) 
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4. Limitations and Difficulties 

This chapter delves into the dataset size overload issue identified in the early stages, data collection 

inefficiency problem, and the location generalization issue, examining both the nature of the 

challenges and the responses devised to address them. 

 

4.1 Dataset Size Overload 

4.1.1 Problem of Dataset Size Overload 

The large data size required for the project imposes significant challenges on its development. In 

particular, the capturing of images from various angles, heights, and times at the same node on the 

map adds to the complexity. Furthermore, the quest for higher accuracy necessitates a substantial 

number of images for model training. Consequently, the development of an accurate positioning 

model for the entire HKU campus may require an extensive dataset comprising millions of images. 

The magnitude of data involved imposes rigorous demands on computational power, storage 

capabilities, and human resources. Notably, these requirements surpass the scope of a typical final 

year project, warranting careful consideration and resource allocation. 

 

4.1.2 Response to Dataset Size Overload: Limiting Scope 

The primary mitigation strategy is to limit the scope of the project. Instead of encompassing the 

entire HKU campus, the project will concentrate on a specific section. The Main Building of HKU 

has been selected as the designated testing site for the project. By focusing on the Main Building, 

the project aims to achieve the goal of effectively navigating visitors within its premises. By 

adopting a focused approach and considering potential future expansions, the project aims to strike 

a balance between the limited resources available and the aspiration to deliver an effective 

navigation solution within the Main Building of HKU. 

 

4.2 Inefficiency of initial Data Collection 

4.2.1 Problem of Initial Data Collection  

An experiment was conducted to examine the efficiency of the initial data flow design. Table 1 

below shows the times used for different numbers of images in the 4 phases.  
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Table 3 Time used for 40 images and 117 images in the 4 data flow phases 

The findings demonstrate that the time spent on the data collection phase exhibits the most 

substantial growth. The coefficients associated with the number of images and data collection, 

highlighted in Table 3, are closely aligned, suggesting that the time required for data collection 

gradually increases as the dataset size expands. Leveraging existing tools aids in mitigating the 

proportional growth of time in data processing, data labelling, and data augmentation. However, 

due to the manual image acquisition on an individual basis, a linear relationship emerges between 

the number of images and the time spent on data collection. The experiment highlights the 

inefficiency of the original data collection method, consequently diminishing the value of the 

vision-based approach.  

 

4.2.2 Response to Inefficient Data Collection: Videos instead of Photos 

The initial data collection process encountered inefficiency as images were gathered on an 

individual basis. However, given the importance of both image quality and quantity, it became 

evident that obtaining data from primary sources was necessary. Consequently, a new and 

improved method was implemented, which involved capturing videos and subsequently extracting 

frames from these videos. This approach ensures a more efficient and comprehensive collection of 

data for the project, allowing for a greater variety of images to be obtained while maintaining the 

desired level of quality. 

 

Using the new data collection method, the time used for capturing training data gradually reduced. 

Table 4 shows the improved time used for data collection. 

  

No. of Image 

Time used in 

Data Collection 

Image per 

minute 

Initial 

Method 
117 14 8.36 

New 

Method 
165 3 55 

Table 4 Time cost comparison of the initial and new data collection methods 

  

No. of Image 

Time used 

 Data Collection Data Processing Data Labelling Data Augmentation 

Set I 40 5 5 10 3 

Set II 117 14 7 15 4 

Coefficient 2.93 2.80 1.40 1.50 1.33 



 41 

4.3 Location Generalization 

4.3.1 Problem of Location Generalization 

To improve the accuracy of object detection, we have designed a model that recognizes specific 

and unique features in images which can provide a brief idea of the location of the user. However, 

this approach poses a limitation on the direct prediction of location. Multiple objects can be 

detected in the same frame, and the detection results can be misleading and cannot be associated 

with the exact location. 

4.3.2 Proposed Response to Location Generalization: Additional Layer 

 
Figure 30 Detection results example of using trained model 

One of the improving methods is to impose confidence score filtering on the object detection model. 

As seen in Figure 36, multiple objects can be detected in the same image with different confidence 

scores. By applying confidence score filtering, some predictions with low confidence scores (i.e. 
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room237window 0.3) can be screened, reducing the misleading detection results and the 

complexity of understanding the location of the user. 

 

Another mitigation will be creating a specialized function that integrates various factors such as 

confidence scores, detected class names, and appearance on frames. This function will analyze and 

summarize the user's location information and provide a generalized view of their whereabouts. 

This approach will help us to mitigate potential errors and improve the overall quality of our 

predictions. 

5 Schedule and Future Plan 

5.1 Schedule 

The project progress, as depicted in Table 5, generally aligns with the proposed schedule. The 

initial implementations of the mobile application and the CV model have been completed as 

planned. The construction and optimization of the indoor map are still in progress. Prioritizing 

indoor map development and integration, along with exploring various approaches to improve 

model’s accuracy, are crucial for the upcoming stages of the project. 

Period Work Description Progress 

Sep - Oct 

Analyse different proposed ideas’ feasibility and effectiveness Done 

Research and literature review of computer vision-based positioning Done 

Design interface for mobile app Done 

Oct – Nov 

Collect data in Main Building (2nd Floor) Done 

Research in different computer vision models Done 

Develop mobile app (both frontend & backend) Done 

Data processing Done 

Nov – Dec 
Build and train shortlisted machine model Done 

Evaluate and select model with best performance Done 

Dec - Jan 
Prepare interim report and presentation Done 

Prepare rough demo for interim presentation Done 

Jan - Feb 

Select and implement suitable navigation mechanism In Progress 

Integrate machine learning model and map & navigation mechanism 
to mobile application Starting Soon 

Fine tuning the model In Progress 

Feb - Mar 
Debug and improve mobile application and model Starting Soon 

Deploy mobile application for alpha testing Starting Soon 

Mar - Apr Prepare final report Starting Soon 
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Source code cleanup Starting Soon 

Prepare for final presentation Starting Soon 

Prepare for the project exhibition and project competition Starting Soon 

Table 5 Project Schedule Table 

  

5.2 Future Plan and Directions 

For the object detection model, the next goal is to achieve at least 97% accuracy with further 

hyperparameter tunning, given that the current best model can achieve approximately 95% 

accuracy. To prove the reliability of our model, our next goal is to maintain high accuracy during 

the dataset expansion. In order to have a direct insight on the ability of our model, setting up a 

chatGPT4 model to compare with our model is a feasible next step. 

 

In terms of the navigation map, a more complete indoor building map is required for accurate 

positioning. One of the potential implementations is to cooperate with ManiFold Tech Limited, a 

company with experience and equipment for object scanning, and explore the extendibility of our 

project with an Augmented Reality (AR) map. 

 

For the application development, a few additional features are possible to integrate with the app. 

For example, an image upload recognition function. It allows users to upload images for 

positioning instead of real time location rendering.   

6 Conclusion 

This project aims to develop an effective vision-based navigation and contribute to the research 

field of computer vision applications. The navigation system, once fully developed, will enhance 

visitor experience, providing accurate and efficient navigation within the HKU campus. This 

system will greatly benefit individuals unfamiliar with the building's layout and those with special 

navigation needs. Moreover, the project contributes to the advancement of indoor navigation 

technologies, particularly within building complexes, serving as a valuable reference for future 

endeavours in this domain. 
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The paper presented an in-depth analysis of the methodologies employed and the outcomes 

achieved in designing the system, app, and model. The implementation of the mobile application 

and backend service has been finalized, ensuring a solid foundation for the project. However, 

careful considerations and cost-effectiveness studies are required for the development of the 

mapping and navigation functionality. Utilizing a dataset comprising 2264 collected images, an 

object detection model has been successfully trained using the SGD optimizer. To enhance 

accuracy for navigational purposes, a proposed approach involves an additional layer to the CV 

model. This is because object detection models often overlook important positioning factors such 

as distance and capturing angle. The availability and efficiency of data collection play significant 

roles in determining the cost-effectiveness of the project. As the dataset size increases, the time 

spent in the data collection phase can become a dominant factor. Therefore, it is important to 

carefully manage data acquisition and minimize the required dataset size to optimize project costs. 

Overall, the project's progress is generally in line with the schedule, signifying a positive 

advancement toward the desired objectives. 

 

Looking ahead, the immediate next steps involve improving functionality and implementation of 

the app and the backend service. Another important step is prioritizing the completion and 

integration of the indoor map with the outdoor map and the mobile application. Due to the model 

deficiency, attention will also be given to research and comparing different proposed model 

implementation. Additionally, research in optimizing the dataset size for model training will 

continue to address the dataset size overload issue. 
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Appendices 
 

Appendix A – FengMap Pricing 

 

 

 

Appendix B – IndoorAtlas Pricing 

 

 

Appendix C – ArcGIS Pricing 

 

 

Appendix D – Indoor Map of Demonstration of OpenStreetMap 
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Appendix E – Inaccessibility of MappedIn 
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Appendix F – Used parameters of model training 

task: detect 

mode: train 

model: yolov8n.pt 

epochs: 300 

patience: 20 

batch: 16 

imgsz: 640 

save: true 

save_period: -1 

cache: false 

device: 0 

workers: 8 

project: null 

name: train 

exist_ok: false 

pretrained: true 

verbose: true 

seed: 0 

deterministic: true 

single_cls: false 

rect: false 

cos_lr: false 

close_mosaic: 10 

resume: false 

amp: true 

fraction: 1.0 

profile: false 

freeze: null 

overlap_mask: true 

mask_ratio: 4 

dropout: 0.0 

val: false 

split: val 

save_json: false 

save_hybrid: false 

conf: null 

iou: 0.7 

max_det: 300 

half: false 

dnn: false 

plots: true 

source: null 

vid_stride: 1 

stream_buffer: false 

visualize: false 

augment: false 

agnostic_nms: false 

classes: null 

retina_masks: false 

show: false 

save_frames: false 

save_txt: false 

save_conf: false 

save_crop: false 

show_labels: true 

show_conf: true 

show_boxes: true 

line_width: null 

format: torchscript 

keras: false 

optimize: false 

int8: false 

dynamic: false 

simplify: false 

opset: null 

workspace: 4 

nms: false 

lr0: 0.01 

lrf: 0.01 

momentum: 0.937 

weight_decay: 0.0005 

warmup_epochs: 3.0 

warmup_momentum: 0.8 

warmup_bias_lr: 0.1 

box: 7.5 

cls: 0.5 

dfl: 1.5 

pose: 12.0 

kobj: 1.0 

label_smoothing: 0.0 

nbs: 64 

hsv_h: 0.015 

hsv_s: 0.7 

hsv_v: 0.4 

degrees: 0.0 

translate: 0.1 

scale: 0.5 

shear: 0.0 

perspective: 0.0 

flipud: 0.0 

fliplr: 0.5 

mosaic: 1.0 

mixup: 0.0 

copy_paste: 0.0 

cfg: null 

tracker: botsort.yaml 

save_dir: 

runs\detect\train 

 


