

COMP4801 – Final Year Project

Automatic Music Transcription for Electric Bass Guitar

(FYP23026)

Final Report

Yaw Jalik

Supervised by

Prof. Wu Chuan

April 2024

Abstract

Automatic music transcription, the algorithmic conversion of musical audio into symbolic representations, is

an intriguing and complex task with numerous challenges. It involves techniques such as signal processing

and deep learning to extract valuable information implicitly encoded in audio signals, aiding musicians in

education and collaboration. Despite existing research and commercial software, there remains a lack of

automatic transcription solutions for the electric bass guitar, a fundamental instrument in contemporary music.

Challenges with this instrument largely arise from the limited research focus on notation-level transcriptions

that represent high-level musical structures and the scarcity of suitable annotated bass datasets. This project

aims to address these challenges with two primary objectives: establishing a proof-of-concept notation-level

transcription model for monophonic bass guitar audio and generating appropriate instrument datasets for the

model. Drawing inspiration from sequence-to-sequence transcription models and automatic speech

recognition, a Transformer-based architecture was adopted, enabling the direct transcription of bass audio into

LilyPond format, a popular and concise music notation represented in text. Subsequently, an instrument audio

generation pipeline was established using Python scripts, the LilyPond command-line tool, a virtual bass

guitar plugin, and the Reaper digital audio workstation. The model was trained and evaluated on three

versions of datasets, each comprising 10,000 samples, achieving impressive word and character error rates

below 10%. Additionally, a simple web interface was constructed for demonstration purposes.

Acknowledgements

First and foremost, I extend my gratitude to Prof. Wu Chuan for their invaluable supervision and guidance

throughout the duration of this project. I also wish to thank Dr. Iran R. Roman from CCRMA at Stanford

University for their keen interest and insightful advice on this endeavor. My appreciation goes to Mr. Wang

Sheng for their valuable suggestions regarding the model architecture. Additionally, I acknowledge the

inspiration derived from AutoBassTab, a tablature-based automatic bass transcription project by Ricky Han,

which provided an initial influence for this work. Lastly, I express my heartfelt thanks to Ms. Ooi Xin Ci for

their unwavering support throughout this project.

Table of Contents

Abstract .. ii

Acknowledgements .. iii

Table of Contents .. iv

List of Figures ... v

List of Tables.. vi

List of Abbreviations .. vii

1. Introduction .. 1

1.1 Types of Symbolic Representations .. 1
1.2 Uses of AMT ... 2
1.3 Challenges of AMT ... 2
1.4 Existing Solutions .. 3
1.5 The Bass Guitar ... 5
1.6 Project Objectives and Scopes ... 6

2. Preliminary Attempts .. 6

2.1 Pitch Estimator .. 6
2.2 Onset Detection ... 7
2.3 Playing Style Classifier ... 8
2.4 MusicXML Parser ... 9

3. Main Methodology ... 10

3.1 Current Model Architecture .. 10
3.2 Dataset generation ... 12
3.3 Training and Testing .. 15
3.4 Web application ... 16

4. Results ... 17

4.1 Training ... 17
4.2 Testing ... 18
4.3 Data generation pipeline .. 18

5. Future Work ... 18

6. Conclusion ... 19

8. Appendices .. 3

A. Western Classical Notation .. 3
B. Musical Instrument Digital Interface (MIDI) ... 5
C. Examples of High-Level Musical Concepts ... 6
D. 12-Tone Equal Temperament Tuning ... 6

List of Figures

Figure 1. (a) Frame level transcription. (b) Note-level transcription. (c) Stream-level transcription. 2

Figure 2. Spectrograms of a melody played on a virtual piano and bass guitar. Different instrument timbre

results in different frequency content. .. 3

Figure 3. Enharmonic equivalence visualized on the black keys of a piano keyboard. Image obtained from

https://www.musictheoryacademy.com/understanding-music/enharmonic-equivalents/ 3

Figure 4. Visual comparison of a short bassline (‘Another One Bites The Dust’ by Queen) predicted by (a)

AnthemScore (with free trial license) and (b) original score. .. 4

Figure 5. A typical 4-string bass guitar with labelled parts. .. 5

Figure 6. A graphical visualization of the MIDI output generated by Spotify’s Basic Pitch model on the same

melody in Figure 2, without parameter adjustments [4]. The model seems to have predicted polyphonic notes

as characterized by upper and lower streams. .. 6

Figure 8. (a) Predicted frequencies of Sample 1, with relatively distinct notes denoted by horizontal line

segments. (b) Predicted frequencies of Sample 2, with octave errors at the start and 10-second mark. 7

Figure 9. (a) Energy-based novelty function of Sample 1. (b) Spectral-based novelty function of Sample 1.... 8

Figure 10. Rules and parameters used by Librosa for selecting peaks of signals [6].. 8

Figure 11. (a) Sample 1 onsets computed by librosa. Each red vertical line corresponds to a predicted onset.

(b) Sample 1 onsets after pruning. (c) Sample 2 onsets. (d) Sample 2 onsets after pruning. 8

Figure 7. A simple MusicXML document sample from

https://www.w3.org/2021/06/musicxml40/tutorial/hello-world/. .. 10

Figure 12. Illustration of the model architecture. The diagram of the Transformer is simplified, with specific

details within the encoder and decoder layers omitted. To delve deeper into this, visit the project’s GitHub

repository and PyTorch’s Transformer documentation page. .. 11

Figure 13. A brief overview of LilyPond’s syntax, obtained from https://lilypond.org/text-input.html 13

Figure 14. Example score generated by the data_generator.py Python script. The highlighted segment

corresponds to the label. ... 14

Figure 15. The Reaper DAW with virtual instrument loaded and a text editor for scripting. The Lua script

iteratively loads MIDI files onto the project timeline and renders the audio. .. 15

Figure 16. (a) Application menu. (b) File upload with LilyPond output. (c) Sample selection with LilyPond

output and label preview. (d) PDF preview. .. 17

Figure 17. Cross-entropy loss curve. Shows a general decreasing trend but with significant fluctuations. 18

Figure 18. A piano keyboard with names of notes. ... 3

Figure 19. (a) Note placements on staffs. (b) Ledger lines. .. 3

Figure 20. (a) Treble or G clef. (b) Bass or F clef ... 4

Figure 21. Three empty bars on a staff separated by a single bar line, double bar line (to mark end of

sections), and terminal bar line (end of a musical piece). .. 4

List of Tables

Table 1. Comparisons of average raw pitch accuracies and standard deviations between CREPE and other

state-of-the-art pitch estimators tested on two datasets: RWC-synth and MDB-stem-synth [5]. 7

Table 2. CNN architectures adopted in [7]. M5 (0.5M) represents 5 weight layers and 0.5 million parameters.

The notation [80/4, 128] specifies a convolutional layer with receptive field 80, 128 filters, and stride 4. For

layers with stride 1 (e.g., [3, 128]), the stride is not explicitly mentioned. .. 9

Table 3. Three batches of data with corresponding vocabulary size (number of unique tokens) excluding

special tokens (starting, ending, padding, and unknown). ... 15

Table 4. Mean word and character error rates for each dataset. .. 18

Table 5. (a) Example of note shapes, durations, and names. (b) Rest shapes, durations, and names. 4

Table 6. Tempo markings in Italian, commonly used in classical music pieces, along with their definitions and

estimated BPM values. ... 5

List of Abbreviations

AMT Automatic Music Transcription

ASR Automatic Speech Recognition

CNN Convolutional Neural Network

DAW Digital Audio Workstation

DSP Digital Signal Processing

LSTM Long Short-Term Memory

MIDI Musical Instrument Digital Interface

MIR Music Information Retrieval

NLP Natural Language Processing

1. Introduction

Music Information Retrieval (MIR) is a multidisciplinary field aiming to develop techniques for extracting

valuable information from music. One of its tasks is Automatic Music Transcription (AMT), which involves

algorithmically converting music audio into symbolic representations like sheet music [1]. This process

resembles Automatic Speech Recognition (ASR) but focuses on converting musical audio into a symbolic

form rather than converting human speech into natural language.

This introduction begins by offering background information on AMT, the target instrument, and project

goals. Section 1.1 delves into important details regarding different scopes of transcription. Sections 1.2 and

1.3 provide motivation for the practical applications of AMT and outline key challenges respectively. Section

1.4 highlights existing research and commercial software solutions, along with their empirical performance.

Finally, section 1.5 introduces the instrument of choice, the electric bass guitar, while section 1.6 outlines the

project goals centered around the transcription of this instrument.

1.1 Types of Symbolic Representations

The following section will refer to [1] to briefly examine four types of music representations, each exhibiting

an increasing level of abstraction and illustrated in Figure 1. The initial type is frame-level transcription,

which captures musical events like frequencies within short time frames, typically on the scale of

milliseconds. At this level, there are no representations of musical structure; only individual events present

within a given time frame are depicted.

Following is note-level transcription, where the concept of a musical note is established. A note is defined by

its pitch, onset (starting point), and optional offset (ending point). Detected notes are treated independently of

each other.

Advancing further, stream-level transcription aims to categorize notes into groups based on shared

characteristics. For instance, notes with similar timbre (sound quality) might be clustered together into their

own instrument categories.

Lastly, notation-level transcription attempts to generate human-readable notation. For instance, Western

classical notation serves as a widely accepted standard notation system. Readers interested in gaining insight

into this format can refer to Appendix A for a brief description, which may provide helpful additional context.

Other notation systems include tablature for stringed instruments, lead sheets in Jazz, Chinese jianpu, and

many more. Compared to the preceding three scopes, notation-level transcription garners less attention in

research, likely due to the substantial challenges involved in handling high-level musical structures (see

section 1.3). Nevertheless, given the practical utility of human-readable notation, this project endeavors to

contribute to the advancement of transcription within this scope.

Figure 1. (a) Frame level transcription. (b) Note-level transcription. (c) Stream-level transcription.

1.2 Uses of AMT

Essentially, notation-level transcriptions serve as descriptions of musical pieces and provide instructions on

how they can or should be performed. These transcriptions find direct application in music education, where

both students and educators stand to benefit from transcription tools for learning and teaching purposes.

Another potentially significant application lies in collaboration between musicians. Notation aids professional

musicians in managing large setlists by offering visual cues or allowing them to read music on the fly.

Orchestral musicians, for instance, commonly rely on charts while performing on stage. With automatic

transcription, artists can also potentially speed up the process of transcribing their unannotated recordings for

fellow musicians or create and publish their own sheet music for sale.

As AMT is intricately linked with other MIR tasks, its applications can indirectly benefit various domains. For

instance, in copyright enforcement, AMT may contribute to cover song detection, assisting in identifying

copyright infringements on media platforms [1].

1.3 Challenges of AMT

Music transcription presents a complex and demanding challenge for both musicians and algorithms alike. For

instance, real musical recordings featuring human performances often do not perfectly align or synchronize

with transcriptions. This discrepancy may arise from various factors, including creative decisions by

musicians to alter the speed (tempo rubato) or simply from the inherent imperfections of human performance.

Furthermore, different instruments, or even variants of the same instrument, yield different sound qualities

(timbre) for identical transcriptions, resulting in varying frequency content. Figure 2 shows two spectrograms

comparing a melody generated on a virtual piano and a bass guitar. Additional complexities emerge when

extracting information from audio containing noise and multiple sound sources, akin to the Cocktail Party

problem.

Figure 2. Spectrograms of a melody played on a virtual piano and bass guitar. Different instrument timbre results in

different frequency content.

Transcriptions themselves can also be ambiguous. Consider enharmonic equivalence, illustrated in Figure 3,

which indicates that two notes sound exactly the same but are notated differently depending on the musical

context. For instance, a C sharp (♯) sounds identical to a D flat (♭). This distinction is significant in section

3.2. One such contextual factor is the musical key or a family of pitches. For instance, the key of ‘D major’

includes a C sharp, whereas the key of ‘A flat major’ includes a D flat. While this distinction makes sense for

musicians familiar with music theory and aware of notational conventions, it can lead to ambiguity without

accounting for context.

Consequently, available datasets for music transcription are relatively scarce. According to [2], AMT datasets

typically consist of hundreds of hours, whereas ASR datasets extend into the thousands of hours. After all,

music transcription is a highly time-consuming and non-trivial task, even for professional musicians,

considering the challenges outlined above.

Figure 3. Enharmonic equivalence visualized on the black keys of a piano keyboard. Image obtained from

https://www.musictheoryacademy.com/understanding-music/enharmonic-equivalents/

1.4 Existing Solutions

In general, two major approaches have been adopted in AMT: digital signal processing (DSP) and deep

learning. DSP techniques are generally faster and more diverse, whereas deep learning achieves better results

in narrower domains [1]. Recent research models often combine both approaches, often placing greater

emphasis on deep learning models.

https://www.musictheoryacademy.com/understanding-music/enharmonic-equivalents/

A few notable models proposed in research are worth highlighting and have served as major references and

inspirations for this project. The first is a paper by Carvalho and Smaragdis that developed an end-to-end

model for converting audio into music notation in LilyPond – a digital notation format that we will further

discuss in later sections [3]. The model primarily consists of a Convolutional Neural Network (CNN) front-

end to transform a one-dimensional audio sequence into a multidimensional representation. This is followed

by an encoder-decoder layer using Long Short-Term Memory (LSTM). The paper claimed excellent

performance when tested on synthetically generated piano and human chorus audio. Unfortunately, it lacked

specific implementation details and source code for replication.

Another notable model is the Multi-task Multitrack Music Transcription (MT3) developed by Magenta; a

research project affiliated with Google AI [2]. MT3 was trained on popular available music datasets and

utilizes Transformers to transcribe multiple instruments simultaneously into MIDI-like tokens. MIDI, short for

Musical Instrument Digital Interface, is a widely used digital instrument communication protocol. While not a

formal notation scheme, MIDI can informally represent notes on a piano-roll structure (refer to Appendix B

for more details). However, using this model has some drawbacks, such as noticeable confusion in instrument

prediction. As claimed by Magenta, predicted instruments within the output may change abruptly [2].

Moreover, MIDI representations do not directly encode the high-level musical structures that we aim to

extract. As per their GitHub repository, they also do not appear to support training easily.

There are a few notable options in commercial software that are worth highlighting, namely AnthemScore and

ScoreCloud. Like many commercial software products, they are paywalled and closed source, making it

difficult to analyze and directly compare their performance. Nevertheless, some users find the results to be

generally unsatisfactory for paid software (see Figure 4) [1].

(a) (b)

Figure 4. Visual comparison of a short bassline (‘Another One Bites The Dust’ by Queen) predicted by (a) AnthemScore

(with free trial license) and (b) original score.

1.5 The Bass Guitar

This project focuses AMT for a specific instrument – the electric bass guitar (see Figure 5). While resembling

an electric guitar, the electric bass guitar differs significantly, primarily in producing lower frequencies with

the help of thicker strings and a longer neck. Indeed, the term 'bass' refers to low-pitched sounds.

Primarily, this instrument serves a supporting but crucial role in modern music, encompassing rhythm and

harmony (see Appendix C for brief descriptions of relevant musical concepts). Consequently, it often receives

less attention and glamour compared to other instruments.

Figure 5. A typical 4-string bass guitar with labelled parts.

The challenges in bass transcription primarily stem from its niche nature. There's a scarcity of high-

performing and readily accessible models specifically designed for notating this instrument. Datasets of

notated bass audio are rare and often inadequate for the task. While some datasets, such as the MUSDB18

dataset, include bass tracks within multi-instrument arrangements, they are primarily utilized for training

audio source separation models. The closest available dataset is the Synthesized Lakh Dataset (Slakh2100),

which offers a substantial collection of multi-track audio paired with aligned MIDI. However, as the desired

outcome is notation rather than MIDI, this dataset may not directly cater to the goal of notation-level

transcription (issues with MIDI further elaborated in section 2.4).

Furthermore, we speculate that the distinctive sonic characteristics of bass, characterized by lower frequencies

and overtones, may present challenges for existing pitch estimators and transcription models. These tools are

typically trained on a variety of instruments, such as piano and violin, which occupy broader or higher

frequency ranges. Figure 6 shows a visualization of the MIDI output produced by Basic Pitch, Spotify’s

impressive and lightweight transcription model, which predicted multiple notes despite the audio being

monophonic [4].

Figure 6. A graphical visualization of the MIDI output generated by Spotify’s Basic Pitch model on the same melody in

Figure 2, without parameter adjustments [4]. The model seems to have predicted polyphonic notes as characterized by

upper and lower streams.

1.6 Project Objectives and Scopes

Given the context provided earlier, this project aims to accomplish two main objectives. Firstly, we aim to

create a proof-of-concept notation-level transcription model tailored for bass guitar, drawing inspiration from

previous research attempts discussed. The inputs to this model consist of monophonic (single note at a time)

and isolated (no accompanying instruments) bass guitar audio, while the outputs should comprise of textual

representations corresponding to Western classical notation with 12 equal temperament tuning (Appendix D).

Secondly, in response to the scarcity of suitable data, we will devise a pipeline to automatically generate our

own annotated synthetic bass guitar audio dataset, drawing from methodologies used in prior research. This

dataset will serve as training and evaluation data for our model, ensuring that it has access to sufficient and

relevant information during the learning process.

2. Preliminary Attempts

Before delving into the primary methodology, we wish to offer an overview of the initial approach used,

inspired by a project called AutoBassTab which pursued a similar goal but using tablature instead of Western

notation. This initial model comprised of four components that will be explored in more detail in each section:

pitch estimator (section 2.1), onset detector (section 2.2), playing-style classifier (section 2.3), and parser

(section 2.4). We will elaborate how the shortcomings encountered with this approach influenced the adoption

of our current methodology instead. It is noteworthy that the concept of synthetic data generation was not yet

considered at this stage. Thus, the results are empirical, relying on qualitative and auditory confirmation

utilizing mostly real bass guitar samples.

2.1 Pitch Estimator

First, a pitch estimator (a frame-level transcriber) was employed to predict the fundamental frequencies in the

music audio. The CNN-based pitch estimator CREPE, adopted by AutoBassTab, was selected [5]. This model

apparently achieved superior results over other state-of-the-art pitch estimators when evaluated on synthetic

https://rickyhan.com/jekyll/update/2020/05/23/algorithm-for-fretboard-arrangement.html

audio, as illustrated in Table 1 [5]. Despite this claim, empirical results demonstrate that its accuracy may not

align with its assertions when applied to bass guitar audio. Figure 8 (b) illustrates an obvious octave error

when tested on a real bass guitar sample.

Table 1. Comparisons of average raw pitch accuracies and standard deviations between CREPE and other state-of-the-art

pitch estimators tested on two datasets: RWC-synth and MDB-stem-synth [5].

Figure 7. (a) Predicted frequencies of Sample 1, with relatively distinct notes denoted by horizontal line segments. (b)

Predicted frequencies of Sample 2, with octave errors at the start and 10-second mark.

2.2 Onset Detection

Subsequently, the model was integrated with an onset detector to estimate the instances when musical notes

occur, refining the transcription to note-level. Essentially, onset detection operates by first computing local

changes within an audio waveform, referred to as novelty functions or curves; amplitude changes yield an

energy novelty curve, while changes in frequency content produce a spectral novelty curve (illustrated in

Figure 9) [6]. While a sudden increase in amplitude may frequently correspond to the start of a note, this may

not always be the case. For example, a bassist may use a hammer-on technique that immediately alters the

pitch without changing the amplitude. Thus, spectral-based novelty functions were used. Subsequently, the

peaks of these novelty curves are strategically selected as onset candidates with certain rules and algorithms.

The onset detection function from Librosa, a popular Python digital signal processing library, was utilized.

Librosa’s onset_detect function first computes a spectral onset strength envelope, essentially a spectral

novelty function, and then selects peaks using the heuristics shown in Figure 10 [6].

As an additional step, we programmed additional rules such that potential false positives were naively pruned;

if an onset is within 0.1 seconds of its preceding onset, it will be removed as to eliminate closely spaced

onsets that may correspond to false positives, visualized as very tightly spaced red vertical lines in Figures 11a

and 11c.

However, we observed that parameters that affect the sensitivity of onset detection are not immediately

intuitive to adjust. These include hop length, sampling rate, and parameters from peak picking (e.g. pre_max,

post_max, delta, etc.). Some sets of parameters seem to work well only for certain samples. To achieve

optimal results, this approach may be better suited for those with more experience in signal processing.

Figure 8. (a) Energy-based novelty function of Sample 1. (b) Spectral-based novelty function of Sample 1

Figure 9. Rules and parameters used by Librosa for selecting peaks of signals [6].

Figure 10. (a) Sample 1 onsets computed by librosa. Each red vertical line corresponds to a predicted onset. (b) Sample 1

onsets after pruning. (c) Sample 2 onsets. (d) Sample 2 onsets after pruning.

2.3 Playing Style Classifier

As an additional challenge, a playing-style classifier was incorporated to predict various playing styles evident

in the recording, aiming to enhance transcription accuracy. Playing styles refer to different techniques used by

musicians on the same instrument to produce different timbre with the same pitch. For instance, bass

techniques like plucking sound thicker and more mellow while slapping sounds percussive and bright.

The deep CNN architectures proposed by [7] were suitable candidates (see Table 2). These accept raw time-

domain waveforms as input as opposed to pre-extracted features. The intuition is to enable the model to learn

relevant sonic features autonomously rather than relying on human efforts to identify 'correct' features [7].

Moreover, these architectures omit dense layers, commonly employed after convolutional layers, to maximize

learning within the convolutional layers themselves, which are hypothesized to be the primary locus of

learning [7]. This promises great performance and quicker development by significantly reducing the time

required for feature design.

A slightly modified M5 architecture was implemented in PyTorch, with a higher stride length of 16 in the

first convolutional layer for faster processing. The model was trained with the IDMT-SMT-Bass

dataset, publicly released by the Fraunhofer Institute for Digital Media Technology [8]. This dataset contains a

total of 5323 single bass guitar notes, of which 2347 from the ‘plucking styles’ category was used for training.

The plucking styles in the dataset are classified into five distinct classes: finger style (FS), muted (MU),

picked (PK), slap-thumb (ST), and slap-pop (SP). Prior to training, these files were downsampled from their

original 44.1 kHz sampling rate to 8 kHz before training to reduce input size.

Table 2. CNN architectures adopted in [7]. M5 (0.5M) represents 5 weight layers and 0.5 million parameters. The

notation [80/4, 128] specifies a convolutional layer with receptive field 80, 128 filters, and stride 4. For layers with stride

1 (e.g., [3, 128]), the stride is not explicitly mentioned.

2.4 MusicXML Parser

Lastly, a custom parser combines these data into a notation-level transcription using MusicXML format, a

music score representation developed by the World Wide Web Consortium (W3C) employing Extensible

Markup Language (XML) tags (see Figure 7). Unfortunately, this parser was not developed. There are no

existing parsers specifically designed to directly convert data these data into XML, and creating one is quite a

costly endeavor. As a workaround, the pitch estimation and onset data were initially converted to MIDI as an

intermediate representation using the following method: each predicted pitch Pt occurring at onset time t was

extracted. The durations of each note were determined as the interval between the current onset t1 and the next

onset t2. Thus, for each Pt, a MIDI note of duration t2 – t1 was constructed. It is worth noting that this process

can be thought as a note-level transcription attempt.

Regrettably, there are still no readily available methods to directly convert MIDI into notation. An approach

proposed by [9] seeks to estimate an optimal musical time grid from human-performed MIDI data, which

could hold promise for projects that are focused on MIDI to notation conversion. Additionally, MuseScore, a

commercial open-source music notation software, possesses an algorithm for converting MIDI to scores

(proprietary format), although it remains unpublished and lacks comprehensive documentation. Ambitious

developers may consider exploring and reverse engineering their algorithm, which is available in their GitHub

repository under the importmidi.cpp file.

Considering the inherent challenges in each component of the overall model, we concluded that the model was

overly cumbersome, and it was not worthwhile to proceed with its development and formal evaluation.

Figure 11. A simple MusicXML document sample from https://www.w3.org/2021/06/musicxml40/tutorial/hello-world/.

3. Main Methodology

The following describes current methodologies employed for the project. Section 3.1 delves into the present

model architecture, while Section 3.2 elaborates on the data generation pipeline. Section 3.3 provides

additional details on model training and testing. Finally, section 3.4 describes the web application developed

to host and demonstrate the model.

3.1 Current Model Architecture

Drawing inspiration from research and from speech recognition models, we settled on an architecture

resembling the one proposed by Carvalho and Smaragdis [3] [10]. We employed a CNN audio encoder but

https://www.w3.org/2021/06/musicxml40/tutorial/hello-world/

substituted the LSTM encoder-decoder with a Transformer [11]. The model was implemented in PyTorch.

Figure 12 illustrates the diagram of the architecture.

Firstly, a Vocab helper class, frequently utilized in natural language processing (NLP) applications such as

machine translation, was devised to manage important metadata associated with the labels. This includes

Python dictionaries that bidirectionally map a unique integer to each token, counts the number of occurrences

of each token, along with the total vocabulary size. Additionally, it contains auxiliary methods to facilitate the

conversion of label strings into tensors of indices and vice versa. The Vocab object is initialized with four

special tokens: start (‘{’), end, padding (‘<pad>’), and unknown (‘<unk>’).

We chose a CNN audio encoder for raw audio waveforms instead of spectrograms, a frequently employed

feature representation. At this stage, we observed no noticeable disparities in performance, thus kept the CNN

approach. The convolutional layers primarily convert a one-dimensional audio waveform into a multi-

dimensional representation. We employed 256 filters for this model. Following each convolutional layer, we

applied ReLU activation and utilized a max-pooling layer for dimensionality reduction. Subsequently, we

incorporated a layer normalization step. Finally, sinusoidal positional encoding was applied to the outputs to

embed positional information before handing them over to the Transformer.

Figure 12. Illustration of the model architecture. The diagram of the Transformer is simplified, with specific details

within the encoder and decoder layers omitted. To delve deeper into this, visit the project’s GitHub repository and

PyTorch’s Transformer documentation page.

The key advantages of employing a Transformer involve its capability for parallel processing, enabling the

utilization of Graphical Processing Units (GPU) during training to speed up the process. In contrast, recurrent

units or LSTMs operate sequentially. We adopted PyTorch's multi-head attention Transformer implementation

based on the "Attention Is All You Need" paper [11]. In short, this implementation comprises an encoder

block designed to capture input context and dependencies, producing what is termed as a memory tensor.

Subsequently, the decoder operates on this memory tensor along with an embedded sequence of tokens that

correspond to the LilyPond format. We primarily utilized default parameters: 6 layers for both the encoder and

decoder, 8 heads for multi-attention, and ReLU activation. The number of features for encoder and decoder

inputs are set to 256.

To prepare target labels for input to the decoder, additional steps were necessary. Target masking was

generated and applied to prevent the decoder from attending to future positions. PyTorch's

generate_square_subsequent_mask method produces masks with -inf values for these future positions. The

target labels undergo transformation into word embeddings via a PyTorch Embedding layer. Sinusoidal

positional encoding, supplemented with a dropout layer, was also utilized, following the solution provided in

this PyTorch tutorial. At the output, a linear layer was used to convert the decoder output, containing 256

features, into logits with dimensions corresponding to the vocabulary size.

By representing each output token as either a special token (starting and ending token) or a note, we ensure

that syntax errors are avoided when compiling the generated scores with the LilyPond command line interface

(CLI), as long as the start and end tokens are included. This method differs from outputting individual

characters, as seen in the Carvalho and Smaragdis method, which could potentially result in compilation errors

[3]. Further details on score syntax are provided in the subsequent section.

3.2 Dataset generation

We devised a three-stage process for producing pairs of synthetic bass guitar audio and corresponding labels

in LilyPond format. LilyPond refers to both a notation syntax and an open-source music engraving toolset that

is part of the GNU project. It offers a concise method for representing sheet music resembling the LaTeX

syntax, in contrast to the more verbose XML representation. Moreover, the toolset incorporates a CLI capable

of compiling .ly scores into formats such as PDF for practical application.

Typically, notes in LilyPond adhere to the representation outlined in Figure 13. Each note comprises a pitch or

a rest, along with optional accidentals (sharps and flats), octave modifiers, and a subdivision. For further

clarification on the definitions of common elements in Western notation, refer to Appendix A. It is important

to note that these guidelines represent only a subset of LilyPond's interpretative capabilities. For more

comprehensive information, visit lilypond.org to explore more.

https://pytorch.org/tutorials/beginner/transformer_tutorial.html

Figure 13. A brief overview of LilyPond’s syntax, obtained from https://lilypond.org/text-input.html

First, a Python script generates text labels resembling the shape shown in Figure 14. These labels are

structured as text sequences, comprising an opening curly brace, individual notes, and a closing curly brace.

These braces signify the start and end tokens of each sequence, commonly denoted as 'SOS' and 'EOS' in NLP

tasks. Simultaneously, each label is inserted into a boilerplate score template and stored as a .ly file. The

guidelines governing label generation are as follows:

• Notes are depicted with absolute pitches in LilyPond's 'absolute mode' and utilize explicit

subdivisions instead of 'relative mode'. This approach aims to establish a clearer ground truth and

minimize ambiguity. The labels begin with ‘{‘ and end with ‘}’.

• Pitches comprise one of the seven notes from the set {c, d, e, f, g, a, b} or a rest denoted by 'r'

(indicating a period of silence). Rests are excluded from the initial dataset batch (Version A).

• Only sharps ('is') are employed as the optional accidental to avoid ambiguity stemming from

enharmonic equivalence, as explained in the introduction. Thus, the pitches 'b' and 'e' are restricted

from having sharps; 'b sharp' is identical to 'c', and 'e sharp' is identical to 'f'. Furthermore, stacking

(i.e., double sharp) is not utilized.

• Only one lower octave (',') is employed; the upper octaves are currently not utilized to keep

vocabulary size smaller and maintain focus on lower pitches.

• Leading, trailing, and consecutive rests are avoided. Trailing rests are disregarded during the MIDI

generation detailed in the subsequent section, while consecutive rests introduce ambiguity (two rests

of duration 8 are indistinguishable from one rest of duration 4). Leading rests were also considered for

exclusion but should have been retained.

• Notes are randomly generated from the vocabulary list, which comprises all possible combinations of

notes. This selection can be musically justified as utilizing the chromatic scale.

• The length of each score varies between 10 to 20 notes, randomly chosen.

• The tempo is fixed at 120 beats per minute (BPM), eliminating the need for tempo prediction.

• The time signature in the output score is set to 4/4; however, no efforts were made to ensure that note

subdivisions within a measure adhere to this constraint, as LilyPond does not enforce it. Additionally,

there were no attempts to predict the time signature.

https://lilypond.org/text-input.html

Figure 14. Example score generated by the data_generator.py Python script. The highlighted segment corresponds to the

label.

Next, the LilyPond CLI was employed to compile the .ly scores into MIDI format. Recall that MIDI is a

protocol utilized for communication between digital instruments, which includes support for virtual

instruments as well.

Finally, these MIDI files were rendered programmatically using a free virtual bass guitar plugin called Ample

Bass P Lite II. This workflow was executed in Reaper, a digital audio workstation (DAW) or audio recording

software (see Figure 15). Although the Reaper API itself doesn't support automated rendering, a solution

called Ultraschall, a podcasting plugin for Reaper, was capable of this. Upon loading the virtual instrument, a

custom Lua script was executed to iteratively load MIDI files and invoke the necessary APIs to render audio

files.

The audio output specifications are as follows: a sampling rate of 16 kHz, a bit-depth of 16-bit PCM (pulse-

code modulation), and a mono channel configuration.

In total, we generated three batches of data, each containing 10,000 samples, with an increasing vocabulary

size as illustrated in Table 3. We opted for a sample size of 10,000 as a compromise between dataset size and

the time required for audio rendering (see section 4.3 for details on issues). The rationale behind generating

different batches was to commence model training with a relatively simpler vocabulary to ensure proficient

model performance, gradually progressing to more complex vocabularies. Additionally, while this subset is

considerably simplified compared to real music, it serves as a solid foundation for utilization in the proposed

model. Consider the number of possible scores for the smallest vocabulary size of 48 and score length 10

(allowing repetitions of all notes): 4810 = 64,925,062,108,545,024 possible scores – not a small number.

Figure 15. The Reaper DAW with virtual instrument loaded and a text editor for scripting. The Lua script iteratively

loads MIDI files onto the project timeline and renders the audio.

Dataset Version Vocabulary Size

A 48

B 84

C 105

Table 3. Three batches of data with corresponding vocabulary size (number of unique tokens) excluding special tokens

(starting, ending, padding, and unknown).

3.3 Training and Testing

For training, teacher forcing was used, where the Transformer decoder receives the correct output labels

instead of its own previously generated output. This approach aimed to mitigate error propagation (where

small prediction errors accumulate over time) potentially leading to more stable training. The outputs are

compared with the true labels without the starting token. Therefore, it is important to offset the input target

label such that the ending token is omitted.

The following details for training are as follows. A 90:10 train-test split was employed to allocate more

training data to the model. A batch size of 1 was utilized due to the complexities associated with padding and

masking audio data using PyTorch; there does not seem to be straightforward methods to handle masking of

encoded audio data with paddings. Cross-entropy loss, Adam optimizer, and a learning rate of 1e-5 were

utilized. The model was trained for 20 epochs, as the loss appeared to converge around that point.

For testing and inference, the Transformer decoder is configured to predict output tokens autoregressively,

utilizing its own previously generated output as target inputs. The target label is initially set as a tensor with a

maximum length of 22, comprising the maximum number of notes (20) plus a starting and ending token. It is

important to note that the ending token is not utilized for making predictions. The first element represents the

start token, while the remainder consists of placeholder unknown tokens '<unk>'. Through masking, the

decoder is effectively prevented from observing the unknown token at the current timestep. During each

iteration through the target sequence, the subsequently predicted token replaces the corresponding unknown

token. Iterations halt prematurely upon predicting an end token, and the unknown tokens are stripped off.

Torchaudio’s edit distance (also known as Levenshtein distance) is used to calculate how closely the predicted

notes align with the labels. This metric captures the total number of substitutions, additions, and deletions

required to transform one sequence into another. When comparing strings, it provides a character-level

distance, whereas when comparing lists of tokens, it computes a word-level distance. These distances are then

used to calculate the character error rate (CER) and word error rate (WER) by normalizing over the number of

characters or words present in a particular sample.

The process was executed on Google Colab, utilizing T4 GPU instances. Training runs typically required an

average of 2-3 hours to complete. Following training and testing, the model's state dictionary, along with the

Vocab object, were serialized and saved for future use. To utilize the model again, the model object must be

recreated with the same parameters, and then the state dictionary and vocabulary are loaded in.

3.4 Web application

A simple web application was created to showcase the model, as shown in Figure 16. The inference API was

developed using FastAPI, a Python backend framework. The user interface was built in TypeScript using

Next.js, a widely used React framework, and utilizing the Chakra UI library.

Users have the choice to upload their own audio file. Additionally, for demonstration purposes, the client

allows users to select sample audio and preview corresponding LilyPond scores retrieved from the server.

Currently, users are required to select the desired model for audio transcription; one out of the three models

trained on each dataset. Upon clicking the button, a request is sent to the server containing the file name,

Base64 encoded audio, and model name. The request handler receives the request, decodes the audio, and

stores it in a temporary directory. The audio is loaded and resampled to 16 kHz. The selected model is then

loaded and processes the audio input to generate predicted labels, embeds them into a boilerplate score

template, and saves the resulting score to a temporary directory. Subsequently, it invokes the LilyPond CLI in

a subprocess to compile the score into a PDF file. Finally, a response containing the file name, raw LilyPond

score, and Base64 encoded PDF document is sent back to the client. Users can preview the scores on the user

interface and download the PDF if desired.

 (a) (b)

 (c) (d)

Figure 16. (a) Application menu. (b) File upload with LilyPond output. (c) Sample selection with LilyPond output and

label preview. (d) PDF preview.

4. Results

Sections 4.1 and 4.2 present the model's training and testing results, respectively. Section 4.3 highlights issues

concerning automatic audio rendering within the data generation pipeline.

4.1 Training

Figure 17 shows the training loss curve of the model trained on dataset B across 20 epochs. The loss

demonstrates a clear downward trend but exhibits considerable fluctuations. We hypothesize that these

fluctuations are likely attributed to the small batch size of 1 sample utilized during training; encountering a

particularly challenging sample may result in significant error spikes.

Figure 17. Cross-entropy loss curve. Shows a general decreasing trend but with significant fluctuations.

4.2 Testing

Table 4 displays the mean word error rate (WER) and character error rate (CER) for the identical model

architecture trained on each dataset. This is calculated by averaging the total WER and CER over all testing

samples. Remarkably, the model achieved both average WER and CER of less than 10% for all three datasets,

which is quite satisfactory at this stage. It is expected to observe an increase in error as the vocabulary size

expands, as the same amount of data, model parameters, and training parameters were maintained.

Dataset Version Vocabulary Size Word Error Rate Character Error Rate

A 48 2.61% 2.32%

B 84 5.56% 4.56%

C 105 9.32% 7.83%

Table 4. Mean word and character error rates for each dataset.

4.3 Data generation pipeline

The audio generation process utilizing Reaper and the Ultraschall plugin presents significant challenges for

scalability and long-term use. We encountered major memory issues involving either the plugin or Reaper

itself, necessitating the generation of audio in batches of approximately two to three hundred at a time.

Consequently, generating even larger datasets poses a considerable problem at present. Given that

automatically rendering audio in this manner is not a conventional task, there is currently a lack of suitable

tools for efficiently rendering audio from MIDI and virtual instruments.

5. Future Work

While demonstrating commendable performance, there remains considerable work ahead for the model to

effectively handle real-world data. Firstly, addressing the fluctuating loss curve during training is crucial. This

could involve increasing the batch size and devising methods to handle padding and masking of audio input.

Adjusting the learning rate while augmenting the dataset size could also be beneficial.

To better emulate real music, several approaches can be considered. For instance, expanding the vocabulary

size by introducing upper octaves while accounting for the instrument's maximum range can be explored.

Currently, the supported range spans from E1 to B2, whereas standard tuned 4-string bass guitars can reach as

high as Dsharp4, though this is uncommon. Regarding generation rules, incorporating musical structures via

algorithmic music generation could prove to be beneficial, although it may extend a little beyond the current

scope of the project. For instance, instead of randomly generating notes using the chromatic scale, different

combinations of scales and keys could be introduced. Contextual information may then be incorporated

accordingly. To enhance sound quality, various noises, effects (like distortion, fuzz, reverb), or virtual

instrument variants can be used. Additionally, modeling human performances could involve introducing

timing imperfections by randomly adjusting MIDI data – like the 'humanize' feature available in Reaper.

Regarding the previous challenge of modeling playing styles, this could be accomplished by utilizing virtual

instruments (usually not free) that contains those samples, along with incorporating additional articulation

symbols in LilyPond.

While getting more data is always advantageous, the development of a more efficient audio generation tool is

imperative to facilitate the generation of vast amounts of audio data. This might necessitate a separate project

altogether.

As the complexity of the data grows, exploring larger models becomes essential. This may involve simply

augmenting the number of features, layers, and heads. Given the advancements in large language models that

are based on Transformers, this approach to music transcription holds significant potential.

6. Conclusion

In this report, we introduced a proof-of-concept end-to-end transcription model for bass guitar using

Transformers, enabling direct conversion of audio into Western notation in Lilypond format. This streamlines

the process, eliminating the need for multiple stages that can be cumbersome and prone to errors. Moreover,

we tackled the challenge of limited data availability by establishing our own synthetic audio generation

pipeline to produce bass guitar audio with corresponding notation. Leveraging insights from previous studies,

our model has shown promising results in testing, boasting relatively low word and character error rates on the

dataset. However, it remains in its early developmental phase and relies heavily on certain assumptions,

particularly regarding the synthetic data generated. Further exploration is essential, encompassing both the

refinement of the model architecture and the expansion of the dataset, to ensure robust generalization and

practical utility for bassists in future iterations. This includes refining the audio generation methodology,

exploring larger model architectures, integrating more realistic musical structures, and potentially modeling

various playing styles.

7. References

[1] E. Benetos, S. Dixon, Z. Duan and S. Ewert, "Automatic Music Transcription: An Overview", 2019. doi:

10.1109/MSP.2018.2869928.

[2] J. Gardner, I. Simon, E. Manilow, C. Hawthorne, and J. Engel, “MT3: Multi-Task Multitrack Music

Transcription.” arXiv, 2021. doi: 10.48550/ARXIV.2111.03017.

[3] R. G. C. Carvalho and P. Smaragdis, "Towards end-to-end polyphonic music transcription: Transforming

music audio directly to a score," 2017, doi: 10.1109/WASPAA.2017.8170013.

[4] Bittner, R. M., José Bosch, J., Rubinstein, D., Meseguer-Brocal, G., and Ewert, S., “A Lightweight

Instrument Agnostic Model for Polyphonic Note Transcription and Multipitch Estimation”, 2022.

doi:10.48550/arXiv.2203.09893.

[5] J. W. Kim, J. Salamon, P. Li, and J. P. Bello, “CREPE: A Convolutional Representation for Pitch

Estimation.” 2018. doi: 10.48550/ARXIV.1802.06182.

[6] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg, and O. Nieto. “librosa: Audio and

music signal analysis in python.” In Proceedings of the 14th python in science conference, pp. 18-25. 2015.

[7] W. Dai, C. Dai, S. Qu, J. Li, and S. Das, “Very Deep Convolutional Neural Networks for Raw

Waveforms,” Oct. 2016, doi: https://doi.org/10.48550/arxiv.1610.00087.

[8] J. Abeßer, “IDMT-SMT-Bass”, 2010. https://www.idmt.fraunhofer.de/en/publications/datasets/bass.html

[9] H. G. Michael Clausen, M. Müller, “Estimating Musical Time from Performed MIDI Files”, 2014. doi:

10.5281/zenodo.1417924

[10] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and I. Sutskever, “Robust Speech

Recognition via Large-Scale Weak Supervision”, 2022. doi:10.48550/arXiv.2212.04356.

[11] A. Vaswani et al., “Attention Is All You Need”, 2017. doi:10.48550/arXiv.1706.03762.

[12] K. Choi, G. Fazekas, K. Cho, and M. Sandler, “A Tutorial on Deep Learning for Music Information

Retrieval.”, 2017. doi: 10.48550/ARXIV.1709.04396.

[13] Dolmetsch, “Music theory & history online”. https://www.dolmetsch.com/theoryintro.htm

[14] J. Gibson, “Introduction to MIDI and Computer Music”. https://cecm.indiana.edu/361/midi.html

[15] CCRMA, “Standard MIDI File Structure”.

https://ccrma.stanford.edu/~craig/14q/midifile/MidiFileFormat.html

[16] MasterClass, “Music 101: What Is Harmony and How Is It Used in Music”

https://www.masterclass.com/articles/music-101-what-is-harmony-and-how-is-it-used-in-music

[17] Britannica, “Equal Temperament”. https://www.britannica.com/art/equal-temperament

https://doi.org/10.48550/arxiv.1610.00087
https://www.idmt.fraunhofer.de/en/publications/datasets/bass.html
https://www.dolmetsch.com/theoryintro.htm
https://cecm.indiana.edu/361/midi.html
https://ccrma.stanford.edu/~craig/14q/midifile/MidiFileFormat.html
https://www.masterclass.com/articles/music-101-what-is-harmony-and-how-is-it-used-in-music
https://www.britannica.com/art/equal-temperament

8. Appendices

A. Western Classical Notation

This section offers a glimpse into fundamental music theory and key elements within this notation system,

aiming to provide context for the project. While it covers a significant amount of information, it represents

only a basic and limited subset. Readers can explore https://www.dolmetsch.com/theoryintro.htm, which

serves as a comprehensive resource heavily referenced in this section.

Music is represented as a collection of notes, which serve as discrete representations of sound and carry

details regarding their pitch (perceived frequency), onset time, and duration. The initial seven letters of the

alphabet are employed to signify increasing pitch in a cyclical manner: A B C D E F G A and so forth. These

correspond to the white keys found on a piano keyboard. The interval between the two A notes in this instance

is referred to as an octave.

Notes corresponding to the black keys are denoted by letters followed by pitch modifiers known as

accidentals. A sharp (♯) raises a note's pitch by a half step, while a flat (♭) lowers it by half a step.

Consequently, the black key directly above and to the right (a half step higher) of a C is referred to as C sharp.

However, it can also be interpreted as a half step lower than D and is thus labeled D flat. This occurrence,

where the same pitch is represented by different notations, is called enharmonic equivalence.

Figure 18. A piano keyboard with names of notes.

Notes are positioned on a grid, usually composed of five horizontal lines known as a staff (or stave), and are

read from left to right. A note may be placed directly on a horizontal line or between two lines. The vertical

placement conveys the pitch of the note, with a higher position denoting a higher pitch. Ledger lines may be

employed to extend the score's range.

 (a) (b)

Figure 19. (a) Note placements on staffs. (b) Ledger lines.

https://www.dolmetsch.com/theoryintro.htm

A clef symbol, positioned at the start of the staff, establishes a reference pitch for notation. Two commonly

used clefs are the Treble clef and the Bass clef. The Treble clef, also called the G clef, is a symbol that loops

around the second horizontal line from the bottom, representing the position of the note G4, approximately

391.995 Hz (in Helmholtz pitch notation). Typically, this clef is employed for higher-pitched notes. The Bass

clef, known as the F clef, curls around the fourth horizontal line from the bottom, indicating the position of

F3, approximately 174.61 Hz. It is utilized for instruments with lower pitches. (a)

(b)

Figure 20. (a) Treble or G clef. (b) Bass or F clef

The duration or subdivision of a note is conveyed through its shape. Table 5a displays a selection of notes

with their respective durations and names. Note durations are commonly depicted using fractional units. Rests

signify intervals of silence and are represented by a distinct set of shapes, as depicted in Table 5b. Thus, both

the horizontal position and the shape together indicate when notes should be played. (a)

 (b)

Table 5. (a) Example of note shapes, durations, and names. (b) Rest shapes, durations, and names.

Notes on a staff are organized into measures or bars, delineated by vertical lines. These measures serve as

compact groupings of notes, facilitating musicians in their reading and interpretation. For example, it is far

more convenient to instruct musicians to begin at bar 128 rather than specifying the 700th note.

Figure 21. Three empty bars on a staff separated by a single bar line, double bar line (to mark end of sections), and

terminal bar line (end of a musical piece).

https://en.wikipedia.org/wiki/Helmholtz_pitch_notation#:~:text=Fully%20described%20and%20normalized%20by,individual%20note%20of%20the%20scale.

To determine how many durations worth of notes should be grouped into a bar, a time signatures is used. It is

a fractional metric consisting of two numbers: the numerator represents the number of notes to be played in a

bar, while the denominator indicates the type of note to be played. A time signature of 3/4 indicates three

quarter notes in a bar, while 6/8 indicates six eighth notes per bar. Notice that mathematically, both time

signatures occupy the same overall duration. Musicians may argue and debate about their differences in terms

of note groupings and accents used.

The speed of a piece of music is commonly measured in beats per minute (BPM), where a beat typically

corresponds to a quarter note’s duration. In classical music and before the invention of metronomes, tempo

markings are used to estimate the speed. Table 6 shows common Italian tempo markings with corresponding

estimated BPM values.

Table 6. Tempo markings in Italian, commonly used in classical music pieces, along with their definitions and estimated

BPM values.

B. Musical Instrument Digital Interface (MIDI)

MIDI is communication protocol used by digital instruments. Devices connected to a MIDI bus communicate

using MIDI Messages that describe events that occurred, like a key press on a digital piano for instance. Up to

16 channels (independent message paths) can be supported. A MIDI file consists of chunks of bytes, including

a header, track, and events. Readers can refer to this page for a detailed specification of the file structure.

C. Examples of High-Level Musical Concepts

This short section briefly highlights three core concepts in music: rhythm, harmony, and melody.

Rhythm refers to temporal placements and patterns of notes. This can be realized using combinations of

different note durations, volume, or groupings for instance.

Harmony may be considered as a combination and series of notes. It is an abstract product of a cohesive group

of voicings.

Intuitively, melody can be thought of as the part of music that you can sing to. It is also a collection of notes

as a single entity.

D. 12-Tone Equal Temperament Tuning

In music, frequencies can be divided in different ways. In modern Western music, the 12 Tone Equal

Temperament Tuning system is most frequently used, with the note A4 centered at 440 Hz as a reference

point. This involves dividing an octave into 12 equally spaced intervals called semitones on a logarithmic

scale. Each subsequent semitone is 122 or approximately 1.059 times the previous frequency. For example,

the subsequent note of A4 (440 Hz) is Asharp4, which is 440 * 122 = 466.16 Hz.

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Abbreviations
	1. Introduction
	1.1 Types of Symbolic Representations
	1.2 Uses of AMT
	1.3 Challenges of AMT
	1.4 Existing Solutions
	1.5 The Bass Guitar
	1.6 Project Objectives and Scopes

	2. Preliminary Attempts
	2.1 Pitch Estimator
	2.2 Onset Detection
	2.3 Playing Style Classifier
	2.4 MusicXML Parser

	3. Main Methodology
	3.1 Current Model Architecture
	3.2 Dataset generation
	3.3 Training and Testing
	3.4 Web application

	4. Results
	4.1 Training
	4.2 Testing
	4.3 Data generation pipeline

	5. Future Work
	6. Conclusion
	8. Appendices
	A. Western Classical Notation
	B. Musical Instrument Digital Interface (MIDI)
	C. Examples of High-Level Musical Concepts
	D. 12-Tone Equal Temperament Tuning

