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Abstract 

Automatic music transcription, the algorithmic conversion of musical audio into symbolic representations, is 

an intriguing and complex task with numerous challenges. It involves techniques such as signal processing 

and deep learning to extract valuable information implicitly encoded in audio signals, aiding musicians in 

education and collaboration. Despite existing research and commercial software, there remains a lack of 

automatic transcription solutions for the electric bass guitar, a fundamental instrument in contemporary music. 

Challenges with this instrument largely arise from the limited research focus on notation-level transcriptions 

that represent high-level musical structures and the scarcity of suitable annotated bass datasets. This project 

aims to address these challenges with two primary objectives: establishing a proof-of-concept notation-level 

transcription model for monophonic bass guitar audio and generating appropriate instrument datasets for the 

model. Drawing inspiration from sequence-to-sequence transcription models and automatic speech 

recognition, a Transformer-based architecture was adopted, enabling the direct transcription of bass audio into 

LilyPond format, a popular and concise music notation represented in text. Subsequently, an instrument audio 

generation pipeline was established using Python scripts, the LilyPond command-line tool, a virtual bass 

guitar plugin, and the Reaper digital audio workstation. The model was trained and evaluated on three 

versions of datasets, each comprising 10,000 samples, achieving impressive word and character error rates 

below 10%. Additionally, a simple web interface was constructed for demonstration purposes. 
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1. Introduction 

Music Information Retrieval (MIR) is a multidisciplinary field aiming to develop techniques for extracting 

valuable information from music. One of its tasks is Automatic Music Transcription (AMT), which involves 

algorithmically converting music audio into symbolic representations like sheet music [1]. This process 

resembles Automatic Speech Recognition (ASR) but focuses on converting musical audio into a symbolic 

form rather than converting human speech into natural language. 

 

This introduction begins by offering background information on AMT, the target instrument, and project 

goals. Section 1.1 delves into important details regarding different scopes of transcription. Sections 1.2 and 

1.3 provide motivation for the practical applications of AMT and outline key challenges respectively. Section 

1.4 highlights existing research and commercial software solutions, along with their empirical performance. 

Finally, section 1.5 introduces the instrument of choice, the electric bass guitar, while section 1.6 outlines the 

project goals centered around the transcription of this instrument. 

1.1 Types of Symbolic Representations 

The following section will refer to [1] to briefly examine four types of music representations, each exhibiting 

an increasing level of abstraction and illustrated in Figure 1. The initial type is frame-level transcription, 

which captures musical events like frequencies within short time frames, typically on the scale of 

milliseconds. At this level, there are no representations of musical structure; only individual events present 

within a given time frame are depicted. 

 

Following is note-level transcription, where the concept of a musical note is established. A note is defined by 

its pitch, onset (starting point), and optional offset (ending point). Detected notes are treated independently of 

each other. 

 

Advancing further, stream-level transcription aims to categorize notes into groups based on shared 

characteristics. For instance, notes with similar timbre (sound quality) might be clustered together into their 

own instrument categories. 

 

Lastly, notation-level transcription attempts to generate human-readable notation. For instance, Western 

classical notation serves as a widely accepted standard notation system. Readers interested in gaining insight 

into this format can refer to Appendix A for a brief description, which may provide helpful additional context. 

Other notation systems include tablature for stringed instruments, lead sheets in Jazz, Chinese jianpu, and 

many more. Compared to the preceding three scopes, notation-level transcription garners less attention in 

research, likely due to the substantial challenges involved in handling high-level musical structures (see 



 

section 1.3). Nevertheless, given the practical utility of human-readable notation, this project endeavors to 

contribute to the advancement of transcription within this scope. 

 

 

Figure 1. (a) Frame level transcription. (b) Note-level transcription. (c) Stream-level transcription. 

1.2 Uses of AMT 

Essentially, notation-level transcriptions serve as descriptions of musical pieces and provide instructions on 

how they can or should be performed. These transcriptions find direct application in music education, where 

both students and educators stand to benefit from transcription tools for learning and teaching purposes. 

 

Another potentially significant application lies in collaboration between musicians. Notation aids professional 

musicians in managing large setlists by offering visual cues or allowing them to read music on the fly. 

Orchestral musicians, for instance, commonly rely on charts while performing on stage. With automatic 

transcription, artists can also potentially speed up the process of transcribing their unannotated recordings for 

fellow musicians or create and publish their own sheet music for sale. 

 

As AMT is intricately linked with other MIR tasks, its applications can indirectly benefit various domains. For 

instance, in copyright enforcement, AMT may contribute to cover song detection, assisting in identifying 

copyright infringements on media platforms [1].  

1.3 Challenges of AMT 

Music transcription presents a complex and demanding challenge for both musicians and algorithms alike. For 

instance, real musical recordings featuring human performances often do not perfectly align or synchronize 

with transcriptions. This discrepancy may arise from various factors, including creative decisions by 

musicians to alter the speed (tempo rubato) or simply from the inherent imperfections of human performance. 

 

Furthermore, different instruments, or even variants of the same instrument, yield different sound qualities 

(timbre) for identical transcriptions, resulting in varying frequency content. Figure 2 shows two spectrograms 

comparing a melody generated on a virtual piano and a bass guitar. Additional complexities emerge when 

extracting information from audio containing noise and multiple sound sources, akin to the Cocktail Party 

problem. 



 

 

 

Figure 2. Spectrograms of a melody played on a virtual piano and bass guitar. Different instrument timbre results in 

different frequency content. 

Transcriptions themselves can also be ambiguous. Consider enharmonic equivalence, illustrated in Figure 3, 

which indicates that two notes sound exactly the same but are notated differently depending on the musical 

context. For instance, a C sharp (♯) sounds identical to a D flat (♭). This distinction is significant in section 

3.2. One such contextual factor is the musical key or a family of pitches. For instance, the key of ‘D major’ 

includes a C sharp, whereas the key of ‘A flat major’ includes a D flat. While this distinction makes sense for 

musicians familiar with music theory and aware of notational conventions, it can lead to ambiguity without 

accounting for context. 

 

Consequently, available datasets for music transcription are relatively scarce. According to [2], AMT datasets 

typically consist of hundreds of hours, whereas ASR datasets extend into the thousands of hours. After all, 

music transcription is a highly time-consuming and non-trivial task, even for professional musicians, 

considering the challenges outlined above. 

 

Figure 3. Enharmonic equivalence visualized on the black keys of a piano keyboard. Image obtained from 

https://www.musictheoryacademy.com/understanding-music/enharmonic-equivalents/ 

1.4 Existing Solutions 

In general, two major approaches have been adopted in AMT: digital signal processing (DSP) and deep 

learning. DSP techniques are generally faster and more diverse, whereas deep learning achieves better results 

in narrower domains [1]. Recent research models often combine both approaches, often placing greater 

emphasis on deep learning models. 

 

https://www.musictheoryacademy.com/understanding-music/enharmonic-equivalents/


 

A few notable models proposed in research are worth highlighting and have served as major references and 

inspirations for this project. The first is a paper by Carvalho and Smaragdis that developed an end-to-end 

model for converting audio into music notation in LilyPond – a digital notation format that we will further 

discuss in later sections [3]. The model primarily consists of a Convolutional Neural Network (CNN) front-

end to transform a one-dimensional audio sequence into a multidimensional representation. This is followed 

by an encoder-decoder layer using Long Short-Term Memory (LSTM). The paper claimed excellent 

performance when tested on synthetically generated piano and human chorus audio. Unfortunately, it lacked 

specific implementation details and source code for replication. 

 

Another notable model is the Multi-task Multitrack Music Transcription (MT3) developed by Magenta; a 

research project affiliated with Google AI [2]. MT3 was trained on popular available music datasets and 

utilizes Transformers to transcribe multiple instruments simultaneously into MIDI-like tokens. MIDI, short for 

Musical Instrument Digital Interface, is a widely used digital instrument communication protocol. While not a 

formal notation scheme, MIDI can informally represent notes on a piano-roll structure (refer to Appendix B 

for more details). However, using this model has some drawbacks, such as noticeable confusion in instrument 

prediction. As claimed by Magenta, predicted instruments within the output may change abruptly [2]. 

Moreover, MIDI representations do not directly encode the high-level musical structures that we aim to 

extract. As per their GitHub repository, they also do not appear to support training easily. 

 

There are a few notable options in commercial software that are worth highlighting, namely AnthemScore and 

ScoreCloud. Like many commercial software products, they are paywalled and closed source, making it 

difficult to analyze and directly compare their performance. Nevertheless, some users find the results to be 

generally unsatisfactory for paid software (see Figure 4) [1]. 

(a)                        (b) 

 

 

 

Figure 4. Visual comparison of a short bassline (‘Another One Bites The Dust’ by Queen) predicted by (a) AnthemScore 

(with free trial license) and (b) original score. 

 

 



 

1.5 The Bass Guitar 

This project focuses AMT for a specific instrument – the electric bass guitar (see Figure 5). While resembling 

an electric guitar, the electric bass guitar differs significantly, primarily in producing lower frequencies with 

the help of thicker strings and a longer neck. Indeed, the term 'bass' refers to low-pitched sounds. 

 

Primarily, this instrument serves a supporting but crucial role in modern music, encompassing rhythm and 

harmony (see Appendix C for brief descriptions of relevant musical concepts). Consequently, it often receives 

less attention and glamour compared to other instruments. 

 

Figure 5. A typical 4-string bass guitar with labelled parts. 

The challenges in bass transcription primarily stem from its niche nature. There's a scarcity of high-

performing and readily accessible models specifically designed for notating this instrument. Datasets of 

notated bass audio are rare and often inadequate for the task. While some datasets, such as the MUSDB18 

dataset, include bass tracks within multi-instrument arrangements, they are primarily utilized for training 

audio source separation models. The closest available dataset is the Synthesized Lakh Dataset (Slakh2100), 

which offers a substantial collection of multi-track audio paired with aligned MIDI. However, as the desired 

outcome is notation rather than MIDI, this dataset may not directly cater to the goal of notation-level 

transcription (issues with MIDI further elaborated in section 2.4). 

 

Furthermore, we speculate that the distinctive sonic characteristics of bass, characterized by lower frequencies 

and overtones, may present challenges for existing pitch estimators and transcription models. These tools are 

typically trained on a variety of instruments, such as piano and violin, which occupy broader or higher 

frequency ranges. Figure 6 shows a visualization of the MIDI output produced by Basic Pitch, Spotify’s 

impressive and lightweight transcription model, which predicted multiple notes despite the audio being 

monophonic [4]. 

 



 

 

Figure 6. A graphical visualization of the MIDI output generated by Spotify’s Basic Pitch model on the same melody in 

Figure 2, without parameter adjustments [4]. The model seems to have predicted polyphonic notes as characterized by 

upper and lower streams. 

1.6 Project Objectives and Scopes 

Given the context provided earlier, this project aims to accomplish two main objectives. Firstly, we aim to 

create a proof-of-concept notation-level transcription model tailored for bass guitar, drawing inspiration from 

previous research attempts discussed. The inputs to this model consist of monophonic (single note at a time) 

and isolated (no accompanying instruments) bass guitar audio, while the outputs should comprise of textual 

representations corresponding to Western classical notation with 12 equal temperament tuning (Appendix D). 

 

Secondly, in response to the scarcity of suitable data, we will devise a pipeline to automatically generate our 

own annotated synthetic bass guitar audio dataset, drawing from methodologies used in prior research. This 

dataset will serve as training and evaluation data for our model, ensuring that it has access to sufficient and 

relevant information during the learning process. 

2. Preliminary Attempts 

Before delving into the primary methodology, we wish to offer an overview of the initial approach used, 

inspired by a project called AutoBassTab which pursued a similar goal but using tablature instead of Western 

notation. This initial model comprised of four components that will be explored in more detail in each section: 

pitch estimator (section 2.1), onset detector (section 2.2), playing-style classifier (section 2.3), and parser 

(section 2.4). We will elaborate how the shortcomings encountered with this approach influenced the adoption 

of our current methodology instead. It is noteworthy that the concept of synthetic data generation was not yet 

considered at this stage. Thus, the results are empirical, relying on qualitative and auditory confirmation 

utilizing mostly real bass guitar samples. 

2.1 Pitch Estimator 

First, a pitch estimator (a frame-level transcriber) was employed to predict the fundamental frequencies in the 

music audio. The CNN-based pitch estimator CREPE, adopted by AutoBassTab, was selected [5]. This model 

apparently achieved superior results over other state-of-the-art pitch estimators when evaluated on synthetic 

https://rickyhan.com/jekyll/update/2020/05/23/algorithm-for-fretboard-arrangement.html


 

audio, as illustrated in Table 1 [5]. Despite this claim, empirical results demonstrate that its accuracy may not 

align with its assertions when applied to bass guitar audio. Figure 8 (b) illustrates an obvious octave error 

when tested on a real bass guitar sample. 

 

 

Table 1. Comparisons of average raw pitch accuracies and standard deviations between CREPE and other state-of-the-art 

pitch estimators tested on two datasets: RWC-synth and MDB-stem-synth [5]. 

   

Figure 7. (a) Predicted frequencies of Sample 1, with relatively distinct notes denoted by horizontal line segments. (b) 

Predicted frequencies of Sample 2, with octave errors at the start and 10-second mark. 

2.2 Onset Detection 

Subsequently, the model was integrated with an onset detector to estimate the instances when musical notes 

occur, refining the transcription to note-level. Essentially, onset detection operates by first computing local 

changes within an audio waveform, referred to as novelty functions or curves; amplitude changes yield an 

energy novelty curve, while changes in frequency content produce a spectral novelty curve (illustrated in 

Figure 9) [6]. While a sudden increase in amplitude may frequently correspond to the start of a note, this may 

not always be the case. For example, a bassist may use a hammer-on technique that immediately alters the 

pitch without changing the amplitude. Thus, spectral-based novelty functions were used. Subsequently, the 

peaks of these novelty curves are strategically selected as onset candidates with certain rules and algorithms. 

 

The onset detection function from Librosa, a popular Python digital signal processing library, was utilized. 

Librosa’s onset_detect function first computes a spectral onset strength envelope, essentially a spectral 

novelty function, and then selects peaks using the heuristics shown in Figure 10 [6]. 

 

As an additional step, we programmed additional rules such that potential false positives were naively pruned; 

if an onset is within 0.1 seconds of its preceding onset, it will be removed as to eliminate closely spaced 

onsets that may correspond to false positives, visualized as very tightly spaced red vertical lines in Figures 11a 

and 11c. 



 

 

However, we observed that parameters that affect the sensitivity of onset detection are not immediately 

intuitive to adjust. These include hop length, sampling rate, and parameters from peak picking (e.g. pre_max, 

post_max, delta, etc.). Some sets of parameters seem to work well only for certain samples. To achieve 

optimal results, this approach may be better suited for those with more experience in signal processing. 

 

  

Figure 8. (a) Energy-based novelty function of Sample 1. (b) Spectral-based novelty function of Sample 1 

 

Figure 9. Rules and parameters used by Librosa for selecting peaks of signals [6]. 

 

 

Figure 10. (a) Sample 1 onsets computed by librosa. Each red vertical line corresponds to a predicted onset. (b) Sample 1 

onsets after pruning. (c) Sample 2 onsets. (d) Sample 2 onsets after pruning. 

2.3 Playing Style Classifier 

As an additional challenge, a playing-style classifier was incorporated to predict various playing styles evident 

in the recording, aiming to enhance transcription accuracy. Playing styles refer to different techniques used by 

musicians on the same instrument to produce different timbre with the same pitch. For instance, bass 

techniques like plucking sound thicker and more mellow while slapping sounds percussive and bright.  

 

The deep CNN architectures proposed by [7] were suitable candidates (see Table 2). These accept raw time-

domain waveforms as input as opposed to pre-extracted features. The intuition is to enable the model to learn 



 

relevant sonic features autonomously rather than relying on human efforts to identify 'correct' features [7]. 

Moreover, these architectures omit dense layers, commonly employed after convolutional layers, to maximize 

learning within the convolutional layers themselves, which are hypothesized to be the primary locus of 

learning [7]. This promises great performance and quicker development by significantly reducing the time 

required for feature design. 

 

A slightly modified M5 architecture was implemented in PyTorch, with a higher stride length of 16 in the 

first convolutional layer for faster processing. The model was trained with the IDMT-SMT-Bass 

dataset, publicly released by the Fraunhofer Institute for Digital Media Technology [8]. This dataset contains a 

total of 5323 single bass guitar notes, of which 2347 from the ‘plucking styles’ category was used for training. 

The plucking styles in the dataset are classified into five distinct classes: finger style (FS), muted (MU), 

picked (PK), slap-thumb (ST), and slap-pop (SP). Prior to training, these files were downsampled from their 

original 44.1 kHz sampling rate to 8 kHz before training to reduce input size. 

 

 

Table 2. CNN architectures adopted in [7]. M5 (0.5M) represents 5 weight layers and 0.5 million parameters. The 

notation [80/4, 128] specifies a convolutional layer with receptive field 80, 128 filters, and stride 4. For layers with stride 

1 (e.g., [3, 128]), the stride is not explicitly mentioned. 

2.4 MusicXML Parser 

Lastly, a custom parser combines these data into a notation-level transcription using MusicXML format, a 

music score representation developed by the World Wide Web Consortium (W3C) employing Extensible 

Markup Language (XML) tags (see Figure 7). Unfortunately, this parser was not developed. There are no 

existing parsers specifically designed to directly convert data these data into XML, and creating one is quite a 

costly endeavor. As a workaround, the pitch estimation and onset data were initially converted to MIDI as an 

intermediate representation using the following method: each predicted pitch Pt occurring at onset time t was 

extracted. The durations of each note were determined as the interval between the current onset t1 and the next 

onset t2. Thus, for each Pt, a MIDI note of duration t2 – t1 was constructed. It is worth noting that this process 

can be thought as a note-level transcription attempt. 



 

 

Regrettably, there are still no readily available methods to directly convert MIDI into notation. An approach 

proposed by [9] seeks to estimate an optimal musical time grid from human-performed MIDI data, which 

could hold promise for projects that are focused on MIDI to notation conversion. Additionally, MuseScore, a 

commercial open-source music notation software, possesses an algorithm for converting MIDI to scores 

(proprietary format), although it remains unpublished and lacks comprehensive documentation. Ambitious 

developers may consider exploring and reverse engineering their algorithm, which is available in their GitHub 

repository under the importmidi.cpp file. 

 

Considering the inherent challenges in each component of the overall model, we concluded that the model was 

overly cumbersome, and it was not worthwhile to proceed with its development and formal evaluation. 

 

Figure 11. A simple MusicXML document sample from https://www.w3.org/2021/06/musicxml40/tutorial/hello-world/. 

 

3. Main Methodology 

The following describes current methodologies employed for the project. Section 3.1 delves into the present 

model architecture, while Section 3.2 elaborates on the data generation pipeline. Section 3.3 provides 

additional details on model training and testing. Finally, section 3.4 describes the web application developed 

to host and demonstrate the model. 

3.1 Current Model Architecture 

Drawing inspiration from research and from speech recognition models, we settled on an architecture 

resembling the one proposed by Carvalho and Smaragdis [3] [10]. We employed a CNN audio encoder but 

https://www.w3.org/2021/06/musicxml40/tutorial/hello-world/


 

substituted the LSTM encoder-decoder with a Transformer [11]. The model was implemented in PyTorch. 

Figure 12 illustrates the diagram of the architecture. 

 

Firstly, a Vocab helper class, frequently utilized in natural language processing (NLP) applications such as 

machine translation, was devised to manage important metadata associated with the labels. This includes 

Python dictionaries that bidirectionally map a unique integer to each token, counts the number of occurrences 

of each token, along with the total vocabulary size. Additionally, it contains auxiliary methods to facilitate the 

conversion of label strings into tensors of indices and vice versa. The Vocab object is initialized with four 

special tokens: start (‘{’), end, padding (‘<pad>’), and unknown (‘<unk>’). 

 

We chose a CNN audio encoder for raw audio waveforms instead of spectrograms, a frequently employed 

feature representation. At this stage, we observed no noticeable disparities in performance, thus kept the CNN 

approach. The convolutional layers primarily convert a one-dimensional audio waveform into a multi-

dimensional representation. We employed 256 filters for this model. Following each convolutional layer, we 

applied ReLU activation and utilized a max-pooling layer for dimensionality reduction. Subsequently, we 

incorporated a layer normalization step. Finally, sinusoidal positional encoding was applied to the outputs to 

embed positional information before handing them over to the Transformer. 

 

 

Figure 12. Illustration of the model architecture. The diagram of the Transformer is simplified, with specific details 

within the encoder and decoder layers omitted. To delve deeper into this, visit the project’s GitHub repository and 

PyTorch’s Transformer documentation page. 

 



 

The key advantages of employing a Transformer involve its capability for parallel processing, enabling the 

utilization of Graphical Processing Units (GPU) during training to speed up the process. In contrast, recurrent 

units or LSTMs operate sequentially. We adopted PyTorch's multi-head attention Transformer implementation 

based on the "Attention Is All You Need" paper [11]. In short, this implementation comprises an encoder 

block designed to capture input context and dependencies, producing what is termed as a memory tensor. 

Subsequently, the decoder operates on this memory tensor along with an embedded sequence of tokens that 

correspond to the LilyPond format. We primarily utilized default parameters: 6 layers for both the encoder and 

decoder, 8 heads for multi-attention, and ReLU activation. The number of features for encoder and decoder 

inputs are set to 256. 

 

To prepare target labels for input to the decoder, additional steps were necessary. Target masking was 

generated and applied to prevent the decoder from attending to future positions. PyTorch's 

generate_square_subsequent_mask method produces masks with -inf values for these future positions. The 

target labels undergo transformation into word embeddings via a PyTorch Embedding layer. Sinusoidal 

positional encoding, supplemented with a dropout layer, was also utilized, following the solution provided in  

this PyTorch tutorial. At the output, a linear layer was used to convert the decoder output, containing 256 

features, into logits with dimensions corresponding to the vocabulary size. 

 

By representing each output token as either a special token (starting and ending token) or a note, we ensure 

that syntax errors are avoided when compiling the generated scores with the LilyPond command line interface 

(CLI), as long as the start and end tokens are included. This method differs from outputting individual 

characters, as seen in the Carvalho and Smaragdis method, which could potentially result in compilation errors 

[3]. Further details on score syntax are provided in the subsequent section. 

3.2 Dataset generation 

We devised a three-stage process for producing pairs of synthetic bass guitar audio and corresponding labels 

in LilyPond format. LilyPond refers to both a notation syntax and an open-source music engraving toolset that 

is part of the GNU project. It offers a concise method for representing sheet music resembling the LaTeX 

syntax, in contrast to the more verbose XML representation. Moreover, the toolset incorporates a CLI capable 

of compiling .ly scores into formats such as PDF for practical application. 

 

Typically, notes in LilyPond adhere to the representation outlined in Figure 13. Each note comprises a pitch or 

a rest, along with optional accidentals (sharps and flats), octave modifiers, and a subdivision. For further 

clarification on the definitions of common elements in Western notation, refer to Appendix A. It is important 

to note that these guidelines represent only a subset of LilyPond's interpretative capabilities. For more 

comprehensive information, visit lilypond.org to explore more. 

https://pytorch.org/tutorials/beginner/transformer_tutorial.html


 

 

   

Figure 13. A brief overview of LilyPond’s syntax, obtained from https://lilypond.org/text-input.html 

 

First, a Python script generates text labels resembling the shape shown in Figure 14. These labels are 

structured as text sequences, comprising an opening curly brace, individual notes, and a closing curly brace. 

These braces signify the start and end tokens of each sequence, commonly denoted as 'SOS' and 'EOS' in NLP 

tasks. Simultaneously, each label is inserted into a boilerplate score template and stored as a .ly file. The 

guidelines governing label generation are as follows: 

• Notes are depicted with absolute pitches in LilyPond's 'absolute mode' and utilize explicit 

subdivisions instead of  'relative mode'. This approach aims to establish a clearer ground truth and 

minimize ambiguity. The labels begin with ‘{‘ and end with ‘}’. 

• Pitches comprise one of the seven notes from the set {c, d, e, f, g, a, b} or a rest denoted by 'r' 

(indicating a period of silence). Rests are excluded from the initial dataset batch (Version A). 

• Only sharps ('is') are employed as the optional accidental to avoid ambiguity stemming from 

enharmonic equivalence, as explained in the introduction. Thus, the pitches 'b' and 'e' are restricted 

from having sharps; 'b sharp' is identical to 'c', and 'e sharp' is identical to 'f'. Furthermore, stacking 

(i.e., double sharp) is not utilized. 

• Only one lower octave (',') is employed; the upper octaves are currently not utilized to keep 

vocabulary size smaller and maintain focus on lower pitches. 

• Leading, trailing, and consecutive rests are avoided. Trailing rests are disregarded during the MIDI 

generation detailed in the subsequent section, while consecutive rests introduce ambiguity (two rests 

of duration 8 are indistinguishable from one rest of duration 4). Leading rests were also considered for 

exclusion but should have been retained. 

• Notes are randomly generated from the vocabulary list, which comprises all possible combinations of 

notes. This selection can be musically justified as utilizing the chromatic scale. 

• The length of each score varies between 10 to 20 notes, randomly chosen. 

• The tempo is fixed at 120 beats per minute (BPM), eliminating the need for tempo prediction. 

• The time signature in the output score is set to 4/4; however, no efforts were made to ensure that note 

subdivisions within a measure adhere to this constraint, as LilyPond does not enforce it. Additionally, 

there were no attempts to predict the time signature. 

 

https://lilypond.org/text-input.html


 

 

Figure 14. Example score generated by the data_generator.py Python script. The highlighted segment corresponds to the 

label. 

Next, the LilyPond CLI was employed to compile the .ly scores into MIDI format. Recall that MIDI is a 

protocol utilized for communication between digital instruments, which includes support for virtual 

instruments as well. 

 

Finally, these MIDI files were rendered programmatically using a free virtual bass guitar plugin called Ample 

Bass P Lite II. This workflow was executed in Reaper, a digital audio workstation (DAW) or audio recording 

software (see Figure 15). Although the Reaper API itself doesn't support automated rendering, a solution 

called Ultraschall, a podcasting plugin for Reaper, was capable of this. Upon loading the virtual instrument, a 

custom Lua script was executed to iteratively load MIDI files and invoke the necessary APIs to render audio 

files. 

 

The audio output specifications are as follows: a sampling rate of 16 kHz, a bit-depth of 16-bit PCM (pulse-

code modulation), and a mono channel configuration. 

 

In total, we generated three batches of data, each containing 10,000 samples, with an increasing vocabulary 

size as illustrated in Table 3. We opted for a sample size of 10,000 as a compromise between dataset size and 

the time required for audio rendering (see section 4.3 for details on issues). The rationale behind generating 

different batches was to commence model training with a relatively simpler vocabulary to ensure proficient 

model performance, gradually progressing to more complex vocabularies. Additionally, while this subset is 

considerably simplified compared to real music, it serves as a solid foundation for utilization in the proposed 

model. Consider the number of possible scores for the smallest vocabulary size of 48 and score length 10 

(allowing repetitions of all notes): 4810 = 64,925,062,108,545,024 possible scores – not a small number. 

 



 

 

Figure 15. The Reaper DAW with virtual instrument loaded and a text editor for scripting. The Lua script iteratively 

loads MIDI files onto the project timeline and renders the audio. 

Dataset Version Vocabulary Size 

A 48 

B 84 

C 105 

Table 3. Three batches of data with corresponding vocabulary size (number of unique tokens) excluding special tokens 

(starting, ending, padding, and unknown). 

3.3 Training and Testing 

For training, teacher forcing was used, where the Transformer decoder receives the correct output labels 

instead of its own previously generated output. This approach aimed to mitigate error propagation (where 

small prediction errors accumulate over time) potentially leading to more stable training. The outputs are 

compared with the true labels without the starting token. Therefore, it is important to offset the input target 

label such that the ending token is omitted. 

 

The following details for training are as follows. A 90:10 train-test split was employed to allocate more 

training data to the model. A batch size of 1 was utilized due to the complexities associated with padding and 

masking audio data using PyTorch; there does not seem to be straightforward methods to handle masking of 

encoded audio data with paddings. Cross-entropy loss, Adam optimizer, and a learning rate of 1e-5 were 

utilized. The model was trained for 20 epochs, as the loss appeared to converge around that point. 

 

For testing and inference, the Transformer decoder is configured to predict output tokens autoregressively, 

utilizing its own previously generated output as target inputs. The target label is initially set as a tensor with a 

maximum length of 22, comprising the maximum number of notes (20) plus a starting and ending token. It is 

important to note that the ending token is not utilized for making predictions. The first element represents the 

start token, while the remainder consists of placeholder unknown tokens '<unk>'. Through masking, the 



 

decoder is effectively prevented from observing the unknown token at the current timestep. During each 

iteration through the target sequence, the subsequently predicted token replaces the corresponding unknown 

token. Iterations halt prematurely upon predicting an end token, and the unknown tokens are stripped off. 

 

Torchaudio’s edit distance (also known as Levenshtein distance) is used to calculate how closely the predicted 

notes align with the labels. This metric captures the total number of substitutions, additions, and deletions 

required to transform one sequence into another. When comparing strings, it provides a character-level 

distance, whereas when comparing lists of tokens, it computes a word-level distance. These distances are then 

used to calculate the character error rate (CER) and word error rate (WER) by normalizing over the number of 

characters or words present in a particular sample. 

 

The process was executed on Google Colab, utilizing T4 GPU instances. Training runs typically required an 

average of 2-3 hours to complete. Following training and testing, the model's state dictionary, along with the 

Vocab object, were serialized and saved for future use. To utilize the model again, the model object must be 

recreated with the same parameters, and then the state dictionary and vocabulary are loaded in. 

3.4 Web application 

A simple web application was created to showcase the model, as shown in Figure 16. The inference API was 

developed using FastAPI, a Python backend framework. The user interface was built in TypeScript using 

Next.js, a widely used React framework, and utilizing the Chakra UI library. 

 

Users have the choice to upload their own audio file. Additionally, for demonstration purposes, the client 

allows users to select sample audio and preview corresponding LilyPond scores retrieved from the server. 

Currently, users are required to select the desired model for audio transcription; one out of the three models 

trained on each dataset. Upon clicking the button, a request is sent to the server containing the file name, 

Base64 encoded audio, and model name. The request handler receives the request, decodes the audio, and 

stores it in a temporary directory. The audio is loaded and resampled to 16 kHz. The selected model is then 

loaded and processes the audio input to generate predicted labels, embeds them into a boilerplate score 

template, and saves the resulting score to a temporary directory. Subsequently, it invokes the LilyPond CLI in 

a subprocess to compile the score into a PDF file. Finally, a response containing the file name, raw LilyPond 

score, and Base64 encoded PDF document is sent back to the client. Users can preview the scores on the user 

interface and download the PDF if desired. 

 

 

 

 



 

 

     (a)                (b) 

  

     (c)              (d) 

  

Figure 16. (a) Application menu. (b) File upload with LilyPond output. (c) Sample selection with LilyPond output and 

label preview. (d) PDF preview. 

 

4. Results 

Sections 4.1 and 4.2 present the model's training and testing results, respectively. Section 4.3 highlights issues 

concerning automatic audio rendering within the data generation pipeline. 

4.1 Training 

Figure 17 shows the training loss curve of the model trained on dataset B across 20 epochs. The loss 

demonstrates a clear downward trend but exhibits considerable fluctuations. We hypothesize that these 

fluctuations are likely attributed to the small batch size of 1 sample utilized during training; encountering a 

particularly challenging sample may result in significant error spikes. 

 



 

 

Figure 17. Cross-entropy loss curve. Shows a general decreasing trend but with significant fluctuations. 

4.2 Testing 

Table 4 displays the mean word error rate (WER) and character error rate (CER) for the identical model 

architecture trained on each dataset. This is calculated by averaging the total WER and CER over all testing 

samples. Remarkably, the model achieved both average WER and CER of less than 10% for all three datasets, 

which is quite satisfactory at this stage. It is expected to observe an increase in error as the vocabulary size 

expands, as the same amount of data, model parameters, and training parameters were maintained. 

 

Dataset Version Vocabulary Size Word Error Rate Character Error Rate 

A 48 2.61% 2.32% 

B 84 5.56% 4.56% 

C 105 9.32% 7.83% 

Table 4. Mean word and character error rates for each dataset. 

4.3 Data generation pipeline 

The audio generation process utilizing Reaper and the Ultraschall plugin presents significant challenges for 

scalability and long-term use. We encountered major memory issues involving either the plugin or Reaper 

itself, necessitating the generation of audio in batches of approximately two to three hundred at a time. 

Consequently, generating even larger datasets poses a considerable problem at present. Given that 

automatically rendering audio in this manner is not a conventional task, there is currently a lack of suitable 

tools for efficiently rendering audio from MIDI and virtual instruments. 

 

5. Future Work 

While demonstrating commendable performance, there remains considerable work ahead for the model to 

effectively handle real-world data. Firstly, addressing the fluctuating loss curve during training is crucial. This 

could involve increasing the batch size and devising methods to handle padding and masking of audio input. 

Adjusting the learning rate while augmenting the dataset size could also be beneficial. 

 



 

To better emulate real music, several approaches can be considered. For instance, expanding the vocabulary 

size by introducing upper octaves while accounting for the instrument's maximum range can be explored. 

Currently, the supported range spans from E1 to B2, whereas standard tuned 4-string bass guitars can reach as 

high as Dsharp4, though this is uncommon. Regarding generation rules, incorporating musical structures via 

algorithmic music generation could prove to be beneficial, although it may extend a little beyond the current 

scope of the project. For instance, instead of randomly generating notes using the chromatic scale, different 

combinations of scales and keys could be introduced. Contextual information may then be incorporated 

accordingly. To enhance sound quality, various noises, effects (like distortion, fuzz, reverb), or virtual 

instrument variants can be used. Additionally, modeling human performances could involve introducing 

timing imperfections by randomly adjusting MIDI data – like the 'humanize' feature available in Reaper. 

Regarding the previous challenge of modeling playing styles, this could be accomplished by utilizing virtual 

instruments (usually not free) that contains those samples, along with incorporating additional articulation 

symbols in LilyPond. 

 

While getting more data is always advantageous, the development of a more efficient audio generation tool is 

imperative to facilitate the generation of vast amounts of audio data. This might necessitate a separate project 

altogether. 

 

As the complexity of the data grows, exploring larger models becomes essential. This may involve simply 

augmenting the number of features, layers, and heads. Given the advancements in large language models that 

are based on Transformers, this approach to music transcription holds significant potential. 

 

6. Conclusion 

In this report, we introduced a proof-of-concept end-to-end transcription model for bass guitar using 

Transformers, enabling direct conversion of audio into Western notation in Lilypond format. This streamlines 

the process, eliminating the need for multiple stages that can be cumbersome and prone to errors. Moreover, 

we tackled the challenge of limited data availability by establishing our own synthetic audio generation 

pipeline to produce bass guitar audio with corresponding notation. Leveraging insights from previous studies, 

our model has shown promising results in testing, boasting relatively low word and character error rates on the 

dataset. However, it remains in its early developmental phase and relies heavily on certain assumptions, 

particularly regarding the synthetic data generated. Further exploration is essential, encompassing both the 

refinement of the model architecture and the expansion of the dataset, to ensure robust generalization and 

practical utility for bassists in future iterations. This includes refining the audio generation methodology, 

exploring larger model architectures, integrating more realistic musical structures, and potentially modeling 

various playing styles.
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8. Appendices 

A. Western Classical Notation 

This section offers a glimpse into fundamental music theory and key elements within this notation system, 

aiming to provide context for the project. While it covers a significant amount of information, it represents 

only a basic and limited subset. Readers can explore https://www.dolmetsch.com/theoryintro.htm, which 

serves as a comprehensive resource heavily referenced in this section. 

 

Music is represented as a collection of notes, which serve as discrete representations of sound and carry 

details regarding their pitch (perceived frequency), onset time, and duration. The initial seven letters of the 

alphabet are employed to signify increasing pitch in a cyclical manner: A B C D E F G A and so forth. These 

correspond to the white keys found on a piano keyboard. The interval between the two A notes in this instance 

is referred to as an octave. 

 

Notes corresponding to the black keys are denoted by letters followed by pitch modifiers known as 

accidentals. A sharp (♯) raises a note's pitch by a half step, while a flat (♭) lowers it by half a step. 

Consequently, the black key directly above and to the right (a half step higher) of a C is referred to as C sharp. 

However, it can also be interpreted as a half step lower than D and is thus labeled D flat. This occurrence, 

where the same pitch is represented by different notations, is called enharmonic equivalence. 

 

 

Figure 18. A piano keyboard with names of notes. 

 

Notes are positioned on a grid, usually composed of five horizontal lines known as a staff (or stave), and are 

read from left to right. A note may be placed directly on a horizontal line or between two lines. The vertical 

placement conveys the pitch of the note, with a higher position denoting a higher pitch. Ledger lines may be 

employed to extend the score's range. 

   (a)        (b) 

 

Figure 19. (a) Note placements on staffs. (b) Ledger lines. 

 

https://www.dolmetsch.com/theoryintro.htm


 

A clef symbol, positioned at the start of the staff, establishes a reference pitch for notation. Two commonly 

used clefs are the Treble clef and the Bass clef. The Treble clef, also called the G clef, is a symbol that loops 

around the second horizontal line from the bottom, representing the position of the note G4, approximately 

391.995 Hz (in Helmholtz pitch notation). Typically, this clef is employed for higher-pitched notes. The Bass 

clef, known as the F clef, curls around the fourth horizontal line from the bottom, indicating the position of 

F3, approximately 174.61 Hz. It is utilized for instruments with lower pitches.       (a)               

(b) 

 

Figure 20. (a) Treble or G clef. (b) Bass or F clef 

 

The duration or subdivision of a note is conveyed through its shape. Table 5a displays a selection of notes 

with their respective durations and names. Note durations are commonly depicted using fractional units. Rests 

signify intervals of silence and are represented by a distinct set of shapes, as depicted in Table 5b. Thus, both 

the horizontal position and the shape together indicate when notes should be played.    (a) 

                   (b) 

    

Table 5. (a) Example of note shapes, durations, and names. (b) Rest shapes, durations, and names. 

 

Notes on a staff are organized into measures or bars, delineated by vertical lines. These measures serve as 

compact groupings of notes, facilitating musicians in their reading and interpretation. For example, it is far 

more convenient to instruct musicians to begin at bar 128 rather than specifying the 700th note. 

 

Figure 21. Three empty bars on a staff separated by a single bar line, double bar line (to mark end of sections), and 

terminal bar line (end of a musical piece). 

 

https://en.wikipedia.org/wiki/Helmholtz_pitch_notation#:~:text=Fully%20described%20and%20normalized%20by,individual%20note%20of%20the%20scale.


 

To determine how many durations worth of notes should be grouped into a bar, a time signatures is used. It is 

a fractional metric consisting of two numbers: the numerator represents the number of notes to be played in a 

bar, while the denominator indicates the type of note to be played. A time signature of 3/4 indicates three 

quarter notes in a bar, while 6/8 indicates six eighth notes per bar. Notice that mathematically, both time 

signatures occupy the same overall duration. Musicians may argue and debate about their differences in terms 

of note groupings and accents used. 

 

The speed of a piece of music is commonly measured in beats per minute (BPM), where a beat typically 

corresponds to a quarter note’s duration. In classical music and before the invention of metronomes, tempo 

markings are used to estimate the speed. Table 6 shows common Italian tempo markings with corresponding 

estimated BPM values. 

 

 

Table 6. Tempo markings in Italian, commonly used in classical music pieces, along with their definitions and estimated 

BPM values. 

 

B. Musical Instrument Digital Interface (MIDI) 

MIDI is communication protocol used by digital instruments. Devices connected to a MIDI bus communicate 

using MIDI Messages that describe events that occurred, like a key press on a digital piano for instance. Up to 

16 channels (independent message paths) can be supported. A MIDI file consists of chunks of bytes, including 

a header, track, and events. Readers can refer to this page for a detailed specification of the file structure.  

 



 

 

C. Examples of High-Level Musical Concepts 

This short section briefly highlights three core concepts in music: rhythm, harmony, and melody. 

 

Rhythm refers to temporal placements and patterns of notes. This can be realized using combinations of 

different note durations, volume, or groupings for instance. 

 

Harmony may be considered as a combination and series of notes. It is an abstract product of a cohesive group 

of voicings. 

 

Intuitively, melody can be thought of as the part of music that you can sing to. It is also a collection of notes 

as a single entity. 

 

D. 12-Tone Equal Temperament Tuning 

In music, frequencies can be divided in different ways. In modern Western music, the 12 Tone Equal 

Temperament Tuning system is most frequently used, with the note A4 centered at 440 Hz as a reference 

point. This involves dividing an octave into 12 equally spaced intervals called semitones on a logarithmic 

scale. Each subsequent semitone is 122 or approximately 1.059 times the previous frequency. For example, 

the subsequent note of A4 (440 Hz) is Asharp4, which is 440 * 122 = 466.16 Hz.  
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