
Project Plan
Table of Contents
Project Background .. 2

Project Objective .. 3

Project Methodology ... 4

Technology introduction .. 5

Project Schedule and Milestones ... 6

Future Plans.. 7

Project Background
With the rise of ChatGPT in 2023, we can see the potential of using large language models

(LLMs) as general assistants for different kinds of language tasks. The pre-trained model

processed a great statistical understanding of language that it can generate wanted answers

based on user prompts. However, I see 3 potential changes from the current stage of LLMs.

First, most virtual assistants or chatbots heavily rely on text as the interface between

humans and machines. For example, ChatGPT does not provide channels like audio files or

documents as input without extension. Some niche assistants like midjourney or Phind (code

assistant) are also text-based. I think it will hinder the adaptation of using such technology

because we will require a dedicated input device like a keyboard to interact with the LLM.

Places like counters of restaurants, and receptions may have access to a large screen and

network but not a keyboard. In that case, we cannot leverage LLM to handle customer’s

inquiries.

Second, most of the chatbots or voice assistants have no virtual avatar. By adding a virtual

avatar to the chatbot, we can make the user experience more personalized and strengthen

user connection with the services provided by the chatbot. Ultimately building trust and

loyalty from customers. Not to mention adding an avatar can help to differentiate the

chatbot from other existing services and create visual appeal.

Lastly, the chatbots we use nowadays may show signs of hallucination. The training materials

are usually not up to date. If we ask about things that occurred very recently, the LLM cannot

obtain such knowledge. Also, due to the randomness during the process of text generation,

we may even obtain information that does not exist in the real world. Therefore, by

combining chatbots and a knowledge base, we can provide up-to-date and accurate

information with citations as well.

There are some start-ups like Asiabots that create similar applications that provide multi-

media chatbots with virtual avatars. However, they are not free nor open-sourced. Also, they

usually do not provide service about connecting to a knowledge base.

At the end, I want to create a chatbot connected to knowledge that can answer questions

with specific domain knowledge and a virtual avatar.

Project Objective
This project aims to develop a chatbot with a web-based UI using Python package named

‘Gradio’. This package allows me to quickly prototype and implement most of the logic of the

application with its native support of machine learning models. The chatbot is expected to

provide information about meals and canteens of HKU retrieved from a knowledge base. The

chatbot should also be able to take plain text and audio file as input. The chatbot should

generate responses from a LLM and display the responses on the UI. The chatbot should be

able to identify queries that have no relevant response.

To conclude with, this project is expected to:

1. Create web app UI for the chatbot that can record transcribe the audio with auto

speech recognition model. Also, the chatbot can take textual input from keyboard.

2. Collect information and create a vector database for queries.

3. Make the chatbot able to query from a vector database.

4. Make the chatbot able to send query results and chat history to LLM as prompts.

5. Make the chatbot able to generate and play audio of a voice reading the response.

6. Create testing scripts to evaluate each model choice based on speech and accuracy.

7. Create example test cases to demonstrate capability of the application.

Project Methodology
To begin with, the following is the workflow of the entire application.

The following part is to list expected functionality of each component:

1. Chatroom UI

• Text field for user to type their queries.

• Button to start recording their vocal queries.

• Text area to display chat history between user and the voice assistant.

• Button to clear chat history.

• View that display virtual avatar that read out the response to user.

2. Speech-to-text

• Accept recording audio as input.

• Perform auto speech recognition to transcribe text of the audio.

• Return transcribed text as output.

3. Embedding model & Vector database

• Embedding model converts text to a vector.

• Vector database uses the converted vector to perform similarity search

inside the database.

• Return the confidence and result.

4. Generative LLM

• Accept search result from vector database as context of the query.

• The LLM is prompted to generate textual output in a predetermined manner.

• Return final textual response as output.

5. Text-to-speech

• Accept response text from LLM as input.

• Create and play audio generated based on textual input.

The following part is to list models to be used in each component and reason behind:

1. Speech-to-text

• nvidia/stt_en_fastconformer_ctc_large (best accuracy with very low latency,

but I could not initialize the model on website so there could be some bugs)

• openai/whisper-large-v2 (top3 accuracy with high latency)

• Metrics are found in Open_ASR_Leaderboard.

2. Embedding model & Vector database

• bge-small-en (highest score in retrieval tasks, very small model size of

0.13GB and small embedding dimensions of 384)

• Metrics are found in MTEB

https://huggingface.co/nvidia/stt_en_fastconformer_ctc_large
https://huggingface.co/openai/whisper-large-v2
https://huggingface.co/spaces/wasertech/open_asr_leaderboard
https://huggingface.co/BAAI/bge-base-en
https://huggingface.co/spaces/mteb/leaderboard

• Use Chroma as vector database (open sourced, free, able to run in memory,

many integration with platforms like Hugging Face and LangChain)

3. Text generation

• llama-2-7b-chat-hf (recently released LLM, performance of 70B parameters

are on par with GPT3.5. Specifically, finetuned on safety content generation,

score 0 on Toxigen and 57.04 in TruthfulQA. Choosing smaller model for

latency issue)

4. Text-to-speech

• Google Text to Speech API for simplicity.

• If time allows, I want to fine-tune a text-to-speech model with my voice or

some celebrities.

Technology introduction
This project will mostly use language models hosted on Hugging Face, which is a company

that aims to develop tools and a platform for people to train and share machine learning

models. Hugging Face provides many state-of-the-art models in natural language processing

(NLP). The reason for using Hugging Face is that all models available are open-sourced and

free to run in a local environment. Also Hugging Face provides options for developers to

access via API. This API approach can shorten the development time because developers can

quickly and easily swap to test models and even fine-tune existing models with minimal

codes.

Usually, LLMs process some general knowledge about the world with an abundance of

training materials. However, they perform poorly when asked about internal business

information. This is because the data used to train LLM does not contain that information.

Therefore, I choose to integrate vector database and embedding model to handle user’s

queries. The embedding model converts sentences to a vector the context of the sentences,

and then the vectors can be stored in a vector database as a knowledge base. When the user

makes a query, the query is first converted to a vector and use it to perform a similar search

inside the vector database. In the end, we can retrieve relevant information as the basis of

the chatbot’s responses.

The relevant information is then used as a prompt to the actual generative chatting LLM to

generate a response to users. The response is then updated on the UI and played as audio in

the background along with the virtual avatar. This approach allows generative LLM to answer

users with accurate answers with a customized tone or a pre-defined template. As a result,

the format and tone of responses are controlled while providing relevant information.

https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

Project Schedule and Milestones
The following table is a temporary schedule with expected deliverables. It has included both

official deadlines and personal deadlines that used for personal monitoring.

Deadline Tasks

1 Oct 2023 Submit detailed project plan.
Set up project website.

1 Oct 2023 Create UI for chatbot with Gradio (Python).
It can accept keyboard typing & record voice.
The chatbot at this moment should answer by repeating keyboard input
or "recording" when audio input is detected.

8 Oct 2023 Integrate Whisper model to perform auto speech recognition. The chat UI
should print the transcribed text directly.

1 Nov 2023 Create a local vector database with Chroma. Create a Python script to

convert pdf stored in a folder named ‘data’ to embeddings. The process

of chunking and embedding is done with the help of a package named

‘LangChain’. The embeddings will be stored in the vector database with a

fold named ‘embeddings’

15 Nov2023 Integrate the vector database to the chatbot.
The chatbot can create connection to database at launch. Embed user
input as query. Perform similar search in the database and print the
retrieved information on UI.

15 Dec 2023 Integrate LLM to paraphrase and format the text output. The chatbot for
now should be able to process single query at a time, without referring
the chat history. The LLM is prompted to apologize when no relevant
information found in the database.

1 Jan 2023 Integrate Google text-to-speech API to generate voice audio to play.

8-12 Jan 2024 First presentation

21 Jan 2024 Submit interim report, preliminary implementation.

15 Feb 2024 Gather data source of HKU canteen and create a set of PDFs to store
information related. Then convert the corpus collected to embeddings to
replace the database used in earlier stage.

15 Mar 2024 Fine-tune a text-to-speech model with Hugging Face with my own voice
or use the TTS service in Azure. The objective is to provide a lively speech
without sacrificing too much latency.

15 Apr 2024 Create and pass UAT for overall user experience:
1. Create 3 intended use case for demo purposes
2. Test behaviour against toxic input
3. Null input (empty string or silent audio)
4. Extreme long input or long waiting time
5. Audio quality

23 Apr 2024 Submit finalized tested implementation, final report.
26 Apr 2024 Project exhibition.

	Project Background
	Project Objective
	Project Methodology
	Technology introduction
	Project Schedule and Milestones

