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1. Introduction 
Acoustic music, which is often characterized by its use of instruments without electronic 
amplification, tends to capture the purity of sound through instruments like violins, pianos, 
guitars, and vocals, resulting in a soothing and calming atmosphere that can lead to relaxation 
and improved sleeping quality. 
 
In today’s music landscape, the availability of acoustic renditions of songs is rather limited. 
Listeners either rely on original artists to release acoustic versions of their songs or listen to 
independent artists’ covers, both of which can be unpredictable and limited in availability. 
Moreover, for music creators, creating acoustic adaptations often requires a proper recording 
studio for experimenting with different musical instruments. Independent artists who don’t 
have access to resources and facilities often encounter obstacles in trying different 
instrumentations to transform their compositions into different styles. 
 
With the emergence of generative AI and the success in image style transfer with generative 
image models like DALL·E and Midjourney, this project is motivated to create a generative AI 
model specifically for creating acoustic adaptations of musical compositions to bridge the gap 
between human-created musical compositions and AI-generated music. Thus, expanding the 
availability of acoustic renditions of songs and contributing to the field of AI-assisted music 
composition as well as style transfer. 

2. Objectives 
The main objective of this project is to create a generative AI model specializing in producing 
acoustic interpretations of musical compositions. Firstly, this project aims to harness the 
potential of generative AI models to generate quality acoustic renditions of musical 
compositions in a reasonable amount of time, given the original versions of songs and style 
requirements during the input stage. Secondly, this project aims to provide a web interface to 
accompany the model for users to generate musical compositions easily and quickly. 

3. Background 
In the field of generative AI, there are many existing works done with regard to audio style 
transfer. However, few of them are capable of handling both vocals and musical instruments 
with the exception of Jukebox, and models specializing in acoustic renditions are almost 
nonexistent. The sections below will briefly introduce related generative audio models and 
the models used or experimented in this project. 
 

3.1 Related Works 

3.1.1 Jukebox 
Jukebox is an open-source generative AI model developed by OpenAI. It is a neural net that is 
specifically trained for music generation and rudimentary singing in various artist styles [1]. 
Jukebox was trained on a huge dataset of 1.2 million songs alongside the corresponding lyrics 
and metadata [1]. Therefore, it is capable of generating lyrics and music in different genres 
while mimicking a particular artist, and song completion given the first part of an audio 
sequence [1]. 
 



 8 

Jukebox leverages Vector Quantized Variational AutoEncoder (VQ-VAE-2) as its autoencoder 
model to compress 44 kHz 32-bit raw audio waveform by up to 128 times into a discrete 
representation of the waveform [1]. Then, the audio can be reconstructed by decoding it back 
to the raw audio space while conditioned on textual information supplied during the input 
phase [1]. 
 
In 2020, when the model was first proposed, it represented a huge leap in AI music generation 
with the capability to specify artists, genres, and lyrics. However, it has some noticeable flaws. 
Firstly, noise similar to that found in radio broadcasts is introduced during the downsampling 
and upsampling phase of the raw audio which leads to a subpar listening experience that does 
not live up to the current music streaming standards [1]. Additionally, due to the relatively 
slow autoregressive sampling process, it usually takes around 9 hours to generate 1 minute of 
audio sequence [1], which renders the model unusable in interactive applications like the one 
this project aims to create. 
 

3.2 Adopted/Experimented Models 

3.2.1 Audiocraft EnCodec 
EnCodec is a high-fidelity, real-time audio codec in the AudioCraft family developed by Meta 
[2]. It utilizes neural networks to compress various kinds of audio and reconstruct the original 
audio signal with exceptional fidelity [3]. 
 

 
Figure 1 Architecture of EnCodec [2] 

The architecture of EnCodec is a streaming encoder-decoder architecture with a quantized 
latent space [2]. It is trained with reconstruction (lf and lt) alongside adversarial losses (lg for 
the generator and ld for the discriminator) [2]. Additionally, the encoder is applied with the 
residual vector quantization commitment loss (lw). Moreover, a small Transformer language 
model can be trained optionally for entropy coding over the quantized units with ll, which 
further reduces bandwidth [2]. 
 

3.2.2 Audiocraft MusicGen 
MusicGen is an open-source generative AI model in the AudioCraft family developed by Meta. 
It is a generative audio model trained with Meta-owned and specifically licensed music for 
music-generation tasks [4]. It is capable of generating music conditioned on melodic and 
textual features, allowing finer controls over the generated audio output [4]. 
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Figure 2 Architecture of MusicGen [3] 

MusicGen contains one single autoregressive language model (LM) that processes over 
streams of tokens, which are compressed discrete music representations [3]. It introduces a 
simple approach that effectively models audio sequences, capturing the long-term 
dependencies in the audio simultaneously by utilizing the internal structure of the parallel 
streams of tokens [3]. As a result, it can generate high-quality audio with a single model and 
token interleaving pattern [3]. 
 
MusicGen utilizes the EnCodec neural audio codec to learn the discrete audio tokens from the 
raw waveform [3]. EnCodec transforms the audio signal into one or more parallel streams of 
discrete tokens [3]. Then, a single autoregressive language model is employed to iteratively 
model the audio tokens from EnCodec [3]. Afterward, the resulting tokens are input into the 
EnCodec decoder to map back to the audio space to generate the output waveform [3]. Lastly, 
various types of conditioning models, such as a pre-trained text encoder can be applied to 
condition the generation process, particularly for applications involving text-to-music 
transformations [3]. 
 

 
Figure 3 Generate music with MusicGen with text and melody conditioning 

MusicGen can accept both waveform and textual input for conditioning the music output. 
However, MusicGen was not trained on music involving vocals. Thus, it is unable to handle 
vocals in songs. Instead of producing vocals alongside instrumentals, the model ignores the 
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vocals completely and generates instrumental music only. Moreover, the output audio 
degrades significantly if the output duration is longer than 30 seconds. Lastly, the pre-trained 
models of MusicGen can only output audio of up to 32kHz sampling rate because of the 
limitations posed by EnCodec. 
 

3.2.3 Descript Audio Codec (DAC) 
DAC is a high-fidelity general neural audio codec that was used as a replacement for EnCodec 
in part of this project [5]. The model is based on the VQ-GANs using the identical pattern as 
EnCodec [5]. Same as EnCodec, it also utilizes a fully convolutional encoder-decoder network 
that performs temporal downscaling with a given striding factor [5]. One of the benefits of 
using DAC includes a higher compression ratio. It is able to compress 44.1 kHz audio into 
discrete codes at an 8 kbps bitrate achieving around 90 times compression with fewer artifacts 
and minimal loss in quality [5]. Additionally, it fixes an important issue found in existing codecs 
which full bandwidth is not utilized because of codebook collapse by using more advanced 
codebook learning techniques [5]. 

4. Works Accomplished 
4.1 AI Models 
There are two approaches when it comes to creating a model for generating acoustic 
adaptations. The first approach is training MusicGen with DAC, and the second approach 
involves audio splitting before feeding into a pre-trained MusicGen model. 
 

4.1.1 Approach 1 – MusicGen with DAC 

4.1.1.1 Model Architecture 

 
Figure 4 Approach 1 model architecture 

The model architecture is the same as MusicGen’s architecture except that the neural audio 
codec is replaced by DAC instead of EnCodec. With DAC, audio can be compressed from 44.1 
kHz sampling rate into discrete codes as low as 8 kbps bitrate while maintaining high fidelity 
and little artifacts [5]. 
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4.1.1.2 Dataset 
The dataset used consists of 103 English songs which are official acoustic versions of released 
songs across different genres and artists like Taylor Swift and Sam Smith (see Appendix 1 for 
the complete list). The songs were downloaded from YouTube Music at 44.1 kHz dual channels 
and their respective metadata are fetched through Spotify API. The metadata collected were 
then stored in JSON format and the metadata includes: 
 

KEY EXAMPLE VALUE 

KEY 1 
ARTIST a-ha 
SAMPLE_RATE 44100 
FILE_EXTENSION wav 
KEYWORDS acoustic 
DURATION 184.33015873015873 
BPM 103.883 
GENRE new romantic 
TITLE Take On Me - 2017 Acoustic 
NAME a-ha - Take On Me - 2017 Acoustic 
INSTRUMENT guitar 

Table 1 Example metadata of Take On Me 

Originally, line-synced lyrics, which means a timestamp is only available at the start of each 
sentence, were included in the JSON files. However, the songs were trimmed down to only 5 
seconds each during the training phase which rendered line-synced lyrics useless. Due to the 
absence of a free word-synced lyrics provider, lyrics were not included in the JSON files as a 
result. 
 
The songs together with their respective JSON files were split into training, validation, and 
testing sets randomly where 70% were placed in the training set, 20% were placed in the 
validation set, and 10% were placed in the testing set. 
 

4.1.1.3 Model Training 
Due to the high computation requirements of MusicGen, everything had to be downsized to 
avoid overloading a local NVIDIA RTX 4080, which only had 16GB of VRAM. The most notable 
one is to trim every single song in the dataset down to only 5 seconds. Apart from the 
adjustments in the dataset, there were also changes in the model hyperparameters and 
configurations. The tables below illustrate some of the hyperparameters and configurations 
adopted when training the model. 
 

DATASET PARAMETER/CONFIGURATION  

CHANNELS 1 
SAMPLE RATE 44100 
BATCH SIZE 3 
SEGMENT DURATION 5 

Table 2 Dataset parameters and configurations 

LANGUAGE MODEL PARAMETER/CONFIGURATION 
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LM transformer-lm 
LM MODEL SCALE small 
TOP_K 250 
TOP_P 0 
CONDITIONERS t5-base (text conditioning), 

chroma-stem (waveform conditioning) 
Table 3 Language model parameters and configurations 

OPTIMIZER PARAMETER/CONFIGURATION  

LOSS FUNCTION cross entropy (CE) 
OPTIMIZER DADAM 
EPOCHS 500 
EMA 0.99 decay every 10 updates 

Table 4 Optimizer parameters and configurations (Unchanged) 

4.1.1.4 Training Result 
The final model was made up of 321.77 million parameters. Figure 5 shows how the CE, which 
measures the performance of the model (the lower the better), and is defined as: 

𝐻(𝑝, 𝑞) = −𝐸𝑝[log 𝑞] 

where 𝐸𝑝[∙] is the expected value operator to the distribution p [6], changes over time. 

 

 
Figure 5 Cross-entropy loss of the model 

 
As illustrated in Figure 5, the CE was reducing at a very slow rate after epoch 400 and the CE 
was at 5.935 at epoch 500. That means the distribution predicted by the model could not align 
with the actual distribution of the target data well. As a result, the model cannot predict 
accurately and meaningfully given an audio sequence. 
 
Figure 6 shows how the perplexity, which measures the uncertainty in the value of a sample 
from a discrete probability distribution (the lower the better), and is defined as: 

𝑃𝑃(𝑝) ∶= 2𝐻(𝑝) = 2−∑ 𝑝(𝑥) log2 𝑝(𝑥)𝑥 =∏𝑝(𝑥)−𝑝(𝑥)

𝑥

 

where x ranges over the events, and 𝐻(𝑝)  is the entropy (in bits) of the distribution [7], 
changes over time. 
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Figure 6 Perplexity of the model 

As illustrated in Figure 6, the perplexity was reducing at a very slow rate after epoch 400 and 
it was at 381.606 at epoch 500. That means the model could not identify and extract the 
structure and patterns within an audio signal [7]. As a result, it is less likely to predict the next 
frame in an audio sequence correctly. 
 
As suggested by the metrics, the model performed very poorly. Although the output of the 
model can follow the melody of a given audio sequence, the output lacks clarity and 
enunciation. It also introduces a mumbling human voice instead of maintaining the original 
lyrics which further degrades the overall auditory experience. As a result, the output is a mix 
of muddled vocals and subpar musical elements which renders the model unusable for 
producing acoustic adaptations based on a source material. 
 

4.1.1.5 Limitations 
The unsatisfactory output quality could be attributed to a relatively small training dataset and 
using a small-scale LM for training as the pre-trained MusicGen model uses a medium-scale 
LM for its normal melody-conditioned (1.5 billion) model whereas a large-scale LM is used for 
its large melody-conditioned (3.3 billion) model. Moreover, as suggested by the 
implementation of Jukebox, the presence of lyrics could be crucial for generating songs. The 
lack of lyrics in the metadata file could lead to muddling vocals in the output audio. 
 
Apart from the significant limitations of the output quality of the model, the model cannot 
generate audio sequences longer than 5 seconds and it is limited to generating mono audio 
sequences. Moreover, the training of the model was very compute-intensive which required 
approximately 10 days with over 95% utilization rate on the GPU to complete the training on 
a local NVIDIA RTX 4080. This makes the model training and evaluation lifecycle so long that 
hyperparameter tuning or configuration changes cannot be done and evaluated promptly. 
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4.1.2 Approach 2 – Audio Splitting 

4.1.2.1 Model Architecture 

 
Figure 7 Model architecture of approach 2 

The idea of this approach is to create a model with minimal changes to MusicGen for quick 
testing and evaluation. Other than MusicGen, this approach introduces another model, that 
is lalal.ai for audio splitting. This pre-trained model helps to split an audio input into vocals 
and non-vocals, resulting in two separate audio sequences leaving only the non-vocal track to 
be processed by MusicGen. The MusicGen model used in this approach is a pre-trained 
“musicgen-stereo-melody-large” which is a 3.3 billion model capable of melody conditioning 
and stereo audio generation. 
 
The flow of the model starts with a piece of song that contains both instrumentals and vocals. 
The song is then passed to the audio-splitting model to split the song into vocals and non-
vocals. The non-vocals are extracted and passed to the pre-trained MusicGen model. As the 
audio input passed to MusicGen only consists of instrumentals, the audio output also consists 
of instrumentals only and does not contain any vocals. After MusicGen has generated the non-
vocal part of the audio based on the melody of the input audio file and the style specified in 
the text prompt, the output is ready to be mixed with the vocal part of the original song, which 
was separated earlier by lalal.ai. The final audio output is a mix of the original vocals with 
melodies played by acoustic instruments. 
 

4.1.2.2 Results 
The generated audio showcases great musicality with clear and well-rendered vocals. The 
model can generate music based on the melody of a given audio sequence, and the 
instruments and style specified in the text prompt in a harmonious arrangement. However, 
despite these strengths, the generated audio suffers from a flaw that is significantly noticeable 
in faster and more energetic songs, that is the lack of coherence with regard to beats and 
tempo. This results in a sense of inconsistency in the rhythm as the vocals are not modified in 
the generation process whereas the melody and instruments change to a more acoustic 
setting by removing the punchiness of the song and introducing softer transitions in the 
rhythm. This incoherence negatively impacts the auditory experience for acoustic adaptations 
for fast songs.  
 

13
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4.1.2.3 Limitations 
Apart from the limitations when generating acoustic renditions for faster and more energetic 
songs, this approach also suffers from the limitations carried from the audio splitting model 
and MusicGen. Firstly, there will be a slight drop in quality after splitting the audio sequence 
into vocals and non-vocals, which will be propagated through the MusicGen stage. Secondly, 
as limited by the capabilities of EnCodec, the generated audio can only support a sampling 
rate of up to 32 kHz. Finally, as inherited from the limitation of MusicGen, the quality degrades 
significantly if the duration of the output audio sequence is longer than 30 seconds. 
 

4.1.3 Models Summary 
In conclusion, approach 1, which utilizes MusicGen with DAC, encountered obstacles in 
achieving satisfactory audio output quality as the model struggled with producing clear vocals 
and musical instruments. The high computation costs when training the model also limited 
the scale of the LM and blocked further experimentations with the current hardware setup. 
On the other hand, approach 2, which utilizes lala.ai for audio splitting alongside MusicGen, 
exhibits satisfactory results in generating music with clear vocals and musical instruments. 
However, it suffers from incoherence with tempo and beats, particularly in faster songs. While 
both approaches suffer from certain flaws and limitations, approach 2 demonstrated better 
musicality and clearer vocals despite challenges in rhythm consistency and coherence. 
Therefore, approach 2 was chosen to be implemented in the web app. 
 

4.2 Web App 

4.2.1 Frontend 
ReactJS is used as the framework for the frontend of the app, and the UI is coded and stored 
as components for reusability. The frontend is hosted on AWS Amplify and connected to the 
backend database, which is Amazon DynamoDB, via GraphQL. 
 

4.2.2 Backend 
All of the backend services are running on AWS for easy deployments and management. The 
diagram below illustrates the architectural design of this web app on AWS. 
 

 
Figure 8 AWS architecture 
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4.2.3 List of AWS resources 

4.2.3.1 Amazon Cognito 
It is an identity and access management service [8] that is used to authenticate users to the 
web app and authorize users to access his/her audio files. 
 

4.2.3.2 AWS Amplify 
It is a platform for hosting full-stack web and mobile apps  [9] that are used to manage the 
web app easily, set up CI/CD, and host the web app. Features like storage and authentication 
can also be deployed and managed easily on Amplify Studio. 
 

4.2.3.3 AWS AppSync 
It is an API service that is used to query, create, update, and delete items stored in the Music 
table inside the Amazon DynamoDB via GraphQL and Pub/Sub APIs [10]. 
 

4.2.3.4 Amazon S3 
It is a cloud object storage service [11] that is used to store the original audio files and the 
generated audio files from Autoustic. The bucket and objects are not accessible publicly, that 
is the bucket only allows the owner of the uploaded audio files to view and download the 
corresponding generated file. 
 

4.2.3.5 Amazon DynamoDB 
It is a NoSQL, serverless, and fully managed database [12] that is used to store the data related 
to music generation. For example, the text prompts used to condition the output audio, the 
S3 IDs and URLs of the audio files stored on Amazon S3, the username that initiated the 
generation, the status of the generation, etc. Below is the GraphQL schema: 

 
type Music @model @auth(rules: [{allow: public}]) { 
  id: ID! 
  prompt: String! 
  s3uid: String! 
  s3durl: String 
  username: String! 
  vocal: Boolean! 
  lalad: String 
  status: String! 
  name: String! 
} 
 
where “!” represents mandatory fields. 

 

4.2.3.6 AWS Lambda 
It is a serverless compute service [13] that is used to run a custom JavaScript for preprocessing 
before being handled by Autoustic. This Lambda function is triggered whenever there is an 
update on the Music table on Amazon DynamoDB. If a newly created item triggers it, the 
function will start by downloading the original audio file from S3, then it will upload the file 
to lalal.ai to split the audio file into vocals and non-vocals. Once the splitting has been 
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completed, it will send the download URL, text prompt, item (DynamoDB) ID, and original 
audio file’s (S3) ID to the queue in Amazon SQS for further processing by Autoustic. 
 

4.2.3.7 AWS Secrets Manager 
It is a service for managing the lifecycle of secrets centrally [14]. It currently stores the API key 
for lambda to communicate with lalal.ai APIs. 
 

4.2.3.8 Amazon CloudWatch 
It is a monitoring service for logging and debugging [15]. It collects logs from AWS Lambda 
and Amazon EC2 and stores them in a workplace which allows logs can be easily viewed and 
traced when unexpected errors occur. 
 

4.2.3.9 Amazon SQS 
It is a fully managed message queuing that allows the decoupling and scaling of microservices 
[16]. Due to the huge differences in processing time between audio splitting and generation, 
it may be better to decouple these two processes to cope with sudden changes in demand. 
Amazon SQS decouples the audio splitting process, which AWS Lambda handles, and the audio 
generation process, which is handled by Amazon EC2, by placing a queue where AWS Lambda 
can send messages to the queue, and Amazon EC2 instances can consume messages from the 
queue. As AWS Lambda is Function as a Service (FaaS) which scales automatically according 
to the demand and Amazon EC2 instances are put under an auto-scaling group, they can also 
scale out according to the demand. Note that this is a first-in-first-out (FIFO) queue in which 
order is maintained and message duplication is not allowed to maintain the priority between 
requests. 
 

4.2.3.10 Amazon EC2 
It is a compute service [17] that is mainly used for audio generation. Multiple g5.2xlarge EC2 
instances are placed into an auto scaling group, each of them is equipped with one NVIDIA 
A10G Tensor Core GPU that comes with 24 GiB of GPU memory, 8 vCPUs, 32 GiB of memory, 
and 450 GB of local NVMe SSD storage, resulting in high performance for stereo audio 
generation [18]. 
 

4.2.4 User Flow 
1. For new user registration, he/she creates an account with a unique username, email, 

and password, then he/she will receive a one-time password (OTP) for email 
verification. Once the email has been verified, the registration is completed, and the 
user is added to the user pool on Amazon Cognito. Then, the user will be directed to 
his/her home page. As for existing users, he/she simply log in with his/her usernames 
and passwords, and Amazon Cognito will verify the login credentials against the user 
pool. If the user passes through the authentication, he/she will be directed to his/her 
home page. 
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Figure 9 Sign in page 

 
Figure 10 Create account page 

2. On the home page, there is a form that allows the user to initiate a music generation 
task and a “Your music” table that allows the user to view and listen to previously 
generated music. 
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Figure 11 User home page 

To generate an acoustic version of a piece of music, the user simply needs to fill in a 
friendly name for identification like the name of the music, a text prompt, for example, 
acoustic guitar, upload the original music, and turn on vocal extraction if the music 
contains human voice and turn it off if it is solely instrumentals. This switch determines 
whether the uploaded music needs to be preprocessed by lalal.ai. 

3. Once the user has submitted the form and the audio file is uploaded to Amazon S3, a 
new item is created with form data in DynamoDB, and this triggers the Lambda 
function. The function starts by updating the status field on DynamoDB, which will 
then be reflected on the corresponding row under the “Your music” table. Then, it will 
download the original music from Amazon S3 and upload it to lalal.ai if vocal extraction 
is enabled. 

4. The Lambda function checks on the progress of audio splitting and updates the status 
if necessary. Once the audio splitting is completed, it will send the data to Amazon SQS, 
which details are mentioned in section 4.2.3.6. 

5. When the message has arrived at the front of the queue, an Amazon EC2 instance will 
consume the message and retrieve the data. The function running on EC2 will 
download the audio files, which include a file that only contains the vocals and another 
file that only contains the non-vocals, from lalal.ai if vocal extraction is enabled. Then, 
it will change the sampling rate of both files to 32 kHz which is the input format of 
MusicGen. Then, the non-vocal file and the text prompt will be fed to the model for 
inferencing. Finally, it will combine the generated audio with the vocals and upload the 
mix to S3 as well as update the status and the S3 download URL of the corresponding 
item. Once everything has been completed, it will delete the message in the queue to 
avoid the message being re-consumed by other EC2 instances. 

6. The “Your music” table reflects the latest changes on Amazon DynamoDB and 
generates signed S3 URLs for the user to download and listen to both original and 
generated music. 
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5. Future Works 
 

 
Figure 12 Project timeline 

To improve the web app, both the frontend and backend will be revamped and improved in 
the coming months to provide a more seamless user experience for users to interact with the 
model. For the frontend of the web app, as the current UI is quite simple and only provides 
some of the basic features to the users, the UI will be completely revamped. Prototyping will 
be done by 25 January and coding of the UI components will be done by the end of January. 
Moreover, to provide a more seamless experience to the users, third-party identity providers 
like Google and Facebook will be added by mid-February to provide more options for users to 
authenticate and register with the app. Finally, user acceptance tests (UAT) need to be carried 
out before deploying and submitting the web app to avoid major flaws and logical errors from 
happening in the app. 
 
Secondly, for the backend of the web app, there may be some architectural problems that are 
incurring a huge amount of costs on AWS. Further investigation needs to be carried out and 
redesign of the client-to-server and server-to-server communications might be needed to find 
a solution that is both cost-effective and incurs minimal impact on the user experience. 
Moreover, to speed up the development and testing of the web app, a CI/CD pipeline will be 
created by early February and the web app is expected to start hosting on AWS Amplify in 
mid-February. 
 
Finally, regarding the music generation model, the pre-trained model from MusicGen will be 
finetuned to better prepare the model for acoustic rendition tasks by feeding more acoustic 
music data into the model. The training dataset is readily available whereas the training 
infrastructure will be set up by the end of January on AWS and it is expected to continue 
finetuning and evaluating the model until the end of February. In the meantime, investigations 
on methods such as sliding windows to overcome the 30-second generation limit inherited 
from MusicGen will start immediately as this determines the capability of the model. Finally, 
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there are a few existing models which are capable of audio style transfer. Comparison and 
evaluation of these models will be done in parallel with MusicGen finetuning tasks to 
determine which model is best suited for acoustic rendition purposes. 
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Appendix 1 
Song Name Artist 

Youngblood - Acoustic 5 Seconds of 
Summer 

Take On Me - 2017 Acoustic a-ha 

Wild Things - Acoustic Version Alessia Cara 

No One - Acoustic Alicia Keys 

Lonely Together - Acoustic Avicii 

Meant to Be - Acoustic Bebe Rexha 

Eastside (with Halsey & Khalid) - Acoustic benny blanco 

You (with Marshmello & Vance Joy) - Acoustic benny blanco 

Grenade - Acoustic Bruno Mars 

Dancing On My Own - Acoustic Calum Scott 

Attention - Acoustic Charlie Puth 

One Call Away - Acoustic Charlie Puth 

I'll Be Waiting - Acoustic Cian Ducrot 

Solo (feat. Demi Lovato) - Acoustic Clean Bandit 

Symphony (feat. Zara Larsson) - Acoustic Version Clean Bandit 

My Universe - Acoustic Version Coldplay 

Yellow - Live from Spotify London Coldplay 

Bad Day - Acoustic Daniel Powter 

Sorry Not Sorry - Acoustic Demi Lovato 

Be the One - Acoustic Dua Lipa 

Blow Your Mind (Mwah) - Acoustic Dua Lipa 

IDGAF - Acoustic Dua Lipa 

New Rules - Acoustic Dua Lipa 

Castle on the Hill - Acoustic Ed Sheeran 

Happier - Acoustic Ed Sheeran 

I Don't Care - Acoustic Ed Sheeran 

Lego House - Acoustic Ed Sheeran 

Perfect - Acoustic Ed Sheeran 

Shape of You - Acoustic Ed Sheeran 

South of the Border (feat. Camila Cabello) - Acoustic Ed Sheeran 

Cold Heart - Acoustic Elton John 

Most Girls - Acoustic Hailee Steinfeld 

Starving - Acoustic Hailee Steinfeld 

Quite Miss Home - Acoustic James Arthur 

Train Wreck - Acoustic James Arthur 

Please Keep Loving Me - Acoustic James TW 

Here's Your Perfect - Acoustic Jamie Miller 

Ridin' Solo - Acoustic Jason Derulo 

Price Tag - Acoustic Version Jessie J 

Fast Car - Acoustic Jonas Blue 
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Mama - Acoustic Jonas Blue 

Perfect Strangers - Acoustic Jonas Blue 

Rise - Acoustic Jonas Blue 

No Air (feat. Chris Brown) - Acoustic Version Jordin Sparks 

Passport Home - Piano Acoustic JP Cooper 

September Song - Piano Acoustic JP Cooper 

Boyfriend - Acoustic Version Justin Bieber 

Intentions - Acoustic Justin Bieber 

Lonely (with benny blanco) - Acoustic Justin Bieber 

What Do You Mean? - Acoustic Justin Bieber 

The One That Got Away - Acoustic Katy Perry 

Thinking Of You - Acoustic Version Katy Perry 

Can't Get You out of My Head - Live from Spotify, London Kylie Minogue 

Before You Go - Guitar Acoustic Lewis Capaldi 

Strip That Down - Acoustic Liam Payne 

No More Sad Songs - Acoustic Version Little Mix 

Shout Out to My Ex - Acoustic Little Mix 

Harder To Breathe - Acoustic Maroon 5 

Never Gonna Leave This Bed - Acoustic Version Maroon 5 

She Will Be Loved - Acoustic Maroon 5 

Sunday Morning - Acoustic Maroon 5 

Won't Go Home Without You - Acoustic Version Maroon 5 

FRIENDS - Acoustic Marshmello 

Scared to Be Lonely - Acoustic Version Martin Garrix 

Beautiful Scars - Acoustic Maximillian 

Colour - Acoustic MNEK 

So Sick - Acoustic Ne-Yo 

Slow Hands - Acoustic Niall Horan 

Too Much To Ask - Acoustic Niall Horan 

Find You - Acoustic Nick Jonas 

Remember I Told You - Acoustic Nick Jonas 

Sunroof - Acoustic Nicky Youre 

La La Lost You - Acoustic Version NIKI 

Night Changes - Live Acoustic Session One Direction 

One Thing - Acoustic One Direction 

Perfect - Stripped One Direction 

Steal My Girl - Live Acoustic Session One Direction 

If I Lose Myself - Acoustic OneRepublic 

Mariposa - Acoustic Peach Tree 
Rascals 

Your Song - Acoustic Rita Ora 

These Days (feat. Jess Glynne, Macklemore & Dan Caplen) - Acoustic Rudimental 

This City - Acoustic Sam Fischer 
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Dancing With A Stranger (With Normani) - Acoustic Sam Smith 

How Do You Sleep? - Acoustic Sam Smith 

Latch - Acoustic Sam Smith 

Too Good At Goodbyes - Acoustic Sam Smith 

Lost In Japan - Recorded at Spotify Studios NYC Shawn Mendes 

Mercy - Acoustic Shawn Mendes 

There's Nothing Holdin' Me Back - Acoustic Shawn Mendes 

Wonder - Acoustic Shawn Mendes 

Youth (feat. Khalid) - Acoustic Shawn Mendes 

Electricity - Acoustic Silk City 

Love Is Gone - Acoustic SLANDER 

Back To December - Acoustic Taylor Swift 

Delicate - Recorded at The Tracking Room Nashville Taylor Swift 

The Man Who Can't Be Moved - Acoustic The Script 

My My My! - Acoustic Troye Sivan 

YOUTH - Acoustic Troye Sivan 

A Thousand Miles - Acoustic Vanessa Carlton 

Shut Up and Dance - Live Acoustic - 2015 WALK THE 
MOON 

Fallin‚Äô (Adrenaline) - Acoustic Why Don't We 

Beep Me - Acoustic Will Heard 

Stay - Acoustic Zedd 
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