

COMP4801 Final Year Project
Interim Report

Autoustic: An AI model for generating
acoustic adaptations of musical compositions

Supervisor: Dr. Choi Yi King

Group: fyp23028

Student: Cheng Wai Fung (3035705427)

 2

Copyright Acknowledgment

Copyrighted songs were used in this project for training purposes. Due to copyright issues, the
dataset used in this project will not be published and the complete list is available in Appendix
1. Note that the models published in this project are only for individual research purposes.

 3

Table of Contents

Copyright Acknowledgment ..2

Table of Figures ..4

Table of Tables ..5

Abbreviations ...6

1. Introduction ..7

2. Objectives ...7

3. Background ...7

3.1 Related Works ... 7
3.1.1 Jukebox ... 7

3.2 Adopted/Experimented Models ... 8
3.2.1 Audiocraft EnCodec .. 8
3.2.2 Audiocraft MusicGen .. 8
3.2.3 Descript Audio Codec (DAC) ...10

4. Works Accomplished ... 10

4.1 AI Models .. 10
4.1.1 Approach 1 – MusicGen with DAC ...10
4.1.2 Approach 2 – Audio Splitting ..14
4.1.3 Models Summary ...15

4.2 Web App.. 15
4.2.1 Frontend ...15
4.2.2 Backend ..15
4.2.3 List of AWS resources ...16
4.2.4 User Flow ..17

5. Future Works... 20

Appendix 1 ... 22

References .. 25

 4

Table of Figures
Figure 1 Architecture of EnCodec [2] ... 8
Figure 2 Architecture of MusicGen [3] ... 9
Figure 3 Generate music with MusicGen with text and melody conditioning 9
Figure 4 Approach 1 model architecture ... 10
Figure 5 Cross-entropy loss of the model .. 12
Figure 6 Perplexity of the model .. 13
Figure 7 Model architecture of approach 2 ... 14
Figure 8 AWS architecture ... 15
Figure 9 Sign in page .. 18
Figure 10 Create account page .. 18
Figure 11 User home page ... 19
Figure 12 Project timeline .. 20

 5

Table of Tables

Table 1 Example metadata of Take On Me ... 11
Table 2 Dataset parameters and configurations .. 11
Table 3 Language model parameters and configurations .. 12
Table 4 Optimizer parameters and configurations (Unchanged) ... 12

 6

Abbreviations

ABBREVIATIONS DEFINITION

AI Artificial Intelligence
Amazon EC2 Amazon Elastic Compute Cloud
Amazon S3 Amazon Simple Storage Service
Amazon SQS Amazon Storage Queue Service
AWS Amazon Web Services
CE Cross Entropy
CI/CD Continuous Integration and Continuous Delivery/Deployment
DAC Descript Audio Codec
EMA Exponential Moving Average
FaaS Function as a Service
FIFO First In First Out
GPU Graphics Processing Unit
LM Language Model
NVMe Nonvolatile Memory Express
OTP One-Time Password
SSD Solid-State Drive
UAT User Acceptance Testing
UI User Interface
vCPU Virtual Central Processing Unit
VQ-VAE-2 Vector Quantized Variational AutoEncoder
VRAM Video Random Access Memory

 7

1. Introduction
Acoustic music, which is often characterized by its use of instruments without electronic
amplification, tends to capture the purity of sound through instruments like violins, pianos,
guitars, and vocals, resulting in a soothing and calming atmosphere that can lead to relaxation
and improved sleeping quality.

In today’s music landscape, the availability of acoustic renditions of songs is rather limited.
Listeners either rely on original artists to release acoustic versions of their songs or listen to
independent artists’ covers, both of which can be unpredictable and limited in availability.
Moreover, for music creators, creating acoustic adaptations often requires a proper recording
studio for experimenting with different musical instruments. Independent artists who don’t
have access to resources and facilities often encounter obstacles in trying different
instrumentations to transform their compositions into different styles.

With the emergence of generative AI and the success in image style transfer with generative
image models like DALL·E and Midjourney, this project is motivated to create a generative AI
model specifically for creating acoustic adaptations of musical compositions to bridge the gap
between human-created musical compositions and AI-generated music. Thus, expanding the
availability of acoustic renditions of songs and contributing to the field of AI-assisted music
composition as well as style transfer.

2. Objectives
The main objective of this project is to create a generative AI model specializing in producing
acoustic interpretations of musical compositions. Firstly, this project aims to harness the
potential of generative AI models to generate quality acoustic renditions of musical
compositions in a reasonable amount of time, given the original versions of songs and style
requirements during the input stage. Secondly, this project aims to provide a web interface to
accompany the model for users to generate musical compositions easily and quickly.

3. Background
In the field of generative AI, there are many existing works done with regard to audio style
transfer. However, few of them are capable of handling both vocals and musical instruments
with the exception of Jukebox, and models specializing in acoustic renditions are almost
nonexistent. The sections below will briefly introduce related generative audio models and
the models used or experimented in this project.

3.1 Related Works

3.1.1 Jukebox
Jukebox is an open-source generative AI model developed by OpenAI. It is a neural net that is
specifically trained for music generation and rudimentary singing in various artist styles [1].
Jukebox was trained on a huge dataset of 1.2 million songs alongside the corresponding lyrics
and metadata [1]. Therefore, it is capable of generating lyrics and music in different genres
while mimicking a particular artist, and song completion given the first part of an audio
sequence [1].

 8

Jukebox leverages Vector Quantized Variational AutoEncoder (VQ-VAE-2) as its autoencoder
model to compress 44 kHz 32-bit raw audio waveform by up to 128 times into a discrete
representation of the waveform [1]. Then, the audio can be reconstructed by decoding it back
to the raw audio space while conditioned on textual information supplied during the input
phase [1].

In 2020, when the model was first proposed, it represented a huge leap in AI music generation
with the capability to specify artists, genres, and lyrics. However, it has some noticeable flaws.
Firstly, noise similar to that found in radio broadcasts is introduced during the downsampling
and upsampling phase of the raw audio which leads to a subpar listening experience that does
not live up to the current music streaming standards [1]. Additionally, due to the relatively
slow autoregressive sampling process, it usually takes around 9 hours to generate 1 minute of
audio sequence [1], which renders the model unusable in interactive applications like the one
this project aims to create.

3.2 Adopted/Experimented Models

3.2.1 Audiocraft EnCodec
EnCodec is a high-fidelity, real-time audio codec in the AudioCraft family developed by Meta
[2]. It utilizes neural networks to compress various kinds of audio and reconstruct the original
audio signal with exceptional fidelity [3].

Figure 1 Architecture of EnCodec [2]

The architecture of EnCodec is a streaming encoder-decoder architecture with a quantized
latent space [2]. It is trained with reconstruction (lf and lt) alongside adversarial losses (lg for
the generator and ld for the discriminator) [2]. Additionally, the encoder is applied with the
residual vector quantization commitment loss (lw). Moreover, a small Transformer language
model can be trained optionally for entropy coding over the quantized units with ll, which
further reduces bandwidth [2].

3.2.2 Audiocraft MusicGen
MusicGen is an open-source generative AI model in the AudioCraft family developed by Meta.
It is a generative audio model trained with Meta-owned and specifically licensed music for
music-generation tasks [4]. It is capable of generating music conditioned on melodic and
textual features, allowing finer controls over the generated audio output [4].

 9

Figure 2 Architecture of MusicGen [3]

MusicGen contains one single autoregressive language model (LM) that processes over
streams of tokens, which are compressed discrete music representations [3]. It introduces a
simple approach that effectively models audio sequences, capturing the long-term
dependencies in the audio simultaneously by utilizing the internal structure of the parallel
streams of tokens [3]. As a result, it can generate high-quality audio with a single model and
token interleaving pattern [3].

MusicGen utilizes the EnCodec neural audio codec to learn the discrete audio tokens from the
raw waveform [3]. EnCodec transforms the audio signal into one or more parallel streams of
discrete tokens [3]. Then, a single autoregressive language model is employed to iteratively
model the audio tokens from EnCodec [3]. Afterward, the resulting tokens are input into the
EnCodec decoder to map back to the audio space to generate the output waveform [3]. Lastly,
various types of conditioning models, such as a pre-trained text encoder can be applied to
condition the generation process, particularly for applications involving text-to-music
transformations [3].

Figure 3 Generate music with MusicGen with text and melody conditioning

MusicGen can accept both waveform and textual input for conditioning the music output.
However, MusicGen was not trained on music involving vocals. Thus, it is unable to handle
vocals in songs. Instead of producing vocals alongside instrumentals, the model ignores the

 10

vocals completely and generates instrumental music only. Moreover, the output audio
degrades significantly if the output duration is longer than 30 seconds. Lastly, the pre-trained
models of MusicGen can only output audio of up to 32kHz sampling rate because of the
limitations posed by EnCodec.

3.2.3 Descript Audio Codec (DAC)
DAC is a high-fidelity general neural audio codec that was used as a replacement for EnCodec
in part of this project [5]. The model is based on the VQ-GANs using the identical pattern as
EnCodec [5]. Same as EnCodec, it also utilizes a fully convolutional encoder-decoder network
that performs temporal downscaling with a given striding factor [5]. One of the benefits of
using DAC includes a higher compression ratio. It is able to compress 44.1 kHz audio into
discrete codes at an 8 kbps bitrate achieving around 90 times compression with fewer artifacts
and minimal loss in quality [5]. Additionally, it fixes an important issue found in existing codecs
which full bandwidth is not utilized because of codebook collapse by using more advanced
codebook learning techniques [5].

4. Works Accomplished
4.1 AI Models
There are two approaches when it comes to creating a model for generating acoustic
adaptations. The first approach is training MusicGen with DAC, and the second approach
involves audio splitting before feeding into a pre-trained MusicGen model.

4.1.1 Approach 1 – MusicGen with DAC

4.1.1.1 Model Architecture

Figure 4 Approach 1 model architecture

The model architecture is the same as MusicGen’s architecture except that the neural audio
codec is replaced by DAC instead of EnCodec. With DAC, audio can be compressed from 44.1
kHz sampling rate into discrete codes as low as 8 kbps bitrate while maintaining high fidelity
and little artifacts [5].

 11

4.1.1.2 Dataset
The dataset used consists of 103 English songs which are official acoustic versions of released
songs across different genres and artists like Taylor Swift and Sam Smith (see Appendix 1 for
the complete list). The songs were downloaded from YouTube Music at 44.1 kHz dual channels
and their respective metadata are fetched through Spotify API. The metadata collected were
then stored in JSON format and the metadata includes:

KEY EXAMPLE VALUE

KEY 1
ARTIST a-ha
SAMPLE_RATE 44100
FILE_EXTENSION wav
KEYWORDS acoustic
DURATION 184.33015873015873
BPM 103.883
GENRE new romantic
TITLE Take On Me - 2017 Acoustic
NAME a-ha - Take On Me - 2017 Acoustic
INSTRUMENT guitar

Table 1 Example metadata of Take On Me

Originally, line-synced lyrics, which means a timestamp is only available at the start of each
sentence, were included in the JSON files. However, the songs were trimmed down to only 5
seconds each during the training phase which rendered line-synced lyrics useless. Due to the
absence of a free word-synced lyrics provider, lyrics were not included in the JSON files as a
result.

The songs together with their respective JSON files were split into training, validation, and
testing sets randomly where 70% were placed in the training set, 20% were placed in the
validation set, and 10% were placed in the testing set.

4.1.1.3 Model Training
Due to the high computation requirements of MusicGen, everything had to be downsized to
avoid overloading a local NVIDIA RTX 4080, which only had 16GB of VRAM. The most notable
one is to trim every single song in the dataset down to only 5 seconds. Apart from the
adjustments in the dataset, there were also changes in the model hyperparameters and
configurations. The tables below illustrate some of the hyperparameters and configurations
adopted when training the model.

DATASET PARAMETER/CONFIGURATION

CHANNELS 1
SAMPLE RATE 44100
BATCH SIZE 3
SEGMENT DURATION 5

Table 2 Dataset parameters and configurations

LANGUAGE MODEL PARAMETER/CONFIGURATION

 12

LM transformer-lm
LM MODEL SCALE small
TOP_K 250
TOP_P 0
CONDITIONERS t5-base (text conditioning),

chroma-stem (waveform conditioning)
Table 3 Language model parameters and configurations

OPTIMIZER PARAMETER/CONFIGURATION

LOSS FUNCTION cross entropy (CE)
OPTIMIZER DADAM
EPOCHS 500
EMA 0.99 decay every 10 updates

Table 4 Optimizer parameters and configurations (Unchanged)

4.1.1.4 Training Result
The final model was made up of 321.77 million parameters. Figure 5 shows how the CE, which
measures the performance of the model (the lower the better), and is defined as:

𝐻(𝑝, 𝑞) = −𝐸𝑝[log 𝑞]

where 𝐸𝑝[∙] is the expected value operator to the distribution p [6], changes over time.

Figure 5 Cross-entropy loss of the model

As illustrated in Figure 5, the CE was reducing at a very slow rate after epoch 400 and the CE
was at 5.935 at epoch 500. That means the distribution predicted by the model could not align
with the actual distribution of the target data well. As a result, the model cannot predict
accurately and meaningfully given an audio sequence.

Figure 6 shows how the perplexity, which measures the uncertainty in the value of a sample
from a discrete probability distribution (the lower the better), and is defined as:

𝑃𝑃(𝑝) ∶= 2𝐻(𝑝) = 2−∑ 𝑝(𝑥) log2 𝑝(𝑥)𝑥 =∏𝑝(𝑥)−𝑝(𝑥)

𝑥

where x ranges over the events, and 𝐻(𝑝) is the entropy (in bits) of the distribution [7],
changes over time.

 13

Figure 6 Perplexity of the model

As illustrated in Figure 6, the perplexity was reducing at a very slow rate after epoch 400 and
it was at 381.606 at epoch 500. That means the model could not identify and extract the
structure and patterns within an audio signal [7]. As a result, it is less likely to predict the next
frame in an audio sequence correctly.

As suggested by the metrics, the model performed very poorly. Although the output of the
model can follow the melody of a given audio sequence, the output lacks clarity and
enunciation. It also introduces a mumbling human voice instead of maintaining the original
lyrics which further degrades the overall auditory experience. As a result, the output is a mix
of muddled vocals and subpar musical elements which renders the model unusable for
producing acoustic adaptations based on a source material.

4.1.1.5 Limitations
The unsatisfactory output quality could be attributed to a relatively small training dataset and
using a small-scale LM for training as the pre-trained MusicGen model uses a medium-scale
LM for its normal melody-conditioned (1.5 billion) model whereas a large-scale LM is used for
its large melody-conditioned (3.3 billion) model. Moreover, as suggested by the
implementation of Jukebox, the presence of lyrics could be crucial for generating songs. The
lack of lyrics in the metadata file could lead to muddling vocals in the output audio.

Apart from the significant limitations of the output quality of the model, the model cannot
generate audio sequences longer than 5 seconds and it is limited to generating mono audio
sequences. Moreover, the training of the model was very compute-intensive which required
approximately 10 days with over 95% utilization rate on the GPU to complete the training on
a local NVIDIA RTX 4080. This makes the model training and evaluation lifecycle so long that
hyperparameter tuning or configuration changes cannot be done and evaluated promptly.

 14

4.1.2 Approach 2 – Audio Splitting

4.1.2.1 Model Architecture

Figure 7 Model architecture of approach 2

The idea of this approach is to create a model with minimal changes to MusicGen for quick
testing and evaluation. Other than MusicGen, this approach introduces another model, that
is lalal.ai for audio splitting. This pre-trained model helps to split an audio input into vocals
and non-vocals, resulting in two separate audio sequences leaving only the non-vocal track to
be processed by MusicGen. The MusicGen model used in this approach is a pre-trained
“musicgen-stereo-melody-large” which is a 3.3 billion model capable of melody conditioning
and stereo audio generation.

The flow of the model starts with a piece of song that contains both instrumentals and vocals.
The song is then passed to the audio-splitting model to split the song into vocals and non-
vocals. The non-vocals are extracted and passed to the pre-trained MusicGen model. As the
audio input passed to MusicGen only consists of instrumentals, the audio output also consists
of instrumentals only and does not contain any vocals. After MusicGen has generated the non-
vocal part of the audio based on the melody of the input audio file and the style specified in
the text prompt, the output is ready to be mixed with the vocal part of the original song, which
was separated earlier by lalal.ai. The final audio output is a mix of the original vocals with
melodies played by acoustic instruments.

4.1.2.2 Results
The generated audio showcases great musicality with clear and well-rendered vocals. The
model can generate music based on the melody of a given audio sequence, and the
instruments and style specified in the text prompt in a harmonious arrangement. However,
despite these strengths, the generated audio suffers from a flaw that is significantly noticeable
in faster and more energetic songs, that is the lack of coherence with regard to beats and
tempo. This results in a sense of inconsistency in the rhythm as the vocals are not modified in
the generation process whereas the melody and instruments change to a more acoustic
setting by removing the punchiness of the song and introducing softer transitions in the
rhythm. This incoherence negatively impacts the auditory experience for acoustic adaptations
for fast songs.

13

 15

4.1.2.3 Limitations
Apart from the limitations when generating acoustic renditions for faster and more energetic
songs, this approach also suffers from the limitations carried from the audio splitting model
and MusicGen. Firstly, there will be a slight drop in quality after splitting the audio sequence
into vocals and non-vocals, which will be propagated through the MusicGen stage. Secondly,
as limited by the capabilities of EnCodec, the generated audio can only support a sampling
rate of up to 32 kHz. Finally, as inherited from the limitation of MusicGen, the quality degrades
significantly if the duration of the output audio sequence is longer than 30 seconds.

4.1.3 Models Summary
In conclusion, approach 1, which utilizes MusicGen with DAC, encountered obstacles in
achieving satisfactory audio output quality as the model struggled with producing clear vocals
and musical instruments. The high computation costs when training the model also limited
the scale of the LM and blocked further experimentations with the current hardware setup.
On the other hand, approach 2, which utilizes lala.ai for audio splitting alongside MusicGen,
exhibits satisfactory results in generating music with clear vocals and musical instruments.
However, it suffers from incoherence with tempo and beats, particularly in faster songs. While
both approaches suffer from certain flaws and limitations, approach 2 demonstrated better
musicality and clearer vocals despite challenges in rhythm consistency and coherence.
Therefore, approach 2 was chosen to be implemented in the web app.

4.2 Web App

4.2.1 Frontend
ReactJS is used as the framework for the frontend of the app, and the UI is coded and stored
as components for reusability. The frontend is hosted on AWS Amplify and connected to the
backend database, which is Amazon DynamoDB, via GraphQL.

4.2.2 Backend
All of the backend services are running on AWS for easy deployments and management. The
diagram below illustrates the architectural design of this web app on AWS.

Figure 8 AWS architecture

Web App Infrastructure

AWS Cloud

Amazon Cognito

AWS Amplify

React Web Application

AWS AppSync

Amazon Simple Storage
Service (Amazon S3)

Storage

Amazon DynamoDB

App Integration

AWS Lambda

Amazon CloudWatch

Amazon Simple Queue
Service (Amazon SQS)

Auto Scaling group

Amazon Elastic Compute
Cloud (Amazon EC2)

g5.2xlarge
Instances

Authenticated
user

18

AWS Secrets Manager

 16

4.2.3 List of AWS resources

4.2.3.1 Amazon Cognito
It is an identity and access management service [8] that is used to authenticate users to the
web app and authorize users to access his/her audio files.

4.2.3.2 AWS Amplify
It is a platform for hosting full-stack web and mobile apps [9] that are used to manage the
web app easily, set up CI/CD, and host the web app. Features like storage and authentication
can also be deployed and managed easily on Amplify Studio.

4.2.3.3 AWS AppSync
It is an API service that is used to query, create, update, and delete items stored in the Music
table inside the Amazon DynamoDB via GraphQL and Pub/Sub APIs [10].

4.2.3.4 Amazon S3
It is a cloud object storage service [11] that is used to store the original audio files and the
generated audio files from Autoustic. The bucket and objects are not accessible publicly, that
is the bucket only allows the owner of the uploaded audio files to view and download the
corresponding generated file.

4.2.3.5 Amazon DynamoDB
It is a NoSQL, serverless, and fully managed database [12] that is used to store the data related
to music generation. For example, the text prompts used to condition the output audio, the
S3 IDs and URLs of the audio files stored on Amazon S3, the username that initiated the
generation, the status of the generation, etc. Below is the GraphQL schema:

type Music @model @auth(rules: [{allow: public}]) {
 id: ID!
 prompt: String!
 s3uid: String!
 s3durl: String
 username: String!
 vocal: Boolean!
 lalad: String
 status: String!
 name: String!
}

where “!” represents mandatory fields.

4.2.3.6 AWS Lambda
It is a serverless compute service [13] that is used to run a custom JavaScript for preprocessing
before being handled by Autoustic. This Lambda function is triggered whenever there is an
update on the Music table on Amazon DynamoDB. If a newly created item triggers it, the
function will start by downloading the original audio file from S3, then it will upload the file
to lalal.ai to split the audio file into vocals and non-vocals. Once the splitting has been

 17

completed, it will send the download URL, text prompt, item (DynamoDB) ID, and original
audio file’s (S3) ID to the queue in Amazon SQS for further processing by Autoustic.

4.2.3.7 AWS Secrets Manager
It is a service for managing the lifecycle of secrets centrally [14]. It currently stores the API key
for lambda to communicate with lalal.ai APIs.

4.2.3.8 Amazon CloudWatch
It is a monitoring service for logging and debugging [15]. It collects logs from AWS Lambda
and Amazon EC2 and stores them in a workplace which allows logs can be easily viewed and
traced when unexpected errors occur.

4.2.3.9 Amazon SQS
It is a fully managed message queuing that allows the decoupling and scaling of microservices
[16]. Due to the huge differences in processing time between audio splitting and generation,
it may be better to decouple these two processes to cope with sudden changes in demand.
Amazon SQS decouples the audio splitting process, which AWS Lambda handles, and the audio
generation process, which is handled by Amazon EC2, by placing a queue where AWS Lambda
can send messages to the queue, and Amazon EC2 instances can consume messages from the
queue. As AWS Lambda is Function as a Service (FaaS) which scales automatically according
to the demand and Amazon EC2 instances are put under an auto-scaling group, they can also
scale out according to the demand. Note that this is a first-in-first-out (FIFO) queue in which
order is maintained and message duplication is not allowed to maintain the priority between
requests.

4.2.3.10 Amazon EC2
It is a compute service [17] that is mainly used for audio generation. Multiple g5.2xlarge EC2
instances are placed into an auto scaling group, each of them is equipped with one NVIDIA
A10G Tensor Core GPU that comes with 24 GiB of GPU memory, 8 vCPUs, 32 GiB of memory,
and 450 GB of local NVMe SSD storage, resulting in high performance for stereo audio
generation [18].

4.2.4 User Flow
1. For new user registration, he/she creates an account with a unique username, email,

and password, then he/she will receive a one-time password (OTP) for email
verification. Once the email has been verified, the registration is completed, and the
user is added to the user pool on Amazon Cognito. Then, the user will be directed to
his/her home page. As for existing users, he/she simply log in with his/her usernames
and passwords, and Amazon Cognito will verify the login credentials against the user
pool. If the user passes through the authentication, he/she will be directed to his/her
home page.

 18

Figure 9 Sign in page

Figure 10 Create account page

2. On the home page, there is a form that allows the user to initiate a music generation
task and a “Your music” table that allows the user to view and listen to previously
generated music.

 19

Figure 11 User home page

To generate an acoustic version of a piece of music, the user simply needs to fill in a
friendly name for identification like the name of the music, a text prompt, for example,
acoustic guitar, upload the original music, and turn on vocal extraction if the music
contains human voice and turn it off if it is solely instrumentals. This switch determines
whether the uploaded music needs to be preprocessed by lalal.ai.

3. Once the user has submitted the form and the audio file is uploaded to Amazon S3, a
new item is created with form data in DynamoDB, and this triggers the Lambda
function. The function starts by updating the status field on DynamoDB, which will
then be reflected on the corresponding row under the “Your music” table. Then, it will
download the original music from Amazon S3 and upload it to lalal.ai if vocal extraction
is enabled.

4. The Lambda function checks on the progress of audio splitting and updates the status
if necessary. Once the audio splitting is completed, it will send the data to Amazon SQS,
which details are mentioned in section 4.2.3.6.

5. When the message has arrived at the front of the queue, an Amazon EC2 instance will
consume the message and retrieve the data. The function running on EC2 will
download the audio files, which include a file that only contains the vocals and another
file that only contains the non-vocals, from lalal.ai if vocal extraction is enabled. Then,
it will change the sampling rate of both files to 32 kHz which is the input format of
MusicGen. Then, the non-vocal file and the text prompt will be fed to the model for
inferencing. Finally, it will combine the generated audio with the vocals and upload the
mix to S3 as well as update the status and the S3 download URL of the corresponding
item. Once everything has been completed, it will delete the message in the queue to
avoid the message being re-consumed by other EC2 instances.

6. The “Your music” table reflects the latest changes on Amazon DynamoDB and
generates signed S3 URLs for the user to download and listen to both original and
generated music.

 20

5. Future Works

Figure 12 Project timeline

To improve the web app, both the frontend and backend will be revamped and improved in
the coming months to provide a more seamless user experience for users to interact with the
model. For the frontend of the web app, as the current UI is quite simple and only provides
some of the basic features to the users, the UI will be completely revamped. Prototyping will
be done by 25 January and coding of the UI components will be done by the end of January.
Moreover, to provide a more seamless experience to the users, third-party identity providers
like Google and Facebook will be added by mid-February to provide more options for users to
authenticate and register with the app. Finally, user acceptance tests (UAT) need to be carried
out before deploying and submitting the web app to avoid major flaws and logical errors from
happening in the app.

Secondly, for the backend of the web app, there may be some architectural problems that are
incurring a huge amount of costs on AWS. Further investigation needs to be carried out and
redesign of the client-to-server and server-to-server communications might be needed to find
a solution that is both cost-effective and incurs minimal impact on the user experience.
Moreover, to speed up the development and testing of the web app, a CI/CD pipeline will be
created by early February and the web app is expected to start hosting on AWS Amplify in
mid-February.

Finally, regarding the music generation model, the pre-trained model from MusicGen will be
finetuned to better prepare the model for acoustic rendition tasks by feeding more acoustic
music data into the model. The training dataset is readily available whereas the training
infrastructure will be set up by the end of January on AWS and it is expected to continue
finetuning and evaluating the model until the end of February. In the meantime, investigations
on methods such as sliding windows to overcome the 30-second generation limit inherited
from MusicGen will start immediately as this determines the capability of the model. Finally,

 21

there are a few existing models which are capable of audio style transfer. Comparison and
evaluation of these models will be done in parallel with MusicGen finetuning tasks to
determine which model is best suited for acoustic rendition purposes.

 22

Appendix 1
Song Name Artist

Youngblood - Acoustic 5 Seconds of
Summer

Take On Me - 2017 Acoustic a-ha

Wild Things - Acoustic Version Alessia Cara

No One - Acoustic Alicia Keys

Lonely Together - Acoustic Avicii

Meant to Be - Acoustic Bebe Rexha

Eastside (with Halsey & Khalid) - Acoustic benny blanco

You (with Marshmello & Vance Joy) - Acoustic benny blanco

Grenade - Acoustic Bruno Mars

Dancing On My Own - Acoustic Calum Scott

Attention - Acoustic Charlie Puth

One Call Away - Acoustic Charlie Puth

I'll Be Waiting - Acoustic Cian Ducrot

Solo (feat. Demi Lovato) - Acoustic Clean Bandit

Symphony (feat. Zara Larsson) - Acoustic Version Clean Bandit

My Universe - Acoustic Version Coldplay

Yellow - Live from Spotify London Coldplay

Bad Day - Acoustic Daniel Powter

Sorry Not Sorry - Acoustic Demi Lovato

Be the One - Acoustic Dua Lipa

Blow Your Mind (Mwah) - Acoustic Dua Lipa

IDGAF - Acoustic Dua Lipa

New Rules - Acoustic Dua Lipa

Castle on the Hill - Acoustic Ed Sheeran

Happier - Acoustic Ed Sheeran

I Don't Care - Acoustic Ed Sheeran

Lego House - Acoustic Ed Sheeran

Perfect - Acoustic Ed Sheeran

Shape of You - Acoustic Ed Sheeran

South of the Border (feat. Camila Cabello) - Acoustic Ed Sheeran

Cold Heart - Acoustic Elton John

Most Girls - Acoustic Hailee Steinfeld

Starving - Acoustic Hailee Steinfeld

Quite Miss Home - Acoustic James Arthur

Train Wreck - Acoustic James Arthur

Please Keep Loving Me - Acoustic James TW

Here's Your Perfect - Acoustic Jamie Miller

Ridin' Solo - Acoustic Jason Derulo

Price Tag - Acoustic Version Jessie J

Fast Car - Acoustic Jonas Blue

 23

Mama - Acoustic Jonas Blue

Perfect Strangers - Acoustic Jonas Blue

Rise - Acoustic Jonas Blue

No Air (feat. Chris Brown) - Acoustic Version Jordin Sparks

Passport Home - Piano Acoustic JP Cooper

September Song - Piano Acoustic JP Cooper

Boyfriend - Acoustic Version Justin Bieber

Intentions - Acoustic Justin Bieber

Lonely (with benny blanco) - Acoustic Justin Bieber

What Do You Mean? - Acoustic Justin Bieber

The One That Got Away - Acoustic Katy Perry

Thinking Of You - Acoustic Version Katy Perry

Can't Get You out of My Head - Live from Spotify, London Kylie Minogue

Before You Go - Guitar Acoustic Lewis Capaldi

Strip That Down - Acoustic Liam Payne

No More Sad Songs - Acoustic Version Little Mix

Shout Out to My Ex - Acoustic Little Mix

Harder To Breathe - Acoustic Maroon 5

Never Gonna Leave This Bed - Acoustic Version Maroon 5

She Will Be Loved - Acoustic Maroon 5

Sunday Morning - Acoustic Maroon 5

Won't Go Home Without You - Acoustic Version Maroon 5

FRIENDS - Acoustic Marshmello

Scared to Be Lonely - Acoustic Version Martin Garrix

Beautiful Scars - Acoustic Maximillian

Colour - Acoustic MNEK

So Sick - Acoustic Ne-Yo

Slow Hands - Acoustic Niall Horan

Too Much To Ask - Acoustic Niall Horan

Find You - Acoustic Nick Jonas

Remember I Told You - Acoustic Nick Jonas

Sunroof - Acoustic Nicky Youre

La La Lost You - Acoustic Version NIKI

Night Changes - Live Acoustic Session One Direction

One Thing - Acoustic One Direction

Perfect - Stripped One Direction

Steal My Girl - Live Acoustic Session One Direction

If I Lose Myself - Acoustic OneRepublic

Mariposa - Acoustic Peach Tree
Rascals

Your Song - Acoustic Rita Ora

These Days (feat. Jess Glynne, Macklemore & Dan Caplen) - Acoustic Rudimental

This City - Acoustic Sam Fischer

 24

Dancing With A Stranger (With Normani) - Acoustic Sam Smith

How Do You Sleep? - Acoustic Sam Smith

Latch - Acoustic Sam Smith

Too Good At Goodbyes - Acoustic Sam Smith

Lost In Japan - Recorded at Spotify Studios NYC Shawn Mendes

Mercy - Acoustic Shawn Mendes

There's Nothing Holdin' Me Back - Acoustic Shawn Mendes

Wonder - Acoustic Shawn Mendes

Youth (feat. Khalid) - Acoustic Shawn Mendes

Electricity - Acoustic Silk City

Love Is Gone - Acoustic SLANDER

Back To December - Acoustic Taylor Swift

Delicate - Recorded at The Tracking Room Nashville Taylor Swift

The Man Who Can't Be Moved - Acoustic The Script

My My My! - Acoustic Troye Sivan

YOUTH - Acoustic Troye Sivan

A Thousand Miles - Acoustic Vanessa Carlton

Shut Up and Dance - Live Acoustic - 2015 WALK THE
MOON

Fallin‚Äô (Adrenaline) - Acoustic Why Don't We

Beep Me - Acoustic Will Heard

Stay - Acoustic Zedd

 25

References

[1] P. Dhariwal, H. Jun, C. M. Payne, J. W. Kim, A. Radford and I. Sutskever, “Jukebox,”
OpenAI, 30 April 2020. [Online]. Available: https://openai.com/research/jukebox.
[Accessed 21 January 2024].

[2] A. Défossez, J. Copet, G. Synnaeve and Y. Adi, “High Fidelity Neural Audio
Compression,” 2022.

[3] Meta, “AudioCraft: generating high-quality audio and music from text,” Meta, 2023.
[Online]. Available: https://ai.meta.com/resources/models-and-libraries/audiocraft/.
[Accessed 21 January 2024].

[4] J. Copet, F. Kreuk, I. Gat, T. Remez, D. Kant, G. Synnaeve, Y. Adi and A. Défossez, “Simple
and Controllable Music Generation,” 2023.

[5] R. Kumar, P. Seetharaman, A. Luebs, I. Kumar and K. Kumar, “High-Fidelity Audio
Compression with Improved RVQGAN,” 2023.

[6] Wikipedia, “Cross-entropy,” Wikipedia, 8 December 2023. [Online]. Available:
https://en.wikipedia.org/wiki/Cross-entropy. [Accessed 20 January 2024].

[7] Wikipedia, “Perplexity,” Wikipedia, 15 January 2024. [Online]. Available:
https://en.wikipedia.org/wiki/Perplexity. [Accessed 20 January 2024].

[8] AWS, “Amazon Cognito,” AWS, 2024. [Online]. Available:
https://aws.amazon.com/cognito/. [Accessed 19 January 2024].

[9] AWS, “AWS Amplify,” AWS, 2024. [Online]. Available:
https://aws.amazon.com/amplify/. [Accessed 19 January 2024].

[10] AWS, “AWS AppSync,” AWS, 2024. [Online]. Available:
https://aws.amazon.com/appsync/. [Accessed 19 January 2024].

[11] AWS, “Amazon S3,” AWS, 2024. [Online]. Available: https://aws.amazon.com/s3/.
[Accessed 19 January 2024].

[12] AWS, “Amazon DynamoDB,” AWS, 2024. [Online]. Available:
https://aws.amazon.com/dynamodb/. [Accessed 19 January 2024].

[13] AWS, “AWS Lambda,” AWS, 2024. [Online]. Available:
https://aws.amazon.com/lambda/. [Accessed 19 January 2024].

[14] AWS, “AWS Secrets Manager,” AWS, 2024. [Online]. Available:
https://aws.amazon.com/secrets-manager/. [Accessed 20 January 2024].

[15] AWS, “Amazon CloudWatch,” AWS, 2024. [Online]. Available:
https://aws.amazon.com/cloudwatch/. [Accessed 19 January 2024].

[16] AWS, “Amazon Simple Queue Service,” AWS, 2024. [Online]. Available:
https://aws.amazon.com/sqs/. [Accessed 19 January 2024].

[17] AWS, “Amazon EC2,” AWS, 2024. [Online]. Available: https://aws.amazon.com/ec2/.
[Accessed 19 January 2024].

[18] AWS, “Amazon EC2 G5 Instances,” AWS, 2024. [Online]. Available:
https://aws.amazon.com/ec2/instance-types/g5/. [Accessed 19 January 2024].

	Copyright Acknowledgment
	Table of Figures
	Table of Tables
	Abbreviations
	1. Introduction
	2. Objectives
	3. Background
	3.1 Related Works
	3.1.1 Jukebox

	3.2 Adopted/Experimented Models
	3.2.1 Audiocraft EnCodec
	3.2.2 Audiocraft MusicGen
	3.2.3 Descript Audio Codec (DAC)

	4. Works Accomplished
	4.1 AI Models
	4.1.1 Approach 1 – MusicGen with DAC
	4.1.1.1 Model Architecture
	4.1.1.2 Dataset
	4.1.1.3 Model Training
	4.1.1.4 Training Result
	4.1.1.5 Limitations

	4.1.2 Approach 2 – Audio Splitting
	4.1.2.1 Model Architecture
	4.1.2.2 Results
	4.1.2.3 Limitations

	4.1.3 Models Summary

	4.2 Web App
	4.2.1 Frontend
	4.2.2 Backend
	4.2.3 List of AWS resources
	4.2.3.1 Amazon Cognito
	4.2.3.2 AWS Amplify
	4.2.3.3 AWS AppSync
	4.2.3.4 Amazon S3
	4.2.3.5 Amazon DynamoDB
	4.2.3.6 AWS Lambda
	4.2.3.7 AWS Secrets Manager
	4.2.3.8 Amazon CloudWatch
	4.2.3.9 Amazon SQS
	4.2.3.10 Amazon EC2

	4.2.4 User Flow

	5. Future Works
	Appendix 1
	References

