

COMP4801_FITE4801 Final year project

FYP23010: A mobile application for navigating
HKU visitors with computer vision

Supervisor: Dr. Luo Ping

Group Members:

Liu Kan Man, 3035790733

Wong Riley Hoi-Kiu, 3035829039

Ng Enoch, 3035781536

Date of Submission: 21/01/20244

 ii

Abstract

Indoor positioning and navigation remain a considerable challenge for engineers. This engineering

problem especially applies to the campus of the University of Hong Kong (HKU) due to its

complex building layout. The common approach is to use GPS-based navigation applications

(apps), such as Google Maps. However, the existing apps could only guide users to buildings rather

than specific rooms or lecture venues. Additionally, research suggests that GPS is unreliable for

indoor usage. This project aims to develop a vision-based navigation system to guide visitors within

the HKU campus. This paper demonstrates the designs of the system structure and the computer

vision (CV) model structure. The client-server structured system was designed as a combination of

a mobile app, a backend service, a mapping service, and a CV model. The development of the

mobile application and backend service is approaching the stage of completion, providing a strong

foundation for the project. An object detection model has been selected as the initial

implementation. To increase the model's accuracy, various solutions are proposed to be added.

Thus, apart from integrating the mapping and navigation function into the app, the next step of the

project will be evaluating a cost-effective approach to enhance the CV model's performance. The

analysis in model building will provide insights into CV model training for positioning purposes.

 iii

Acknowledgment

We are grateful for the guidance and support from our group supervisor, Dr. Luo Ping, and the

Department of Computer Science.

 iv

Table of Content

Abstract .. ii

Acknowledgment ... iii

Table of Content .. iv

Table of Figures ... vi

Table of Tables ... vii

Abbreviations .. viii

1 Introduction .. 0

1.1 Background .. 0

1.2 Existing Approach: GPS-based Navigation Applications .. 0

1.3 Motivation on developing vision-based navigation system .. 1

1.4 Objectives .. 1

1.5 Outline ... 2

2 Methodology .. 3

2.1 System Architecture.. 3
2.1.1 System Overview ... 3
2.1.2 System Flow ... 4

2.2 Mobile Application ... 5
2.2.1 App Introduction ... 5
2.2.2 App Features.. 5
2.2.3 Selection for Frontend Development Framework: React Native .. 7

2.3 Mapping and Navigation Component .. 8
2.3.1 Mapping and Navigation Component Introduction .. 8
2.3.2 Selection of Development Tool ... 8

2.4 Backend Service .. 11
2.4.1 Selection of Backend Development Framework: Flask ... 11
2.4.2 Selection of Transmission Technology: WebSocket .. 11
2.4.3 Backend Service Implementation .. 12

2.5 Model Design ... 12
2.5.1 Model Selection and Structure Design .. 12
2.5.2 Object Detection Model Selection ... 13

2.6 Data Flow ... 15

3 Interim Results ... 16

3.1 Data Collection ... 16

3.2 Optimizer Algorithm ... 17
3.2.1 Evaluation Metrics ... 17
3.2.2.1 SGD ... 18
3.2.2.2 Adam .. 21

 v

3.2.2.3 AdamW ... 24
3.2.2.4 Adamax ... 26
3.2.2.5 RAdam .. 28
3.2.2.6 NAdam .. 30
3.2.2.7 RMSProp ... 33
3.2.2.8 Decision .. 35

3.3 Mobile Application ... 36
3.3.1 Vision-based positioning ... 36
3.3.2 Path finding.. 37
3.3.3 Access to campus information .. 37

3.4 Campus Map .. 38

4. Limitations and Difficulties .. 39

4.1 Dataset Size Overload ... 39
4.1.1 Problem of Dataset Size Overload ... 39
4.1.2 Response to Dataset Size Overload: Limiting Scope .. 39

4.2 Inefficiency of initial Data Collection ... 39
4.2.1 Problem of Initial Data Collection .. 39
4.2.2 Response to Inefficient Data Collection: Videos instead of Photos... 40

4.3 Location Generalization .. 41
4.3.1 Problem of Location Generalization .. 41
4.3.2 Proposed Response to Location Generalization: Additional Layer .. 41

5 Schedule and Future Plan ... 42

5.1 Schedule ... 42

5.2 Future Plan and Directions .. 43

6 Conclusion ... 43

References .. 45

Appendices ... 47

 vi

Table of Figures

Figure 1 System structure diagram .. 3
Figure 2 Flowchart of the client side .. 4
Figure 3 Flowchart of the server side ... 5
Figure 4 Sequence diagram for Vision-based Positioning .. 6
Figure 5 Sequence diagram for Path Finding ... 7
Figure 6 Flow chart for the flow of captured videos to the model ... 12
Figure 7 Performance metrics chart for different object detection models ... 13
Figure 8 Demonstration of the 4 phases data workflow .. 15
Figure 9 9Precision-Confidence Curve for model using SGD... 18
Figure 10 Recall-Confidence Curve for model using SGD ... 19
Figure 11 Precision-Recall Curve for model using SGD ... 20
Figure 12 Precision-Confidence Curve for model using Adam .. 21
Figure 13 Recall-Confidence Curve for model using Adam ... 22
Figure 14 Precision-Recall Curve for model using Adam .. 23
Figure 15 Precision-Confidence Curve for model using AdamW .. 24
Figure 16 Recall-Confidence Curve for model using AdamW ... 24
Figure 17 Precision-Recall Curve for model using AdamW .. 25
Figure 18 Precision-Confidence Curve for model using Adamax .. 26
Figure 19 Recall-Confidence Curve for model using Adamax ... 26
Figure 20 Precision-Recall Curve for model using Adamax .. 27
Figure 21 Precision-Confidence Curve for model using RAdam .. 28
Figure 22 Recall-Confidence Curve of model using RAdam .. 29
Figure 23 Precision-Recall Curve of model using RAdam ... 30
Figure 24 Precision-Confidence Curve of model using NAdam ... 30
Figure 25 Recall-Confidence Curve of model using NAdam ... 31
Figure 26 Precision-Recall Curve of model using NAdam ... 32
Figure 27 Precision-Confidence Curve of model using RMSProp .. 33
Figure 28 Recall-Confidence Curve of model using RMSProp ... 34
Figure 29 Precision-Recall Curve of mode using RMSProp ... 34
Figure 30 The "Camera" page – Connection error ... 36
Figure 31 The "Camera" page – Reminder message ... 36
Figure 32 The "Camera" page – Successful detection .. 36
Figure 33 The "Map" page ... 37
Figure 34 The "Info" page .. 38
Figure 35 Demonstration of an indoor map built using FengMap (2/F, Main Building) .. 38
Figure 36 Detection results example of using trained model ... 41

 vii

Table of Tables

Table 1 Comparisons of development tools for mapping and navigation ... 9
Table 2 Overall class precision for YOLOv8 training with different optimizer algorithms .. 17
Table 3 Time used for 40 images and 117 images in the 4 data flow phases .. 40
Table 4 Time cost comparison of the initial and new data collection methods ... 40
Table 5 Project Schedule Table ... 43

 viii

Abbreviations

app Application

CV Computer Vision

FPS Frame per second

HKU The University of Hong Kong

UI User Interface

YOLO You Only Look Once

SGD Stochastic Gradient Descent

Adam Adaptive Momentum Estimation

Adamax Adaptive Momentum Estimation with Infinity

Norm

AdamW Adaptive Momentum Estimation with Weight

Decay

NAdam Nesterov-accelerated Adaptive Momentum

Estimation

RAdam Rectified Adaptive Momentum Estimation

RMSProp Root-mean-square Propagation

 0

1 Introduction
1.1 Background

As one of the well-recognized universities, the campus of the University of Hong Kong (HKU)

experiences a significant daily influx of individuals. Statistics [1] state that HKU has over 13,000

new students a year. Moreover, the university hosts a multitude of events, including talks,

ceremonies, and workshops, occurring with great frequency. These events serve as a significant

draw for visitors to the campus. Newcomers to the university often encounter confusion when they

are presented with venue names and codes, leaving them uncertain about how to navigate their way

to the designated venues before they get familiar with the campus. Nevertheless, the university

currently lacks a dedicated navigation tool. Instead, visitors are compelled to rely on generic GPS-

based navigation apps such as Google Maps, along with text-based guides sourced from the

university's websites. Regrettably, these existing apps fail to provide visual representations of the

indoor environments within the campus. Furthermore, research findings [2] indicate the inherent

limitations of GPS technology in accurately determining precise indoor locations. As a result, there

is a noticeable demand for a system to provide a substantial number of visitors with enhanced

navigation experiences.

1.2 Existing Approach: GPS-based Navigation Applications

As delineated in Section 1.1, individuals depend on GPS-based navigation apps as their primary

means of navigating within the HKU campus. However, these existing apps exhibit several

limitations, including restricted functionality, deficient visualization capabilities, and unreliable

navigation performance. Their reliance on satellite and aerial imagery to generate maps renders

them incapable of comprehensively representing indoor environments. These apps are only able to

identify the buildings but lack the capacity to ascertain the specific locations of individual rooms

within said buildings. Consequently, users are left devoid of any visual depiction and information

of the indoor spaces. Furthermore, papers [3], [4], [5] have substantiated the insufficiency and

inaccuracy of GPS location information for indoor navigation. GPS signals are susceptible to

interference from obstacles and adverse atmospheric conditions, thereby rendering their accuracy

unreliable. The intricate building complex of the HKU campus exacerbates this issue, amplifying

the challenges faced by users.

 1

1.3 Motivation on developing vision-based navigation system

The motivation behind developing a vision-based navigation app stems from the limitations of the

existing solutions mentioned in Section 1.2. A new navigation system can provide HKU visitors

with user-friendly experiences, along with additional functionality.

The computer vision approach stands out among indoor navigation technologies due to its high

accuracy, robustness, infrastructure flexibility, and additional functionalities.

Vision-based indoor positioning can leverage features like object recognition, depth sensing, and

motion tracking to provide precise location estimates. The estimations are less susceptible to

interference from environmental factors like signal attenuation, multi-path propagation, or radio

frequency interference [3]. Furthermore, vision-based systems do not require the installation of

additional infrastructure or hardware, like beacons or RFID tags [4]. Also, vision-based systems

can provide additional functionalities beyond just positioning, like object tracking, gesture

recognition, activity monitoring, and augmented reality overlays, enhancing the overall user

experience [6]. Considering the rapid development and growing popularity of computer vision

applications, a vision-based system has a large extendibility and a great potential to combine with

different devices and technologies.

1.4 Objectives

The primary objective of this project is to deliver a dedicated mobile app that caters to the

navigation needs of both students and visitors at HKU. The app should be able to facilitate precise

detection of users' locations, efficient path navigation, and intuitive visualization of detection

results and navigational guidance.

Another objective is to evaluate the cost-effectiveness of the computer vision method in

comparison to other navigation approaches. This evaluation will encompass the optimization of

each step involved in model development, including data collection, data processing, model

training, and model fitting. By conducting a comprehensive cost-effectiveness analysis, this project

aims to provide valuable insights and contribute to the existing body of knowledge on computer

vision applications, particularly for Visual Positioning System (VPS).

 2

1.5 Outline

The report is structured into 6 chapters. Chapter 1 outlines the project's motivation and objectives.

In Chapter 2, the design details of the system, app, and model are presented. Chapter 3 focuses on

the early-stage results obtained thus far. Chapter 4 highlights the encountered difficulty and the

corresponding responses formulated. Chapter 5 discusses the proposed schedule and the coming

tasks. Finally, Chapter 6 concludes the report, summarizing the project's progress up to the current

stage.

 3

2 Methodology

This chapter provides a detailed discussion of the project's design and implementation. It begins

with the system architecture (Section 2.1) and app design (Section 2.2), followed by an exploration

of the mapping and navigation component (Section 2.3) and the backend service (Section 2.4).

Moreover, the chapter introduces the model design (Section 2.5) and the data processing flow

(Section 2.6).

2.1 System Architecture

The section presents an overview of the system architecture, followed by the selection of the

backend development tool and server hosting.

2.1.1 System Overview

As shown in Figure 1, the system uses the client-server structure. The client side has the mobile

app user interface (UI). Further details regarding the app UI are discussed in Section 2.2. The app

is linked to Google Maps Service and FengMap Service via corresponding APIs. The mapping and

navigation services are further explained in Section 2.3. The server handles the backend service

and the CV model. More information about the backend service and the CV model is discussed in

Section 2.4 and Section 2.5, respectively. Data for training the model is processed with the

assistance of Roboflow, which is presented in Section 2.6.

Figure 1 System structure diagram

 4

2.1.2 System Flow

2.1.2.1 Client Side

As illustrated in Figure 2, the client-side functionality of the system follows the subsequent steps.

Upon launching the app, the connectivity status is verified. If an active connection to the server is

detected, the app initiates the streaming of videos to the server and awaits a response. Conversely,

in offline mode, users can set their current location using manual input. Once the current location

is established and the destination is provided by the user, the mapping algorithm is executed to

optimize the generated path. The resulting optimized path is then rendered and displayed on the

app UI.

Figure 2 Flowchart of the client side

2.1.2.2 Server Side

The server-side workflow, as depicted in Figure 3, commences upon receiving a request from the

client. The server establishes a connection and begins to receive the streamed photos. Subsequently,

the received videos are sequentially decoded and processed by the object detection model. The

 5

model outputs the location estimation and associated scores. The server transmits the location result

back to the client when the model returns the result.

Figure 3 Flowchart of the server side

2.2 Mobile Application

This section starts with a brief introduction to the mobile app, followed by the features of the app.

Additionally, the chapter discusses the selection of the development framework, considering the

factors that influenced this decision.

2.2.1 App Introduction

The proposed app encompasses a UI that facilitates the visualization of a virtual map, the camera

feed, and the inclusion of user controls. Additionally, the app is responsible for implementing

pathfinding functionality, and providing information about the campus.

2.2.2 App Features

The app offers 2 major features: vision-based positioning and path finding. Some additional

features are implemented to facilitate users’ navigation experience in HKU.

 6

 2.2.2.1 Vision-based Positioning

The app employs the camera of the user's smartphone to capture images of the surroundings at a

predefined frame rate. These images are securely transmitted to the server and processed using the

VC model. Once a sufficient number of images have been analyzed, and the model's confidence

level has been met, the resulting location is displayed on the map. This location information can

be utilized for path finding purposes as well.

Figure 4 Sequence diagram for Vision-based Positioning

2.2.2.2 Path Finding

The app enables users to use their location and desired destination to navigate within the HKU

campus. It then optimizes the best route and displays it on the map, providing navigational cues

for guidance. This versatile approach ensures seamless navigation within the HKU campus,

regardless of indoor or outdoor environment.

 7

Figure 5 Sequence diagram for Path Finding

2.2.2.3 Additional Feature: Accessing HKU Campus information

The app offers users a page to access comprehensive information about the HKU campus. This

page provides details about various buildings, including pictures, locations, departments, websites,

and available facilities for visitors. Users can effortlessly explore the campus while navigating

with the app, enhancing their overall experience.

2.2.3 Selection for Frontend Development Framework: React Native

React Native is chosen for the mobile app UI development. React Native is elected for its cross-

platform nature, the vast ecosystem, and the large community. It allows developers to write code

once and deploy the code on both Android and iOS, saving time and effort compared to developing

separate apps for each platform using other frameworks. Moreover, the extensive library of pre-

built components available in the React Native ecosystem can be easily integrated into applications,

reducing the need for building UI elements from scratch and accelerating development speed.

Additionally, React Native has a large and active community. The strong community support adds

value to React Native by providing a rich pool of resources and making it easier for developers to

find solutions to challenges during the app development process.

 8

2.3 Mapping and Navigation Component

This section describes the use of the mapping and navigation component and explains the selection

of the development tool for the component.

2.3.1 Mapping and Navigation Component Introduction

The mapping and navigation component is responsible for mapping users’ locations onto the

campus map and optimizing the paths to the destination. The map should cover the scope of the

project, that is the Main Building. This component will be using online mapping services to ensure

the campus map is standardized and up to date.

2.3.2 Selection of Development Tool

There are a number of choices for the mapping development tool, including Google Maps,

FengMap, Mapbox, OpenStreetMap, IndoorAtlas, MappedIn, and ArcGIS. Considering factors for

the tool selection are accessibility, money cost, development complexity, and performance. Table

1 shows the comparisons of the shortlisted tools. More details about the development tools are

included in Appendix A – E.

Tool Accessibility Money Cost Development Complexity Performance

Google Maps

Map: Free

API: Pay As

You Go

- Easy

- Dependent to Google

Maps Team

- Integrated with the map outside campus

- Place to Place navigation

- No Control to Map

- No visualisation for indoor environment

FengMap

Map: Fiexed

Cost

API: Free to

Use

- Draw map from scratch

- Well support for

mapping and navigation

- Poorly integrated with the map outside

campus

- Point to Point navigation

- Good Indoor Map Visualisation

Mapbox

Expensive

- Draw map from scratch

- Well support for

mapping and navigation

- Integrated with the map outside campus

- No visualisation for indoor environment

 9

OpenStreetMap

Free (Open

Source)

- Draw map from scratch

- Poor support for

mapping

- Required an additional

navigation solution

- No Navigation

- No visualisation for indoor environment

(Floor plan)

IndoorAtlas

Expensive

- Draw map from scratch

- Well support for

mapping and navigation

- Poorly integrated with the map outside

campus

- Point to Point Navigation

- Good Indoor Map Visualisation

ArcGIS

Expensive

- Draw map from scratch

- Well support for

mapping and navigation

- Poorly integrated with the map outside

campus

- Point to Point Navigation

- Good Indoor Map Visualisation

MappedIn

No Access

in Hong

Kong

NA NA NA

Table 1 Comparisons of development tools for mapping and navigation

2.3.2.1 Google Maps

Google Maps services offer user-friendly interfaces and reasonable costs, making them easily

accessible. Google Maps provides an indoor map for the Main Building, which saves effort for the

project. Moreover, users are generally already familiar with the Google Maps interface.

Implementing Google Maps services in the app would eliminate the need for users to acquaint

themselves with a new map, resulting in a seamless user experience.

However, it should be noted that the completion of building navigation within the Main Building

is a task that extends beyond the scope and timeline of this final-year project. Achieving this would

require providing additional information to the Google Maps team and collaborating closely with

them. Consequently, considering the limitations and constraints of the project, Google Maps may

not be the optimal solution for fulfilling the project requirements.

2.3.2.2 FengMap, Mapbox, IndoorAtlas, and ArcGIS

FengMap, Mapbox, IndoorAtlas, and ArcGIS are notable providers of specialized services for

indoor map development and navigation. These platforms offer robust support for creating visually

appealing indoor maps, optimizing paths, and incorporating features like floor selectors.

 10

However, it should be noted that building indoor maps from scratch using these tools can be time-

consuming, requiring significant development efforts. Another aspect to consider is the cost

associated with these development tools, which unfortunately exceeds the project's allocated

budget. While all four platforms provide similar services, FengMap stands out as the most cost-

effective option among them.

2.3.2.3 OpenStreetMap

OpenStreetMap is an open-source resource that can be used to develop and view indoor maps.

However, it provides the least support for development, and it must work with various additional

tools to provide mapping and navigation functions, rendering an extremely high development

complexity.

2.3.2.4 Proposed Solution

The shortlisted development tools exhibit varying performance in outdoor and indoor scenarios.

To address this, a hybrid approach is proposed, allowing users to seamlessly switch between an

outdoor map and an indoor map. For the outdoor map, Google Maps is chosen due to its extensive

maturity and widespread user familiarity. On the other hand, for the indoor map, FengMap is

selected as the most cost-effective option among specialized indoor mapping tools.

However, it should be noted that the allocated budget remains insufficient to develop the entire

indoor map for the Main Building. Consequently, only 2 floors will be included in the map, and

there may be limitations in achieving an accurate scale due to budget constraints. Nevertheless, it

is important to highlight that the scale of the map does not impact the visualization or other

essential features provided by the map.

By combining Google Maps for the outdoor map and FengMap for the indoor map, the proposed

hybrid approach aims to strike a balance between user familiarity, functionality, and cost-

effectiveness. While limitations exist, this approach optimizes the available resources to provide

users with a comprehensive navigation experience encompassing both outdoor and limited indoor

areas of the Main Building.

 11

2.4 Backend Service

This section discusses the development framework and the transmission technology selected for

the backend service of the project. This section also describes the implementation of the backend

service.

2.4.1 Selection of Backend Development Framework: Flask

The chosen backend development framework is Flask. Flask is a lightweight and flexible Python

framework specifically designed for building RESTful APIs and backend services. Its simplicity

and ease of use make it ideal for rapid prototyping and development of backend functionality in

the system. Flask's extensive ecosystem of extensions and libraries further enhances its capabilities,

enabling seamless integration with the CV model and data management requirements of the project.

By utilizing Flask, the system can leverage the robustness and efficiency of Python while

benefiting from Flask's simplicity and flexibility.

2.4.2 Selection of Transmission Technology: WebSocket

WebSocket is the chosen communication protocol for the project. WebSocket provides a persistent,

full-duplex communication channel over a single TCP connection. This enables real-time,

bidirectional communication between clients and the server. WebSocket has low latency and

eliminates the need for frequent HTTP request-response cycles, resulting in faster and more

efficient communication. WebSocket also offers enhanced scalability and resource utilization. Its

event-driven model reduces unnecessary requests and server load, allowing servers to handle a

larger number of concurrent connections with lower resource consumption. Furthermore,

WebSocket supports cross-origin communication, enabling clients from different domains to

establish secure connections and exchange data.

Socket.IO is used to establish the WebSocket connection. Socket.IO simplifies the implementation

of real-time, bidirectional communication using WebSocket. It offers compatibility with various

browsers and environments, automatic reconnection, and event-based messaging, which align with

the project requirement.

 12

2.4.3 Backend Service Implementation

The WebSocket connection is initiated upon launching the app. During active camera usage by

users to scan their surroundings, short video clips captured by the phone camera are transmitted

to the server in base64 format. Upon receipt of these video messages, the server proceeds to

process the encoded data strings and fit them into the model. Upon deriving the output of the

model, denoting the detected location, the server transmits the result back to the client through

the existing WebSocket connection. The resulting message encapsulates a unique message ID,

the success state, the coordinates, and the corresponding location name.

Figure 6 Flow chart for the flow of captured videos to the model

2.5 Model Design

This section explains the decision made for the model structure, followed by the selection of the

building tools.

2.5.1 Model Selection and Structure Design

For the computer vision model, three kinds of algorithms are shortlisted for selection: image

similarity algorithm, image classification algorithm and object detection algorithm.

Image classification algorithms and image similarity algorithms consider detection from the image

content level while object detection algorithms rely on the object features. Moreover, both image

classification and image similarity algorithms are unable to provide localization information from

the detection.

On the other hand, object detection algorithms can handle multiple detection at the same time.

Object detection algorithm can provide real time tracking features on video, with location

information such as coordinates on image, while image classification algorithm and image

 13

similarity algorithm detect perform detailed analysis on image content. As our project primarily

aims to provide localization and navigation clues to users with the computer vision approach,

object detection algorithms are the best option as our model algorithms.

The object detection layer serves to detect buildings, markers, and other features within the images.

However, single-layer model yielded suboptimal outputs in terms of accuracy. Therefore, a

supplementary image similarity layer is proposed. By filtering out irrelevant objects, such as

humans, with object detection layer, the accuracy of the model is expected to improve.

Furthermore, the object detection layer aids in the selection of images for subsequent comparison

within the image similarity layer. This strategic image selection shall significantly reduce the

computational burden and running time of the additional layer. This refined architecture may

demonstrate a more comprehensive approach to the vision-based navigation system, improving its

overall accuracy and efficiency.

The finalized selection for the object detection model is discussed in Section 2.5.2. Shortlisted

frameworks for building the additional image similarity layer are OpenCV and ResNet. The final

selection will be determined after testing.

2.5.2 Object Detection Model Selection

Figure 7 Performance metrics chart for different object detection models

For the object detection model, numerous algorithms have been introduced to the public. In Figure

7, a comparison of object detection and recognition performance that has been conducted by Sorin

[7], You-only-look-once (YOLO) algorithms have a better performance in high frames-per-

 14

seconds (FPS) rate. YOLO being a single-stage detector, has a relatively lower complexity than

second-stage detectors such as RefineNet, CornerNet, etc. This allows YOLO to provide faster

detection results, supporting real-time detection. This feature aligns with our project requirements

– to provide real-time localization and navigation assistance.

YOLO is selected for implementing the object detection layer of the model.

2.5.2.1 YOLO

YOLO is a real-time object detection model that uses a single neural network to directly predict

class labels, enabling the model to recognize multiple objects within an image at a faster pace. The

fast-paced real-time navigation reduces the time needed for computing the location result. This

computing efficiency becomes a compelling justification for selecting YOLO, as it ensures a

responsive user experience during navigation tasks.

In our project, the latest version of YOLO (YOLOv8), provided by Ultralytics, has been selected

for implementation. Ultralytics is a software company that publishes open-source YOLO models

to the public. The application interface (API) provided extensive and efficient functionality for

users to build customized object detection models. Contributing to the wide community of YOLO

users, guidelines and support are available online. In addition, according to official documents

released by Ultralytics, YOLOv8 has a low hardware requirement: GPU with a minimum of 8GB

of memory. The low hardware requirement is favorable for the implementation of our project under

the scope of Final Year Project.

2.5.2.2 Optimizer

API provided by Ultralytics allows users to select suitable optimizer algorithms, such as Stochastic

Gradient Descent (SGD), Adaptive Momentum Estimation (Adam), Adam with Infinity Norm

(Adamax), Adam with Weight Decay (AdamW), Nesterov-accelerated Adam (Nadam), Rectified

Adam and Root-mean-square Propagation (RMSprop). The decision of the optimizer algorithm

will be based on the results, further discussed in section Section 3.2, after testing. To evaluate the

effect of the corresponding optimizer algorithm, testing with the same hyperparameters (listed in

Appendix F) and the same dataset will be used in the model training process with 300 epochs.

 15

2.6 Data Flow

To prepare quality data for training the CV model, every data must go through these 4 phases: data

collection, data processing, data labelling, and data augmentation, before fitting into the model.

Figure 8 Demonstration of the 4 phases data workflow

2.6.1 Data Collection

In order to collect data for our research, we considered several sources including online sources,

past research, internal sources, and primary data sources. Upon examination, we found that the

image quality of online sources was poor for our topic and past research internal sources were not

disclosed to the public for easy access, making it difficult to gather up-to-date information.

Therefore, we decided that the primary data source would be the best option as it provides us with

better control over both the quantity and quality of the images.

In the data collection phase, image data is collected manually through phone cameras, taking

photos one by one. However, we soon discovered that this method was inefficient. Therefore, we

conducted a data experiment and found that a more efficient method was needed to improve the

data collection process.

To enhance the effectiveness of data collection, a more efficient method is proposed and

implemented: videos are taken and used to extract images framewise. This approach generated

hundreds of images quickly, significantly shortening the time it took to complete the data

collection process.

2.6.2 Data Processing

Data processing includes data cleaning, image compression, and image formatting. Data cleaning

involves the removal of noise, outliers, and artifacts from the acquired data to ensure its quality

 16

and integrity. Image compression techniques are applied to reduce the storage and computational

requirements. Image formatting is performed to standardize the images and facilitate seamless

integration with the 2 layers, ensuring consistent results.

2.6.3 Data Labelling

Data labelling generally requires a large amount of human effort and time. To speed up the

development, we chose to label our data on RoboFlow, a modern data workflow management tool

[8]. It not only allows annotating on images but also reviewing the summary of the annotated

dataset and updating the data whenever needed. The integration of RoboFlow in the data labelling

process streamlines the annotation workflow, enhances efficiency, and maintains the quality and

consistency of the labelled data.

2.6.4 Data Augmentation

Data augmentation is employed in the project to increase the diversity and robustness of the

training data. By applying transformations such as cropping, flipping, rotation, scaling, and

adjusting brightness, the augmented dataset introduces variations and simulates real-world

conditions. This technique enhances the models' ability to generalize and accurately classify

objects in different scenarios, improving the overall reliability and robustness of the navigation

system.

3 Interim Results

This chapter discusses the progress for the data collected, optimizer algorithm evaluation, the

mobile application implementation, and the indoor map development.

3.1 Data Collection

After capturing videos among 40 places within the HKU main building, thousands of images are

extracted from it. Images with low quality are filtered and the remaining are labelled with the

corresponding location tags. Examples of tag names are “room201”, “room202”, “room203”, etc.

Lastly, by applying some data augmentation techniques, namely rotation variation and brightness

 17

variation, a total of 5978 images are generated from 2264 raw images. These images are then split

into training dataset, validation dataset and testing dataset in the ratio of 8:1:1 respectively.

3.2 Optimizer Algorithm

An experiment was conducted to investigate the impact of optimizer algorithms on the accuracy

of object detection during model training. Table 2 below shows the overall class accuracy

(Precision) using different optimizer algorithms.

Optimizer Precision

SGD 0.965

AdamW 0.958

Adamax 0.956

RAdam 0.944

NAdam 0.942

Adam 0.934

RMSProp 0.517

Table 2 Overall class precision for YOLOv8 training with different optimizer algorithms

Based on the overall class detection accuracy, RMSProp has the worst performance among all.

The precision of 0.517 indicates that the model trained with RMSProp in the given conditions is

not accurate enough to support precise and fast object detection. On the contrary, other optimizer

algorithms have a better performance in terms of overall class accuracy, ranging from 0.934 to

0.965. Of the seven optimizer algorithms tested, SGD performed the best. A more detailed

evaluation of the different optimizer algorithms is provided in the following sections.

3.2.1 Evaluation Metrics

In the following sections, we will evaluate each optimizer’s performance in the model training

process based on corresponding Precision curve, Recall Curve and Precision-Recall Curve.

The precision curve allows us to have an understanding of how precision (ability to make positive

predictions) varies as the detection threshold changes, providing insight into the ability to make

positive predictions.

 18

The recall curve illustrates the variation of recall (ability to make true positive value comparing

with positive instances, true positives and false negatives) value at different detection threshold

values, establishing the performance of the model in correctly identifying objects.

Precision-Recall curve showcases the trade-offs between precision and recall at varied confidence

thresholds. From the precision-recall curve, we may derive the value of mean average precision at

an Intersection over Union (IoU) threshold of 0.5 (mAP@0.5). This metric evaluates the average

performance in terms of the trade-off between precision and recall when the level of overlapping

predicted bounding boxes and ground truth bounding boxes exceeded the threshold of 0.5.

3.2.2.1 SGD

Figure 9 Precision-Confidence Curve for model using SGD

From Figure 9, precision curves for each class are establishing an overall upward trend at a high

precision value. The blue curve indicates the overall class precision curve for the model. As the

confidence threshold value increases, the precision of the model increases correspondingly and

achieves maximum precision (precision = 1.0) when the confidence level is set as 0.943.

 19

Figure 9 Recall-Confidence Curve for model using SGD

The presented recall curve, as depicted in Figure 10, corresponds to the performance of a model

that has employed the stochastic gradient descent (SGD) optimizer algorithm. The curve shows a

perfect recall value of 1.0 when the confidence threshold is set between 0.0 and 0.4, indicating that

the model's performance is optimal when the threshold is lenient. As the confidence threshold value

increases, a slight decline in the recall curve is observed. However, when the confidence threshold

value reaches 0.8, the recall curve exhibits a gradual decline, indicating that the model's ability to

make true positive predictions decreases as the threshold becomes stringent.

 20

Figure 11 Precision-Recall Curve for model using SGD

Figure 11 illustrates the trade-off for precision and recall for the model trained with SGD as the

optimizer algorithm. The overall class precision-recall curve indicated that the model has a high

precision value and high recall value at most of the threshold values. From the graph, we obtained

mAP@0.5 is equal to 0.987 which shows that the model has a very good performance in terms of

the trade-off between precision and recall. The precision-recall curve for the model is almost

identical to the precision-recall curve of an ideal detector, high precision value and high recall

value at all confidence thresholds.

 21

3.2.2.2 Adam

Figure 10 Precision-Confidence Curve for model using Adam

From the precision curve (Figure 12), the precision curve of the overall classes established a general

upward trend and achieved 1.0 precision at a 0.863 confidence level. By looking at the precision

curve for individual classes, a fluctuating and inconsistent pattern is observed. Precision curve of

individuals classes reaches 0.0 precision at confidence score threshold ranged from 0.7-0.8. It

indicates that the model performance in terms of precision for individual classes is not consistently

reliable and precise.

 22

Figure 11 Recall-Confidence Curve for model using Adam

Above is the Recall curve obtained after the model training using Adam as the optimizer algorithm.

It has a very similar trend to the recall curve for the model using SGD (Figure 10). However, the

perfect recall value is only maintained when the confidence is set between 0.0 – 0.3. The recall

curve declined as the confidence threshold value increased and drastically dropped when the

confidence threshold was set between 0.75 - 0.85. From the graph, some classes even result in 0.0

recall at a 0.62 confidence threshold. It shows that the model may not be able to be detected in a

stringent confidence threshold.

 23

Figure 12 Precision-Recall Curve for model using Adam

Figure 14 depicts a similar precision-recall curve pattern as shown in Figure 11. The overall class

precision-recall curve indicated that the model has a high precision value and high recall value at

most of the threshold values. The mAP@0.5 value obtained from the precision-recall curve is 0.981,

indicating the model has an acceptably good performance in terms of precision-recall trade-off.

 24

3.2.2.3 AdamW

Figure 13 Precision-Confidence Curve for model using AdamW

In Figure 15, the blue curve representing the precision curve for overall classes establishes an

upward trend. The model obtained a precision score of 1.0 when the confidence score threshold

was set to 0.951. However, for some classes, the precision fluctuated as the confidence score

threshold increased.

Figure 14 Recall-Confidence Curve for model using AdamW

 25

By comparing the above figure with the recall curve for the model using SGD (Figure 10), a similar

pattern is observed. Both curves display comparatively high recall values at lenient confidence

threshold levels. As the confidence threshold becomes stricter, the recall value drops drastically

from the 0.75-0.9 confidence threshold level. The recall curve demonstrates that the model has an

overall good performance in terms of recall at different confidence thresholds.

Figure 15 Precision-Recall Curve for model using AdamW

The presented analysis depicts a precision-recall curve pattern in Figure 17 that is analogous to the

one shown in Figure 10. The overall precision-recall curve reveals high precision and recall values

for the model at most threshold values. The mAP@0.5 value obtained from the precision-recall

curve is 0.984, indicating the model has an acceptably good performance in terms of precision-

recall trade-off.

 26

3.2.2.4 Adamax

Figure 16 Precision-Confidence Curve for model using Adamax

In Figure 18, the blue curve demonstrates an upward trend for the overall class precision. Moreover,

the perfect value of the overall class precision is retained when the confidence score threshold is

equal to or greater than 0.931. It is noteworthy that as the confidence score threshold value

increases, there is a steady improvement in precision observed for each class.

Figure 17 Recall-Confidence Curve for model using Adamax

 27

From Figure 19, high recall values are obtained when the confidence threshold value is lenient (0.0

– 0.6). The recall curve gradually declined when the confidence threshold value became stringent,

decreasing when the confidence was set between 0.75 - 0.9. Moreover, some classes, represented

by the grey curve, result in a relatively low recall value at lenient confidence threshold values. It

indicates that, for some of the classes, the detection may not be able to discover targeted features

successfully.

Figure 18 Precision-Recall Curve for model using Adamax

Figure 20 depicts the precision-recall curve for the model using Adamax. The mAP@0.5 value is

0.987, which is the same as the mAP@0.5 score for the model using SGD (see Figure 11), for the

overall class performance. Moreover, by comparing the pattern of the individual class’s precision-

recall curve from both figures, the model using Adamax as an optimizer algorithm demonstrates a

better performance in terms of the trade-off between precision and recall.

 28

3.2.2.5 RAdam

Figure 19 Precision-Confidence Curve for model using RAdam

The precision curve shown in Figure 21 illustrates an upward trend. The precision for all classes

achieves 1.0 when the confidence threshold value is equal to or greater than 0.89. Further looking

into the precision performance of individual classes, abnormal cases, where the precision fluctuated

drastically, are observed. The presence of the pit in the precision-confidence curve suggests that

the model is struggling with making correct predictions in a certain range of confidence score

threshold for some of the classes. Therefore, there is still room for improvement in terms of

prediction accuracy.

 29

Figure 20 Recall-Confidence Curve of model using RAdam

The recall-confidence curve shown in Figure 22 follows a similar pattern as the ones obtained from

models that use different optimizers. The performance, measured in terms of overall class recall,

is good for lenient confidence threshold levels. As the confidence level becomes more stringent,

the recall value decreases. Notably, the overall class recall value is not as high as that of other

optimizers, where maximum recall value is 1.0, whereas the model has a maximum recall value of

0.99. The slight difference suggests that both the model and dataset may require further

improvement to provide better results.

 30

Figure 23 Precision-Recall Curve of model using RAdam

The precision-recall curve in Figure 23 provides an approximately ideal model performance in

terms of the trade-off between precision and recall. The precision value remains high for most of

the recall values. The mAP@0.5 value obtained from the figure is 0.985.

3.2.2.6 NAdam

Figure 21 Precision-Confidence Curve of model using NAdam

 31

The overall class precision observed in Figure 24 shows an upward trend as the confidence

threshold value increases. The model achieved a precision value of 1.0 at a confidence threshold

value equal to 0.923 for all classes. However, the precision-confidence curve for individual classes

fluctuates. This suggests that the accuracy of precision provided by the model in different classes

can be inaccurate and unreliable.

Figure 22 Recall-Confidence Curve of model using NAdam

The recall-confidence curve in Figure 25 drops slowly from confidence threshold 0.0 to confidence

threshold 0.6. It declines drastically from confidence threshold 0.75 – 0.9. Additionally, the grey

curves that represent the recall-confidence curves for individual classes display distinct fluctuations.

Some of the classes exhibit a noteworthy decline, achieving only 0.8 recall at lenient confidence

threshold level. These observations suggest that the machine learning model may not provide

accurate predictions for some of the classes.

 32

Figure 23 Precision-Recall Curve of model using NAdam

The above figure showcases the precision and recall trade-off of the model using NAdam. The

representing precision-recall curve demonstrates a good performance: high precision value at

different recall values. The mAP@0.5 obtained is equal to 0.982. However, the precision-recall

curves for individual classes established a diversified and dispersed pattern. For some individuals,

the precision value dropped at a recall level of 0.2. It implies that the trade-off between precision

and recall for some of the classes may be dissatisfying. In other words, the detection results will be

unreliable as the precision and recall is affected.

 33

3.2.2.7 RMSProp

Figure 24 Precision-Confidence Curve of model using RMSProp

In Figure 277, the overall precision performance is demonstrated. The overall precision achieves

a maximum of 0.81 at the confidence threshold value of 0.505. It indicates that the model is

struggling to make highly confident and precise results. The grey curves representing individual

classes display an unstable and fluctuating precision-confidence pattern, further indicating that the

model training with RMSProp under the given conditions may not be capable of delivering

accurate predictions.

 34

Figure 25 Recall-Confidence Curve of model using RMSProp

The Recall-Confidence Curve in Figure 28 has an exponential decay pattern. The overall class

recall value dropped from 0.59 to 0.0 across the confidence threshold value. This suggests that the

model is incapable of identifying or capturing positive instances and making accurate predictions.

Figure 26 Precision-Recall Curve of mode using RMSProp

Figure 29 displays a mAP@0.5 value of 0.386 and a precision-recall trade-off curve that is non-

smooth and exhibits low values for precision and recall. This indicates a poor performance of the

 35

model, as reflected by the low mAP@0.5 value. The model's predictions do not meet the desired

performance standards, being both inaccurate and incomplete.

3.2.2.8 Decision

After testing different optimizer algorithms, it was found that the model using SGD achieved the

best results during training. Based on Table x, the model that used SGD attained the highest overall

class precision score of 0.965. Both the precision and recall curves showed that the model using

SGD was able to make accurate and sensitive predictions. Moreover, the precision-recall curve

demonstrated an excellent trade-off between precision and recall. Therefore, we have decided to

use SGD as the optimizer algorithm for our object detection model. Further hyperparameter fine-

tuning will be performed in the future.

 36

3.3 Mobile Application

The UI consists of 3 pages, implementing vision-based positioning, path finding, and accessing

campus information respectively.

3.3.1 Vision-based positioning

As shown in Figure 30 to Figure 32, the app accesses the phone camera for image capturing. If the

connection to the server fails, an error message will be prompted, as demonstrated in Figure 30.

Figure 31 shows the reminder message to the users if the location detection continues to fail. Upon

receipt of the location result from the server, as shown in Figure 32, a message will be prompted

to indicate the detected location. Users can choose to keep capturing or go to the “Map” page with

the detected location. For the latter option, the UI would direct to the “Map” page and set the

detected location as the current location.

Figure 30 The "Camera" page –

Connection error

Figure 31 The "Camera" page –

Reminder message

Figure 32 The "Camera" page –

Successful detection

 37

3.3.2 Path finding

As illustrated in Figure 33, the “Map” page allows users to input source location and destination.

When users are inputting in the boxes, a suggestion list of venue names will be provided. Users

have to choose from the suggestion list to finish inputting. This serves as a way of input validation.

The navigation service will be integrated into the app to visualize the optimized path on the page.

Figure 27 The "Map" page

3.3.3 Access to campus information

Figure 34 shows the “Info” page that provides users with various information about the campus of

HKU. Basic information about the campus, including locations of buildings, departments, facilities,

and transport, can be accessed through this page.

 38

Figure 28 The "Info" page

3.4 Campus Map

The indoor map for the main building has been structured. A floor selector is provided for selecting

the floor to display. Routes are added so that indoor navigation powered by FengMap can be used.

The remaining works are labelling room names, optimizing layouts, and integrating the mapping

and navigation service into the app.

Figure 29 Demonstration of an indoor map built using FengMap (2/F, Main Building)

 39

4. Limitations and Difficulties

This chapter delves into the dataset size overload issue identified in the early stages, data collection

inefficiency problem, and the location generalization issue, examining both the nature of the

challenges and the responses devised to address them.

4.1 Dataset Size Overload

4.1.1 Problem of Dataset Size Overload

The large data size required for the project imposes significant challenges on its development. In

particular, the capturing of images from various angles, heights, and times at the same node on the

map adds to the complexity. Furthermore, the quest for higher accuracy necessitates a substantial

number of images for model training. Consequently, the development of an accurate positioning

model for the entire HKU campus may require an extensive dataset comprising millions of images.

The magnitude of data involved imposes rigorous demands on computational power, storage

capabilities, and human resources. Notably, these requirements surpass the scope of a typical final

year project, warranting careful consideration and resource allocation.

4.1.2 Response to Dataset Size Overload: Limiting Scope

The primary mitigation strategy is to limit the scope of the project. Instead of encompassing the

entire HKU campus, the project will concentrate on a specific section. The Main Building of HKU

has been selected as the designated testing site for the project. By focusing on the Main Building,

the project aims to achieve the goal of effectively navigating visitors within its premises. By

adopting a focused approach and considering potential future expansions, the project aims to strike

a balance between the limited resources available and the aspiration to deliver an effective

navigation solution within the Main Building of HKU.

4.2 Inefficiency of initial Data Collection

4.2.1 Problem of Initial Data Collection

An experiment was conducted to examine the efficiency of the initial data flow design. Table 1

below shows the times used for different numbers of images in the 4 phases.

 40

Table 3 Time used for 40 images and 117 images in the 4 data flow phases

The findings demonstrate that the time spent on the data collection phase exhibits the most

substantial growth. The coefficients associated with the number of images and data collection,

highlighted in Table 3, are closely aligned, suggesting that the time required for data collection

gradually increases as the dataset size expands. Leveraging existing tools aids in mitigating the

proportional growth of time in data processing, data labelling, and data augmentation. However,

due to the manual image acquisition on an individual basis, a linear relationship emerges between

the number of images and the time spent on data collection. The experiment highlights the

inefficiency of the original data collection method, consequently diminishing the value of the

vision-based approach.

4.2.2 Response to Inefficient Data Collection: Videos instead of Photos

The initial data collection process encountered inefficiency as images were gathered on an

individual basis. However, given the importance of both image quality and quantity, it became

evident that obtaining data from primary sources was necessary. Consequently, a new and

improved method was implemented, which involved capturing videos and subsequently extracting

frames from these videos. This approach ensures a more efficient and comprehensive collection of

data for the project, allowing for a greater variety of images to be obtained while maintaining the

desired level of quality.

Using the new data collection method, the time used for capturing training data gradually reduced.

Table 4 shows the improved time used for data collection.

No. of Image

Time used in

Data Collection

Image per

minute

Initial

Method
117 14 8.36

New

Method
165 3 55

Table 4 Time cost comparison of the initial and new data collection methods

No. of Image

Time used

 Data Collection Data Processing Data Labelling Data Augmentation

Set I 40 5 5 10 3

Set II 117 14 7 15 4

Coefficient 2.93 2.80 1.40 1.50 1.33

 41

4.3 Location Generalization

4.3.1 Problem of Location Generalization

To improve the accuracy of object detection, we have designed a model that recognizes specific

and unique features in images which can provide a brief idea of the location of the user. However,

this approach poses a limitation on the direct prediction of location. Multiple objects can be

detected in the same frame, and the detection results can be misleading and cannot be associated

with the exact location.

4.3.2 Proposed Response to Location Generalization: Additional Layer

Figure 30 Detection results example of using trained model

One of the improving methods is to impose confidence score filtering on the object detection model.

As seen in Figure 36, multiple objects can be detected in the same image with different confidence

scores. By applying confidence score filtering, some predictions with low confidence scores (i.e.

 42

room237window 0.3) can be screened, reducing the misleading detection results and the

complexity of understanding the location of the user.

Another mitigation will be creating a specialized function that integrates various factors such as

confidence scores, detected class names, and appearance on frames. This function will analyze and

summarize the user's location information and provide a generalized view of their whereabouts.

This approach will help us to mitigate potential errors and improve the overall quality of our

predictions.

5 Schedule and Future Plan

5.1 Schedule

The project progress, as depicted in Table 5, generally aligns with the proposed schedule. The

initial implementations of the mobile application and the CV model have been completed as

planned. The construction and optimization of the indoor map are still in progress. Prioritizing

indoor map development and integration, along with exploring various approaches to improve

model’s accuracy, are crucial for the upcoming stages of the project.

Period Work Description Progress

Sep - Oct

Analyse different proposed ideas’ feasibility and effectiveness Done

Research and literature review of computer vision-based positioning Done

Design interface for mobile app Done

Oct – Nov

Collect data in Main Building (2nd Floor) Done

Research in different computer vision models Done

Develop mobile app (both frontend & backend) Done

Data processing Done

Nov – Dec
Build and train shortlisted machine model Done

Evaluate and select model with best performance Done

Dec - Jan
Prepare interim report and presentation Done

Prepare rough demo for interim presentation Done

Jan - Feb

Select and implement suitable navigation mechanism In Progress

Integrate machine learning model and map & navigation mechanism
to mobile application Starting Soon

Fine tuning the model In Progress

Feb - Mar
Debug and improve mobile application and model Starting Soon

Deploy mobile application for alpha testing Starting Soon

Mar - Apr Prepare final report Starting Soon

 43

Source code cleanup Starting Soon

Prepare for final presentation Starting Soon

Prepare for the project exhibition and project competition Starting Soon

Table 5 Project Schedule Table

5.2 Future Plan and Directions

For the object detection model, the next goal is to achieve at least 97% accuracy with further

hyperparameter tunning, given that the current best model can achieve approximately 95%

accuracy. To prove the reliability of our model, our next goal is to maintain high accuracy during

the dataset expansion. In order to have a direct insight on the ability of our model, setting up a

chatGPT4 model to compare with our model is a feasible next step.

In terms of the navigation map, a more complete indoor building map is required for accurate

positioning. One of the potential implementations is to cooperate with ManiFold Tech Limited, a

company with experience and equipment for object scanning, and explore the extendibility of our

project with an Augmented Reality (AR) map.

For the application development, a few additional features are possible to integrate with the app.

For example, an image upload recognition function. It allows users to upload images for

positioning instead of real time location rendering.

6 Conclusion

This project aims to develop an effective vision-based navigation and contribute to the research

field of computer vision applications. The navigation system, once fully developed, will enhance

visitor experience, providing accurate and efficient navigation within the HKU campus. This

system will greatly benefit individuals unfamiliar with the building's layout and those with special

navigation needs. Moreover, the project contributes to the advancement of indoor navigation

technologies, particularly within building complexes, serving as a valuable reference for future

endeavours in this domain.

 44

The paper presented an in-depth analysis of the methodologies employed and the outcomes

achieved in designing the system, app, and model. The implementation of the mobile application

and backend service has been finalized, ensuring a solid foundation for the project. However,

careful considerations and cost-effectiveness studies are required for the development of the

mapping and navigation functionality. Utilizing a dataset comprising 2264 collected images, an

object detection model has been successfully trained using the SGD optimizer. To enhance

accuracy for navigational purposes, a proposed approach involves an additional layer to the CV

model. This is because object detection models often overlook important positioning factors such

as distance and capturing angle. The availability and efficiency of data collection play significant

roles in determining the cost-effectiveness of the project. As the dataset size increases, the time

spent in the data collection phase can become a dominant factor. Therefore, it is important to

carefully manage data acquisition and minimize the required dataset size to optimize project costs.

Overall, the project's progress is generally in line with the schedule, signifying a positive

advancement toward the desired objectives.

Looking ahead, the immediate next steps involve improving functionality and implementation of

the app and the backend service. Another important step is prioritizing the completion and

integration of the indoor map with the outdoor map and the mobile application. Due to the model

deficiency, attention will also be given to research and comparing different proposed model

implementation. Additionally, research in optimizing the dataset size for model training will

continue to address the dataset size overload issue.

 45

References

[1]Communications and Public Affairs Office, “HKU Quick Stats 2022”.

https://www.cpao.hku.hk/qstats/files/Archive/2022.pdf (accessed Sep 19, 2023).

[2] H. Motte, J. Wyffels, L. De Strycker, and J. P. Goemaere, “Evaluating GPS data in indoor

environments,”.https://www.researchgate.net/publication/269978666_Evaluating_GPS_Data_in_

Ind oor_Environments. Advances in Electrical and Computer Engineering, vol. 11, no. 3, pp. 25–

28, Jan. 2011, doi: 10.4316/aece.2011.03004. (accessed Sep 21, 2023).

[3] T. Wu, L.-K. Chen, and Y. Hong, A Vision-Based Indoor Positioning Method with High

Accuracy and Efficiency Based on Self-Optimized Ordered Visual Vocabulary,

https://lightweb.ie.cuhk.edu.hk/api/publication/1658736041110- 07479682.pdf (accessed Sep. 21,

2023).

[4] D. Khan, Z. Cheng, H. Uchiyama, S. Ali, M. Asshad, and K. Kiyokawa, “Recent advances in

vision-based indoor navigation: A systematic literature

review,”.https://www.sciencedirect.com/science/article/abs/pii/S0097849322000371. Computers

& Graphics, vol. 104, pp. 24–45, May 2022, DOI: 10.1016/j.cag.2022.03.005. (accessed Sep 22,

2023).

[5] C. Wiegand, “Achieving Blue Dot: Best types of indoor positioning systems,” Mar. 22, 2023.

https://www.inpixon.com/blog/what-is-the-best-system-for-achieving-blue-dot- indoors

(accessed Sep 22, 2023).

[6] S. Ahmad, “How is Mobile Computer Vision Changing the World?,” Mobisoft Infotech, Dec.

01, 2020. https://mobisoftinfotech.com/resources/blog/how-is-mobile- computer-vision-

changing-the-world/ (accessed Sep 23, 2023).

[7] Grigorescu, Sorin & Trasnea, Bogdan & Cocias, Tiberiu & Macesanu, Gigel. (2019). A survey

of deep learning techniques for autonomous driving. Journal of Field Robotics. 37.

10.1002/rob.21918. (accessed Dec 21, 2023)

 46

[8] Q. Lin, G. Ye, J. Wang, & H. Liu, “RoboFlow: a Data-centric Workflow Management System

for Developing AI-enhanced Robots.” Proceedings of the 5th Conference on Robot Learning,

PMLR 164:1789-1794, 2022. https://proceedings.mlr.press/v164/lin22c.html. (accessed Nov 30,

2023).

https://proceedings.mlr.press/v164/lin22c.html

 47

Appendices

Appendix A – FengMap Pricing

Appendix B – IndoorAtlas Pricing

Appendix C – ArcGIS Pricing

Appendix D – Indoor Map of Demonstration of OpenStreetMap

 48

Appendix E – Inaccessibility of MappedIn

 49

Appendix F – Used parameters of model training

task: detect

mode: train

model: yolov8n.pt

epochs: 300

patience: 20

batch: 16

imgsz: 640

save: true

save_period: -1

cache: false

device: 0

workers: 8

project: null

name: train

exist_ok: false

pretrained: true

verbose: true

seed: 0

deterministic: true

single_cls: false

rect: false

cos_lr: false

close_mosaic: 10

resume: false

amp: true

fraction: 1.0

profile: false

freeze: null

overlap_mask: true

mask_ratio: 4

dropout: 0.0

val: false

split: val

save_json: false

save_hybrid: false

conf: null

iou: 0.7

max_det: 300

half: false

dnn: false

plots: true

source: null

vid_stride: 1

stream_buffer: false

visualize: false

augment: false

agnostic_nms: false

classes: null

retina_masks: false

show: false

save_frames: false

save_txt: false

save_conf: false

save_crop: false

show_labels: true

show_conf: true

show_boxes: true

line_width: null

format: torchscript

keras: false

optimize: false

int8: false

dynamic: false

simplify: false

opset: null

workspace: 4

nms: false

lr0: 0.01

lrf: 0.01

momentum: 0.937

weight_decay: 0.0005

warmup_epochs: 3.0

warmup_momentum: 0.8

warmup_bias_lr: 0.1

box: 7.5

cls: 0.5

dfl: 1.5

pose: 12.0

kobj: 1.0

label_smoothing: 0.0

nbs: 64

hsv_h: 0.015

hsv_s: 0.7

hsv_v: 0.4

degrees: 0.0

translate: 0.1

scale: 0.5

shear: 0.0

perspective: 0.0

flipud: 0.0

fliplr: 0.5

mosaic: 1.0

mixup: 0.0

copy_paste: 0.0

cfg: null

tracker: botsort.yaml

save_dir:

runs\detect\train

