

Department of Computer Science

The University of Hong Kong

COMP 4801 Final year project

Final Report

Group:

fyp23029

Project Title:

All-in-one mobile application for elderly

Group Member (UID):

Ng Tsz Hei (3035780192)

Supervisor:

Professor Wu, Chuan

Date of Submission:

24, April 2024

1

I) Abstract

In recent times, there has been a noticeable increase in telephone deception cases in Hong Kong, with a

significant number of elderly individuals falling victim to such scams. Moreover, incidents involving

missing elderly persons and accidents have raised concerns within society. To address these issues, it is

crucial to develop specialized software that prioritizes the personal and property safety of the elderly.

However, existing software in the market does not cater specifically to the needs of the elderly.

This paper aims to document and demonstrate the entire software development lifecycle of an all-in-one

smartphone application designed for the elderly. The development process will encompass preliminary

design, implementation, and testing. The deliverables of this project will include the application itself, user

interface design, database design, system architecture, and test case design.

The key features to be incorporated in this application are location tracking, body status monitoring, fall

detection, telephone deception prevention, and integration with LLM technology. By integrating these

features, the application will ensure the safety of the elderly and make their lives easier. It can serve as a

solid foundation for a general-purpose application catering to the needs of the elderly.

In the future, potential integrations could involve collaborating with the government or non-governmental

organizations (NGOs) to provide assistance in elderly services and welfare through the application. By

expanding its functionality and partnerships, the application can further enhance its support for the elderly,

promoting their well-being and security.

2

II) Acknowledgement

I would like to express my deepest gratitude to my supervisor, Professor Wu Chuan, from the Computer

Science department of HKU, for her invaluable advice and guidance throughout the project. Without her

assistance, this paper would not have been successfully and smoothly completed.

I would also like to acknowledge Mr. Matthew Anderson from the Centre for Applied English Studies of

HKU for his language and writing support. With his assistance, the paper has been written in a more

structured and professional manner.

3

Table of Contents

I) Abstract ... 1

II) Acknowledgement... 2

III) List of Figures ... 5

IV) Abbreviations .. 6

1. Project Introduction ... 7

1.1 Project background .. 7

1.2 Project Motivation ... 8

1.3 Research Gap .. 8

1.4 Project Objective and Deliverables .. 9

1.5 Outline of remaining report ... 10

2. Project Methodology ... 11

2.1 Front End and IDE .. 11

2.2 Back End .. 11

2.3 Modeling of application structure.. 12

2.4 UI prototype ... 12

2.5 Version control and project management ... 12

2.6 Testing .. 13

3. Results and Discussions .. 14

3.1 Use case design ... 14

3.2 Execution Logic .. 15

3.2.1 Register ... 16

3.2.2 Login ... 17

3.2.3 Setting ... 18

3.2.4 Link ... 19

3.2.5 Chat with AI .. 20

3.2.6 Filter Calls ... 21

4

3.2.7 Track Status ... 22

3.2.8 Check Warning .. 23

3.2.9 Get Location .. 24

3.3 Classes involved in the application .. 25

3.4 Database Design .. 26

3.5 User Interface Design .. 28

3.5.1 Login and Register Pages ... 28

3.5.2 Main Page.. 29

3.5.3 Chatbot Page ... 30

3.5.4 Link Pages ... 31

3.5.5 Previous Message Page .. 32

3.5.6 Setting Page ... 33

3.5.7 Notification ... 34

3.6 Implementation ... 35

3.6.1 Authentication and database ... 35

3.6.2 LLM integration... 36

3.6.3 Location Tracking .. 37

3.6.4 Fall Detection .. 38

3.6.5 Deceptive Calls Detection .. 39

3.6.6 Body Status Monitoring ... 41

3.7 Testing .. 43

3.7.1 Registration and authentication .. 43

3.7.2 Settings .. 44

3.7.3 Fall Detection .. 45

3.7.4 Deceptive Call Detection .. 46

3.7.5 User Acceptance Test ... 47

5

3.8 Limitations, possible improvements, and future directions ... 49

3.8.1 LLM integration .. 49

3.8.2 Deceptive Calls Filtering ... 49

3.8.3 Fall Detection .. 50

3.8.4 Body Status Monitoring ... 50

3.8.5 Future Direction ... 51

4 Conclusion .. 52

5 Reference .. 53

III) List of Figures

FIGURE 1 YEAR-TO-YEAR COMPARISON IN TELEPHONE DECEPTIONS’ FIGURES (JULY) [1]...................................... 7

FIGURE 2 USER INTERFACE OF GOOGLE FAMILY LINK APP [3] ... 9

FIGURE 3 USE CASE DIAGRAM OF ELDER LINK ... 14

FIGURE 4 SEQUENCE DIAGRAM OF REGISTER .. 16

FIGURE 5 SEQUENCE DIAGRAM OF LOGIN USE CASE .. 17

FIGURE 6 SEQUENCE DIAGRAM OF SETTING USE CASE ... 18

FIGURE 7 SEQUENCE DIAGRAM OF LINK .. 19

FIGURE 8 SEQUENCE DIAGRAM OF CHAT WITH AI USE CASE ... 20

FIGURE 9 SEQUENCE DIAGRAM OF FILTER CALLS USE CASE ... 21

FIGURE 10 SEQUENCE DIAGRAM OF TRACK STATUS USE CASE ... 22

FIGURE 11 SEQUENCE DIAGRAM OF CHECK WARNING USE CASE ... 23

FIGURE 12 SEQUENCE DIAGRAM OF GET LOCATION USE CASE .. 24

FIGURE 13 CLASS DIAGRAM OF ELDER LINK ... 25

FIGURE 14 ENTITY RELATIONSHIP DIAGRAM OF ELDER LINK’S DATABASE .. 26

FIGURE 15 & 16 REGISTER PAGE AND LOGIN PAGE ... 28

FIGURE 17 MAIN PAGE ... 29

FIGURE 18 CHATBOT PAGE ... 30

FIGURE 19 & 20 & 21 LINK PAGES .. 31

FIGURE 22 PREVIOUS MESSAGE PAGE ... 32

FIGURE 23 SETTING PAGE ... 33

FIGURE 24 NOTIFICATION ... 34

6

FIGURE 25& FIGURE 26& FIGURE 27 IMPLEMENTATION OF AUTHENTICATION AND DATABASE USING FIREBASE 35

FIGURE 28 & FIGURE 29 IMPLEMENTATION OF GPT INTEGRATION ... 36

FIGURE 30 & FIGURE 31 IMPLEMENTATION OF LOCATION TRACKING ... 37

FIGURE 32 FORMULA TO CALCULATE SIGNAL MAGNITUDE VECTOR FROM ACCELEROMETER READING 38

FIGURE 33 MEASURED VALUES OF SENSITIVITY, SPECIFICITY AND ACCURACY FOR DIFFERENT VALUES OF THE

THRESHOLDS. .. 38

FIGURE 34 & 35 CODE TO TRACK THE ACCELEROMETER VALUE AND DETECT FALLING ... 39

FIGURE 35 SCREENSHOT OF JUNKCALL HK WEBSITE AND ITS HTML DOCUMENT .. 39

FIGURE 36 IMPLEMENTATION OF SCAM CALLS DETECTION .. 40

FIGURE 37 SCREENSHOT OF NOCODEAPI SERVICE FOR GOOGLE FIT API .. 41

FIGURE 38 IMPLEMENTATION OF BODY STATUS MONITORING .. 42

FIGURE 39 TESTING OF REGISTRATION AND AUTHENTICATION ... 44

FIGURE 40 TESTING FOR SETTINGS ... 44

FIGURE 41 TESTING OF FALL DETECTION ALGORITHM .. 45

FIGURE 42 TESTING OF CALL DETECTION.. 46

IV) Abbreviations

Abbreviation Definition

UI User Interface

IDE Interactive Developing Environment

LLM Large Language Model

API Application Programming Interface

UML Unified Modelling Language

7

1. Project Introduction

This section will emphasize the introduction and relevant information regarding this project, and it

consists of five parts. Section 1.1 will focus on the background of this project, while Section 1.2 will discuss

the motivation behind it. Section 1.3 will highlight the current research gap in this topic, and Section 1.4 will

state the objectives and deliverables of this project. Lastly, Section 1.5 will provide an outline of the

remaining report.

1.1 Project background

Figure 1 Year-to-year comparison in telephone deceptions’ figures (July) [1]

Figure 1 shows a year-to-year comparison of telephone deceptions in Hong Kong provided by the Anti-

Deception Coordination Centre of the Hong Kong government. The figure indicates a rise in the number of

telephone deception cases from 170 to 292, representing a 71.76% growth, and a rise in monetary loss from

65.65 million to 94.2 million, with a 43.49% growth, from July 2022 to July 2023 [1]. This highlights the

surge in the frequency and monetary losses of telephone deception in recent years, necessitating the need for

action to address the worsening situation.

In addition, according to the Legislative Council Panel on Security Initiatives for Preventing and

Combating Deception Cases, there are two prevalent modi operandi of telephone deception known as

"Pretend Officials" and "Guess Who." In 2020, "Pretend Officials" cases accounted for approximately 57%

8

of all telephone deception cases (a total of 1150 cases), with 30% of the victims aged 61 or above. On the

other hand, "Guess Who" cases accounted for 43% of the cases, with 60% of the victims aged 61 or above

[2, p.4]. Overall, more than 40% of telephone deception victims are elderly individuals aged 61 or above,

which represents a significant portion. This concerning trend highlights the need for extra awareness and

measures to address the issue.

1.2 Project Motivation

In addition to telephone deception, the physical vulnerability of the elderly and their susceptibility to

geriatric diseases such as Alzheimer's disease and dementia, which cause memory and cognitive decline, are

concerning factors. Elderly individuals going missing or experiencing accidents, such as fainting and falling,

are events that require our attention. Furthermore, the elderly may need assistance in problem-solving for

daily life challenges and integrating into a rapidly changing society. However, their family members may not

always be available to provide help. It would be preferable to have someone available to offer guidance and

support to the elderly, such as providing advice on traveling to specific destinations and helping them bridge

the gaps they may face in society.

1.3 Research Gap

9

Figure 2 User interface of Google Family Link App [3]

As solutions to the aforementioned problems, several smartphone applications already exist in the market.

For instance, Whoscall is an unknown call identification application that utilizes data science to analyze a

large volume of call data and create an optimal model for call identification [4]. Google Family Link is a

parental control application that offers a location tracking function and allows parents (or family members)

to manage the digital devices and accounts of their children (or elderly relatives) [5]. Apple Health is an

application that connects to smartwatches and organizes users' important health information, which can be

used to monitor the health conditions of the elderly [6].

However, these applications are not specifically designed with the elderly in mind, and their design

language may not cater to their specific needs. For example, Figure 2 displays screenshots of the Google

Family Link app [3], where the user interface appears complicated with an abundance of information.

Additionally, the small text size may make it difficult for the elderly to comfortably read the content. These

issues can create challenges for the elderly in learning and using these applications. Moreover, managing

multiple applications simultaneously can be problematic for elderly users. Therefore, an all-in-one

smartphone application that is specifically designed to be elderly-friendly would be a better solution to help

them address the aforementioned problems.

1.4 Project Objective and Deliverables

The goal of this project is to develop an all-in-one, cross-platform mobile application called Elder Link,

that is designed specifically for the elderly to address the issues mentioned above, enhance their personal

and property safety, and improve their quality of life. To achieve the goal, there are 5 main features to be

implemented and they are as follows:

1) A calls filtering feature to identify suspicious call and prevent telephone deception.

2) A location tracking feature to assist searching in case of elderly missing.

3) A body status monitoring feature to detect dangerous situation like high blood pressure and prompt the

family members to take emergent action.

4) A fall detection feature to detect falling cases and notify family members to take subsequent action.

5) A LLM chatbot feature to provide personalized support to the elderly.

The deliverables of this project will include the application itself, as well as related documentation

such as user interface design, database design, system architecture, and test case design.

10

1.5 Outline of remaining report

The subsequent sections of this paper will concentrate on the complete software development process of

the application. Section 2 will discuss the methodology employed to accomplish the project. Section 3 will

cover the current results, along with the accompanying discussion. In section 4, expected results in the

coming semester and the remaining work plan will be discussed. Finally, in section 5, a conclusion will be

provided, summarizing the project and outlining the next steps.

11

2. Project Methodology

This section will emphasize the methodology utilized to complete this project, which is the tools and

environment setup employed for developing the application. Section 2.1 will introduce the front-end tool

and Interactive Development Environment (IDE) utilized for developing the application, highlighting their

advantages. Section 2.2 will focus on the back-end setup of the application. Section 2.3 will discuss the

software employed for modeling the application structure. Section 2.4 will delve into the software used for

designing the user interface. Lastly, Section 2.5 will explore the software utilized for version control and

project management, and section 2.6 will explore the methods used for testing.

2.1 Front End and IDE

To build the user interface of the application, React Native, a Javascript library for creating user

interfaces, is used. React Native's declarative UI paradigm and JavaScript enable it to wrap native code and

interact with native APIs, allowing for cross-platform development. This means that the application will run

seamlessly on both Android and IOS smartphones, providing users with a consistent experience regardless

of the brand of their smartphone [7].

For the IDE, Visual Studio Code will be utilized. It is a powerful text editor that offers a range of helpful

features for coding, such as syntax highlighting, quick debugging, built-in Git commands, and customizable

extensions based on the programming languages and services required by developers [8]. These robust and

convenient features can significantly ease the development process and accelerate the pace of development.

2.2 Back End

For the database and server of the application, we will be utilizing Firebase by Google. Firebase is a

robust app development platform that offers a wide range of cloud services for various backend

functionalities, including database setup, server hosting, authentication, and user analytics. With Firebase,

developers can benefit from high performance and stability in their applications. Additionally, Firebase

ensures a high level of security, prioritizing the protection of user privacy [9].

12

2.3 Modeling of application structure

To create UML diagrams, specifically use case diagrams, sequence diagrams, class diagrams, and ER

diagrams for the database design, Lucidchart will be utilized. Lucidchart is an intelligent diagramming

application that facilitates team collaboration and communication [10].

A use case diagram provides a high-level overview of the relationships and interactions between actors

(users) and the system. It helps in understanding the system's functionalities and the roles of different actors

involved. [11]

A sequence diagram illustrates the order in which objects interact and represents runtime scenarios. It

visualizes the flow of messages between objects and helps in understanding the dynamic behavior of the

system [11].

A class diagram describes the structure of the system by modeling its classes, attributes, operations, and

relationships between objects. It provides a static view of the system's architecture and aids in understanding

the relationships and dependencies between different classes [12].

In addition to these UML diagrams, Lucidchart will also be used to create an ER diagram for modeling

the database design, which helps in visualizing the structure and relationships of database entities.

2.4 UI prototype

Figma will be used to design the Graphical User Interface for the application. Figma is a UI design

application that enables designing realistic interactive prototypes for quick iteration of flows and states. It

offers high team visibility, which enables team cooperation, as well as providing tools for turning the UI

prototype into real code [13] to enhance development efficiency.

2.5 Version control and project management

GitHub will be used for version control and project management. It is a website and cloud-based service

designed to assist developers in storing and managing their code, as well as tracking and controlling changes

to it. GitHub utilizes Git, an open-source, distributed version control system that allows each developer to

13

have a complete copy of the codebase and its history on their own computers.

Version control is implemented through branching and merging. Branching involves creating a duplicate

of the source code in a new branch, allowing changes to be made without affecting the original main branch.

Merging, on the other hand, entails integrating the finished and well-tested code back into the main branch,

making it official. Every branching and merging action is tracked and can be reverted if necessary, enabling

a return to previous checkpoints in case critical bugs are encountered.

Furthermore, GitHub provides project management features such as progress statistics and contribution

tracking [14].

 2.6 Testing

The React Native Testing Library will be utilized for both unit testing and integration testing. Unit testing

is a type of software testing that focuses on validating the functionality of individual units or components

within a software system. Its goal is to ensure that each unit functions correctly and meets the specified

requirements [15].

Integration testing, on the other hand, is conducted after unit testing and aims to verify that the interface

between two units or modules is functioning correctly and transferring data accurately. This testing process

ensures that no errors occur when merging different units together [16].

User acceptance testing, on the other hand, is performed manually by real end users. Its purpose is to

evaluate whether the application fulfills their requirements in a real-world scenario and determines if the

overall user experience is satisfactory [17]. Testing on whether the fall detection will work as expected in

falling demonstrations will also be a part of the user acceptance test.

14

3. Results and Discussions

This section will focus on presenting the current results achieved so far. At this stage of the project, the

preliminary design of the application has been completed. Section 3.1 will describe the use cases of the

application. Section 3.2 will describe the underlying execution logic for each use cases. Section 3.3 will

summarize the components involved in the execution logic. Section 3.4 will focus on the database design.

Section 3.5 will discuss the user interface of the application.

3.1 Use case design

Figure 3 Use Case Diagram of Elder Link

The above diagram shows the use cases of the application. The users are specialized into two types of

targeted users, namely elderly user and their family members.

15

Firstly, all the users are expected to perform the Register, Login, Setting, and Link use cases. Register use

case allows users to register an account. Login use case allows users to access the registered account. Setting

use case allow users to enable or disable the features in the application according to their own needs and set

an upper and lower limit of blood pressure to trigger the body status monitoring mechanism. Link use case

allows users to establish connections to other users.

Secondly, the elderly users are expected to perform the Chat with AI, Filter calls, and Track status use

cases. Chat with AI use case allows elderly users to send a query to a GPT model through an external GPT

API and retrieve its response as if chatting with a real person in a messenger app. Filter calls use case will be

triggered automatically when there is an incoming call, and it will identify if the incoming call is suspicious

by interacting with HKJunkCall API, which is an API that takes a phone number as input and return the

identified type of phone number. If the call is identified suspicious, issue warning use case will be triggered,

and a warning will be issued to the linked family members. Track status use case will be triggered constantly

for every predefined period of time to get the up-to-date status of the elderly users. The location status will

be stored and issue warning use case may be triggered if falling is detected or body status of elderly is

abnormal.

Lastly, linked family members are expected to perform the Check warning and Get location use cases.

Check warning use case allows family members to check previous issued warnings by elderly users. Get

location use case allows family members to retrieve the location of elderly users. It also interacts with

Google Map API to visualize the location.

3.2 Execution Logic

This section will focus on the underlying execution logic and sequence for each of the use case. A

sequence diagram will be used to visualize and assist the presentation of the execution logic.

16

3.2.1 Register

Figure 4 Sequence Diagram of register

 Above is the sequence diagram of Register use case. During registration, the user will send the

desired username, password and display name (name displayed to other users) to the AccountManager. Then

the AccountManager will query the username in the database to check if it exists. If the username does not

exist and it is valid, A new Account object is created and saved in the database by the AccountManager. If an

existing username is found in the database, the registration is invalid and AccountManager will display an

error message in the user interface.

17

3.2.2 Login

Figure 5 Sequence Diagram of Login use case

 Above is the sequence diagram of login use case. During login, user will first send their username

and password to the AccountManager. Then the AccountManager will query and authenticate the username

and password in the database. If authentication succeeds, AccountManager will display a welcome message

to the user. If authentication fails and the login is invalid, AccountManager will display an error message.

18

3.2.3 Setting

Figure 6 Sequence Diagram of setting use case

 Above is the sequence diagram of the setting use case. The user will first retrieve the up-to-date

settings from the AccountManager. Then AccountManager will retrieve the Account object in database and

display the settings to the user. The user can choose the update the setting. Upon choosing to update the

settings, AccountManager will update the Account object with the new set of settings and save it in the

database.

19

3.2.4 Link

Figure 7 Sequence Diagram of Link

Above is the sequence diagram of Link use case. The user will first get the linked users list and

request list from LinkManager and RequestManager. Then LinkManager and RequestManager will display

the list of linked users and list of request respectively to the user.

 If there are untreated link request, user can choose to accept or reject it. If user chooses to accept,

RequestManager will create a new Link object that contains the (user_id,peer_id) pair and save it in the

database. Afterwards, it will delete the current request record in the database as a result. If user chooses to

reject the request, RequestManager will directly delete the request record in the database.

20

 The user can also choose to send a request to a peer. A new Request object specifying

(user_id,peer_id) will then be created and saved in database.

3.2.5 Chat with AI

Figure 8 Sequence diagram of Chat with AI use case

 Above is the sequence diagram of Chat with AI use case. The user can choose to send a query to the

chatbot and every time a query is sent, ChatManager will send a request that contains the query string to the

external LLM API and retrieve its response. Upon receiving the response, ChatManager will display the

response to the user.

21

3.2.6 Filter Calls

Figure 9 Sequence diagram of Filter Calls use case

 Above is the sequence diagram of Filter Calls use case. If the calls filtering feature is enabled, every

time there is an incoming phone call, CallManager will query the call via the HKJunkCall API and retrieve

the response. If the response indicates that the phone number is suspicious, an warning string will be

generated by the CallsManager and WarningManager will be called with the warning string.

WarningManager will then first create a Warning object that contains the user_id and warning string and

save it in database. After that, it will get the list of linked users from LinkManager and broadcast the

warning message to all the linked users.

22

3.2.7 Track Status

Figure 10 Sequence diagram of Track Status use case

 Above is the sequence diagram of Track Status use case. If the corresponding feature is enabled,

BodyStatusManager will get the body status (blood pressure) for every minute, LocationManager will get

the geolocation and store the latest location in database for every 15 minute, while FallManager will get the

phone acceleration for every second. If the body status exceeds the predefined limit or a falling is detected,

BodyStatusManager and FallManager will generate the corresponding warning string and call

WarningManager. The detail of issuing a warning is the same as described above.

23

3.2.8 Check Warning

Figure 11 Sequence diagram of Check Warning use case

 Above is the sequence diagram of the Check Warning use case. User can get previous issued

warnings from WarningManager. WarningManager will then get the list of linked user from LinkManager

and retrieve the associated warnings in the database, finally display it to the user.

24

3.2.9 Get Location

Figure 12 Sequence diagram of Get Location use case

 Above is the sequence diagram of Get Location use case. If the location tracking feature of the peer

is enabled, the user can get the location of the peer from LocationManager. The LocationManager will then

retrieve the location information of the peer in the database and get the map representation by calling the

GoogleMapAPI. Finally the LocationManager will display the location visualized on the map to the user.

25

3.3 Classes involved in the application

Figure 13 Class diagram of Elder Link

 Above is the class diagram of the application. It is a summary of the managers and objects involved

in the execution logic (shown by previous sequence diagram). Managers are classes that play a specific role

and are responsible for a specific component or functionality of the system. Other classes are used to

organize the required information or data related to a specific functionality. The class diagram can be used to

set up classes efficiently during the development process.

26

3.4 Database Design

Figure 14 Entity Relationship diagram of Elder Link’s database

 Above is the entity relationship diagram of the application’s database, which outlines the tables and

their columns to be stored in the database as well as the relationship between tables.

 Account entity has 9 attributes, including a primary key user_id; username, password, and display

name that are strings; trackingEnabled, statusEnabled, and fallEnabled that are Booleans; as well as

upperRange and lowerRange (for blood pressure) that are intergers. Account has an one to one relationship

with Location, which means one account has at most one current location. It has an one to many relationship

with Link, Warning and Request, which means that an account can create multiple links, issue multiple

warnings and involved in multiple requests. All the participations in the relationships are partial, which

means it is not necessary for an account to have any location, link, warning and request.

 Location entity, which is a weak entity, has 2 attributes, including user_id (foreign key from

Account) and location that is represented in a string. Location has a one to one relationship with Account,

which means that each location can only associate with one account. The participation is total, which means

that when every location must be linked to an account.

27

 Link entity, which is a weak entity, has 2 attributes, including user_id (foreign key from Account)

and peer_id that is an integer. Link has a many to one relationship with Account, which means that each link

can only involve at most two accounts but not more. The participation is total, which means that when every

link must be linked to two accounts.

 Warning entity, which is a weak entity, has 2 attributes, including user_id (foreign key from Account)

and warning message that is a string. Warning has a many to one relationship with Account, which means

that each warning can only associate with one account. The participation is total, which means that when

every warning must be linked to one account.

 Request entity, which is a weak entity, has 2 attributes, including user_id (foreign key from Account)

and peer id that is an integer. Request has a many to one relationship with Account, which means that each

request can only associate with two accounts but not more. The participation is total, which means that when

every request must be linked to two accounts.

28

3.5 User Interface Design

This section will focus on the Figma user interface design of different pages in the application.

3.5.1 Login and Register Pages

Figure 15 & 16 Register Page and Login Page

 Above are the register and login pages of the application. In the Register page, user can fill in the

display name, username, and password, then click the sign up button to submit their registrations. In login

page, user can fill in their username and password, then click the login button to authenticate and log in.

29

3.5.2 Main Page

Figure 17 Main Page

 Above is the main page of the application. It consists of navigation to chatbot, link, message, and

setting pages, as well as a log out button which will navigate back to the login page.

30

3.5.3 Chatbot Page

Figure 18 Chatbot Page

 Above is the chatbot page of the application. User can type in their queries in the textbox and click

on the button to submit their queries. The queries and responses will be displayed as if messages in

messenger apps.

31

3.5.4 Link Pages

Figure 19 & 20 & 21 Link Pages

 Above are pages in the Link component of the application. In the first page, the list of linked users

will be displayed. If any of the linked users is clicked, it will enter the second page, which displays the

location of the selected linked user. If the Add Users button in the first page is clicked, the third page will be

shown. The third page displays the user id of the user, a text box and a Send Request button for user to enter

their peer’s id and send a request. There is also an area that displays all received requests and allows users to

accept and reject the requests by clicking the tick or cross buttons.

32

3.5.5 Previous Message Page

Figure 22 Previous Message Page

 Above is the previous message page which displays all the previous warning messages issued by

linked users.

33

3.5.6 Setting Page

Figure 23 Setting Page

 Above is the setting page of the application. It consists of toggle buttons to enable or disable the

features, text boxes to enter the lower and upper limit of blood pressure, as well as a summit button to save

the changed to database.

34

3.5.7 Notification

Figure 24 Notification

 Above is the sample notification when a linked user triggers any of the warning.

35

3.6 Implementation

This section will focus on the implementation details of the application, including the services or

libraries used to achieve the features. Sections 3.6.1 to 3.6.6 will describe the implementation details

of Authentication and database, LLM integration, location tracking, fall detection, deceptive calls

detection, and body status monitoring, respectively.

3.6.1 Authentication and database

Figure 25& Figure 26& Figure 27 Implementation of authentication and database using firebase

To use Firebase for authentication and database purposes, a Firebase app instance must be initialized with

the project credentials. Once the Firebase app instance is initialized, authentication and database instances

can be initiated based on the Firebase app instance. This allows for the use of methods such as

`createUserWithEmailAndPassword` and `signInWithEmailAndPassword` from the Firebase authentication

instance, which can be called to register and authenticate user accounts using email and password

credentials.

For reading and writing to the database, the `getDoc` and `setDoc` methods of the Firebase database

instance can be used. These methods require the collection name and document name as parameters,

allowing access to the NoSQL, key-value based Firestore database. [18]

36

3.6.2 LLM integration

Figure 28 & Figure 29 Implementation of GPT integration

The chosen LLM model for this project is Google Gemini, primarily selected for its strong performance

and fast inference time. In order to utilize the Gemini model, a GoogleGenerativeAI instance needs to be

initialized with the appropriate API key. Subsequently, an instance of the chosen model, specifically Gemini-

Pro in this case, should be initialized.

To engage the model in multi-turn conversation mode (chat), it is necessary to maintain a chat history.

This chat history, along with generation configurations such as the maximum output tokens, will be used to

initialize a chat instance. By using the `sendMessage` method of the chat instance, queries can be made to

the Language Model (LLM), and the response will be returned accordingly. [19]

37

3.6.3 Location Tracking

Figure 30 & Figure 31 Implementation of Location Tracking

To enable background location tracking, the first step is to define a task in the TaskManager within React

Native. This task will execute the specified callback function to handle the retrieval of location information.

In this case, the callback function is responsible for uploading the location data to the database.

In order to constantly track the location of users who have enabled this feature, it is necessary to obtain

permissions for retrieving location information beforehand. Once the necessary permissions are granted, the

`startLocationUpdatesAsync` method from the 'expo-location' library can be used. This method allows for

configuration of parameters such as accuracy level, minimum distance, or time interval that would trigger an

update. If an update is triggered, the predefined callback function will be called asynchronously. [20]

38

3.6.4 Fall Detection

Figure 32 Formula to calculate signal magnitude vector from accelerometer reading

Figure 33 Measured values of sensitivity, specificity and accuracy for different values of the thresholds.

The implementation of fall detection algorithms is based on the research article titled "Multi-Sensor Fall

Detection for Smartphones". In this article, various falling scenarios were simulated and different sensor

reading thresholds were applied to detect falling events.

The Signal Magnitude Vector (SMV) is calculated using the formula shown in Figure 32. This value

represents the square root of the sum of squares of the x, y, and z readings of the accelerometer. The SMV is

then used to identify a probable fall event by deriving acceleration peak thresholds.

Figure 33 contains the measured values of sensitivity, specificity, and accuracy for different acceleration

peak thresholds. Among all the thresholds, MAX=15 and MIN=3 were chosen due to their acceptable

performance, with performance metrics exceeding 85% in all cases.[21]

39

Figure 34 & 35 code to track the accelerometer value and detect falling

Above is the code that uses the `Accelerometer` class from the 'expo-sensors' library to request permission

from the user to access the accelerometer, set up a time interval for each update, and attach the updated

readings to variables. Whenever there is an update on the variables, the Signal Magnitude Vector (SMV) is

computed using the formula from Figure 32. If the SMV falls between the predefined interval, a warning is

issued to notify the user of a potential fall event. [22]

3.6.5 Deceptive Calls Detection

Figure 35 Screenshot of JunkCall HK website and its html document [23]

To identify whether a phone number belongs to a deceptive call using the JunkCall HK database, the

relevant information can be extracted from the HTML document. Based on the above screenshot, the

targeted information, i.e., whether the number is reported as deceptive or not, is contained within an HTML

ordered list element with the class name "junkcall".

40

Figure 36 Implementation of scam calls detection

To access the incoming call number, permissions for `READ_PHONE_STATE` and

`READ_CALL_LOG` must first be granted. Then, the `CallDetectionManager` from the 'react-native-call-

detection' library is used to asynchronously detect incoming call numbers. [24]

Once the number is obtained, a GET request with the phone number appended to the URL is sent to the

JunkCallHK website using the JavaScript fetch API. The response from the website is a text string.

The obtained text string is parsed into Document Object Model (DOM) elements, from which the specific

element with the class name "junkcall" is extracted.

If the inner text of the extracted element contains words that indicate a scam call, a warning is issued.

41

3.6.6 Body Status Monitoring

Figure 37 Screenshot of NoCodeAPI service for Google Fit API [25]

There are two ways to read health data from a user's smartwatch. The first method is to develop a

customized smartwatch application that can pair with the application and synchronize the health data.

However, this approach has a drawback in that different smartwatches use different operating systems, and a

respective smartwatch application has to be developed for each operating system to support the specific

smartwatch. This can result in a lot of redundant development work, which is not preferred.

The second solution is to rely on third-party applications that support different smartwatches and retrieve

data from the third-party application. In this case, Google Fit is the chosen application since it is a popular

health application in the market, and Google provides an API to retrieve the health data, which is convenient

for developers. However, attempts to link the application to Google Fit using the suggested “react-native-

google-fit” library have failed due to a version conflict with other libraries used. An alternative solution is to

use an API service provided by a company called NoCodeAPI. This service allows for the retrieval of

Google Fit data directly from a GET request without any setup or library requirements. [26]

42

Figure 38 Implementation of Body status monitoring

To track a user's body status using NoCodeAPI, users will need to sign up for the Google Fit API service

within NoCodeAPI and provide their personal API during registration. The API will then be fetched

constantly within the application using the fetch API.

If the retrieved data falls outside of the predefined limit, a warning will be issued to the user.

43

3.7 Testing

This section will focus on the set of tests used to validate the application. Section 3.7.1 – 3.7.4 will focus on

the testing of registration and authentication, settings, fall detection, and deceptive call detection

respectively. Section 3.7.5 will describe the user acceptance test performed.

3.7.1 Registration and authentication

44

Figure 39 Testing of registration and authentication

As the application consists of users' sensitive and personal information, it is crucial to ensure that the

authentication is functional and secure. There are a total of four tests on registration and authentication. The

first test aims to validate that normal registration and authentication will not cause an error. The second test

validates that it is impossible to create another account with the same email address. The third and fourth

tests validate that using a wrong email address or password cannot bypass the authentication.

3.7.2 Settings

Figure 40 Testing for settings

It is crucial to ensure that the users' entered threshold of body status is valid because otherwise, it may

trigger a bug and render the feature non-functional. The "test_cases_fail" test cases validate this by testing

non-numeric inputs, negative inputs, and lower bound values larger than upper bound values. These inputs

are expected to fail and help ensure that the application correctly handles invalid inputs.

The "test_cases_pass" input test cases validate the feature's proper functionality by testing valid input

values. These include zero as input, equal lower bound and upper bound as input, and normal input values

that are expected to pass. By conducting these tests, the application can ensure that the users' entered

threshold values are properly validated, preventing bugs and maintaining the functionality of the feature.

45

3.7.3 Fall Detection

Figure 41 Testing of fall detection algorithm

Boundary value analysis is an important testing technique used to ensure that components of acceleration

function normally within a predefined range. In this case, the range is set between 3 to 15, and two test cases

are performed to validate this range.

The first test case tests values of 2.99 and 15.01 in each component of acceleration. These values are

expected to fall out of the predefined range, and no warning should be triggered. This test case validates that

the application correctly handles values outside of the range and does not produce false alarms.

The second test case tests values of 3 and 15 in each component of acceleration. These values are within

the predefined range and are expected to trigger a warning. This test case validates that the application

correctly identifies values within the range and produces the appropriate warning.

By performing these tests, the application can ensure that each component of acceleration functions

normally within the predefined range and produces the correct warning when values fall within or outside of

the range.

46

3.7.4 Deceptive Call Detection

Figure 42 Testing of call detection

To validate the accuracy of the call detection algorithm, two phone numbers are manually obtained from

the JunkCall HK website. One of these numbers is identified as a deceptive phone number, while the other is

identified as a safe phone number. The algorithm is then applied to both numbers to determine if it correctly

identifies them.

The first number, which is known to be deceptive, is expected to trigger a warning from the algorithm.

This validates that the algorithm can accurately detect deceptive phone numbers and warn users about

potential scams or fraudulent calls.

47

On the other hand, the second number, known to be safe, should not trigger any warning from the

algorithm. This further validates the algorithm's accuracy by ensuring that it correctly identifies safe phone

numbers and does not produce false alarms.

By conducting these tests, the application can verify the correctness of the call detection algorithm and

ensure that it effectively distinguishes between deceptive and safe phone numbers.

3.7.5 User Acceptance Test

For features that are difficult to test with test cases, manual testing was conducted, and the results are as

follows:

1. Location tracking: A random position was simulated using an emulator, and another linked device was

used to observe whether the location is updated. The result was successful, and the location was

correctly reflected. This validates that the location tracking feature is functioning correctly.

2. Calls filtering: Incoming calls were simulated on the emulator using both identified deceptive and safe

phone numbers. The application successfully issued a warning for the deceptive phone numbers and

did not issue a warning for the safe phone number. This confirms that the calls filtering feature is

working as expected.

3. LLM integration: A simulated chat was conducted, asking common daily-life questions. The

application provided a smooth chat experience and appropriately answered the questions. This

demonstrates that the LLM integration feature is functioning correctly.

4. Fall detection: Two types of tests were performed for fall detection. Free falling of the phone on a soft

surface consistently triggered the warning due to the bounce back. Falling simulations while holding

the phone resulted in the warning being triggered in about 7 out of 10 tests. This indicates that the fall

detection feature is working, albeit with some variability.

5. Body status monitoring: A smartwatch emulator was used to generate abnormal body status data.

However, it was observed that the Google Fit application was not correctly uploading the health data

to the cloud and synchronizing among devices. This resulted in fetching empty data from the API,

rendering the body status monitoring features unable to be successfully implemented.

48

Based on these manual tests, it can be concluded that most of the features are functioning correctly.

However, there is an issue with the body status monitoring feature due to the limitations of the Google Fit

application.

49

3.8 Limitations, possible improvements, and future directions

This section will focus on listing the limitations of the project and suggesting possible actions to improve it.

In sections 3.7.1 to 3.7.4, the discussion will focus on limitations and potential improvements of current

features: LLM integration, deceptive calls filtering, fall detection, and body status monitoring, respectively.

In section 3.7.5, future directions and recommendations will be discussed for further development or

research.

3.8.1 LLM integration

As the Gemini API requires an IP address from an authorized region, users from restricted regions may

face difficulty accessing the service. To overcome this barrier, using a VPN can help bypass the regional

restrictions.

Alternatively, another solution is to utilize other LLM API services that do not impose any region

restrictions. This would ensure that users from all regions can access the service without the need for a VPN.

It is also possible to host a server with an LLM loaded, but it is essential to ensure that the server has

sufficient GPU resources. Adequate GPU resources will guarantee reasonable inference time and

performance, providing a smooth user experience.

3.8.2 Deceptive Calls Filtering

The current deceptive calls filtering method heavily relies on the JunkCall HK database, which only

records Hong Kong phone numbers. As a result, the list of deceptive calls may not be comprehensive, and

users may still receive unwanted calls from other regions.

To improve the filtering system, one possible solution is to find other services or databases that provide

information on deceptive calls in other regions. This would help expand the database and provide more

comprehensive coverage, allowing users to avoid unwanted calls from a wider range of regions.

Another possible improvement is to train a speech recognition model to identify suspicious keywords,

such as "money" or "bank," during phone conversations. This approach would enable the system to detect

50

potential deception and flag the call as suspicious. By combining both methods, the filtering system could

become more accurate and reliable, providing users with better protection against unwanted calls.

3.8.3 Fall Detection

The current fall detection algorithm implemented in the project is relatively simple, and there is potential

for further improvement. However, due to the limitations of React Native as a cross-platform development

tool, the algorithm can only provide a rough estimate of fall detection since it cannot fully utilize all the

available sensors in smartphones.

To improve the fall detection algorithm, native development using Android Studio or Xcode is preferred

as it can fully utilize the built-in sensors in smartphones. By combining different sensor readings, a more

accurate and reliable fall detection algorithm can be developed. Additionally, building a custom fall

detection algorithm using machine learning techniques may further improve the performance.

To develop a machine learning-based fall detection algorithm, sensor data can be retrieved from falling

and non-falling scenarios performed by elderly volunteers or obtained from hospitals. This data can be used

to train a machine learning model to find the optimal set of parameters for different sensor readings. A more

complex, multi-step classification model can also be proposed to improve accuracy. By continuously

collecting more data and refining the algorithm, the fall detection feature can become more robust and

reliable, providing valuable assistance to elderly users.

3.8.4 Body Status Monitoring

As mentioned previously, relying on the third-party Google Fit app to retrieve body status data may not

provide up-to-date information. To address this issue, other third-party applications such as Apple Health

can be considered. Additionally, it is possible to develop a customized smartwatch application that pairs with

the chosen app and constantly synchronizes the health data. This approach would ensure that the body status

data is accurate and up-to-date, providing users with a reliable monitoring system.

Another potential improvement to the body status feature is to customize the thresholds based on each

user's body status statistics. The current threshold is set by users themselves, which may not be appropriate

for everyone. By using the user's recent health data, a set of thresholds can be generated based on a certain

51

algorithm, such as a fixed margin between the mean. This approach would provide a more personalized

monitoring system, ensuring that each user receives appropriate alerts based on their unique body status.

3.8.5 Future Direction

This project has the potential to serve as a prototype for a truly general-purpose, all-in-one application

that includes all necessary functions for elderly users. In addition to the existing functionalities, as discussed

above, new features that are useful to elderly users can be added. For example, the application could

cooperate with the government or NGOs to assist in providing welfare, organize events, or announce

important news.

By aggregating these new features into the application, it would become a more comprehensive and

valuable tool for elderly users. This would help improve their quality of life, provide them with access to

important resources and information, and help them stay connected with their community. As the elderly

population continues to grow, the need for applications like this will only increase, making this project an

important step towards providing elderly users with the tools they need to live healthy, happy lives.

52

4 Conclusion

In today's society, elderly individuals often face challenges such as telephone deception, missing persons,

accidents, and a generation gap. To address these issues, this paper proposes the development of a

customized mobile application that harnesses the power of technology.

The application will encompass several key functions that cater specifically to the needs of the elderly.

These functions include location tracking, body status monitoring, deceptive calls detection, fall detection,

and integration with LLM technology. Preliminary designs, including user interface, system, and database

design, are created to guide the implementation and testing processes.

While there is room for improvement, such as utilizing machine learning to enhance the fall detection

algorithm, the application is essentially capable of supporting most of the targeted features. It serves as a

promising prototype for a general-purpose, elderly-focused application.

Moving forward, future steps involve further development of the application, focusing on improving the

performance of existing features. Additionally, exploring new features like collaborating with different

parties to offer more services to the elderly can be considered. The ultimate goal is for this application to

comprehensively meet the needs of the elderly, providing them with the necessary support, safety, and

assistance in their daily lives.

53

5 Reference

[1] Anti-Deception Coordination Centre, Scam Statistics

https://www.adcc.gov.hk/en-hk/statistic.html (accessed: Oct 1, 2023)

[2] Security Bureau, Hong Kong Police Force, Legislative Council Panel on Security Initiatives for

Preventing and Combatting Deception Cases, May 2021

https://www.legco.gov.hk/yr20-21/english/panels/se/papers/se20210601cb2-1110-3-e.pdf (accessed: Oct 1,

2023)

[3] Sarah Perez, Google’s Family Link updates reflect the pandemic’s impact on how parents view screen

time, 16 March, 2021

https://techcrunch.com/2021/03/16/googles-family-link-updates-reflect-the-pandemics-impact-on-how-

parents-view-screen-time/ (accessed: Nov 24, 2023)

[4] Whoscall official website

https://whoscall.com/en/about (accessed: Nov 24, 2023)

[5] Google Family Link official website

https://families.google/intl/en/familylink/ (accessed: Nov 24, 2023)

[6] Apple Official Website

https://www.apple.com/hk/en/ios/health/ (accessed: Nov 24, 2023)

[7] React Native official website

https://reactnative.dev/ (accessed: Oct 1, 2023)

[8] Visual Studio Code official website

https://code.visualstudio.com/ (accessed: Oct 1, 2023)

[9] Firebase official website

https://firebase.google.com/ (accessed: Oct 1, 2023)

[10] Lucidchart official website

https://www.lucidchart.com/ (accessed: Oct 1, 2023)

[11] Lucidchart , Introducing Types of UML Diagrams | Lucidchart Blog

https://www.lucidchart.com/blog/types-of-UML-diagrams (accessed: Oct 1, 2023)

https://www.adcc.gov.hk/en-hk/statistic.html
https://www.legco.gov.hk/yr20-21/english/panels/se/papers/se20210601cb2-1110-3-e.pdf
https://techcrunch.com/2021/03/16/googles-family-link-updates-reflect-the-pandemics-impact-on-how-parents-view-screen-time/
https://techcrunch.com/2021/03/16/googles-family-link-updates-reflect-the-pandemics-impact-on-how-parents-view-screen-time/
https://whoscall.com/en/about
https://families.google/intl/en/familylink/
https://www.apple.com/hk/en/ios/health/
https://reactnative.dev/
https://code.visualstudio.com/
https://firebase.google.com/
https://www.lucidchart.com/
https://www.lucidchart.com/blog/types-of-UML-diagrams

54

[12] Lucidchart , UML Class Diagram Tutorial

https://www.lucidchart.com/pages/uml-class-diagram (accessed: Oct 1, 2023)

[13] Figma official website

https://www.figma.com/ (accessed: Oct 1, 2023)

[14] Kinsta, What Is GitHub? Kinsta A Beginner’s Introduction to GitHub, Dec 13, 2022

https://kinsta.com/knowledgebase/what-is-github/ (accessed: Oct 1, 2023)

[15] GeeksforGeeks, Unit Testing | Software Testing, 06 Feb, 2023

https://www.geeksforgeeks.org/unit-testing-software-testing/ (accessed: Oct 1, 2023)

[16] GeeksforGeeks, Software Engineering | Integration Testing, 06 Apr, 2023

https://www.geeksforgeeks.org/software-engineering-integration-testing/ (accessed: Oct 1, 2023)

[17] GeeksforGeeks, Software Testing – UAT (User Acceptance Testing), 29 Mar, 2023

https://www.geeksforgeeks.org/software-testing-uat-user-acceptance-testing/ (accessed: Oct 1, 2023)

[18] React Native Firebase website

https://rnfirebase.io/ (accessed: Apr 1, 2024)

[19] Google, Get started with the Gemini API in Node.js applications

https://ai.google.dev/gemini-api/docs/get-started/node (accessed: Apr 1, 2024)

[20] NPM, expo-location library

https://www.npmjs.com/package/expo-location (accessed: Apr 1, 2024)

[21] Noemi Biancone, Chiara Bicchielli*, Fernando Ferri and Patrizia Grifoni, Multi-Sensor Fall Detection

for Smartphones, Published: March 23, 2021

[22] Expo documentation, Expo Sensors

https://docs.expo.dev/versions/latest/sdk/sensors/ (accessed: Apr 1, 2024)

[23] JunkCall HK website

https://www.junk-call.com/hk (accessed: Apr 1, 2024)

[24] NPM, React Native Call Detection

https://www.npmjs.com/package/react-native-call-detection (accessed: Apr 1, 2024)

https://www.lucidchart.com/pages/uml-class-diagram
https://www.figma.com/
https://kinsta.com/knowledgebase/what-is-github/
https://www.geeksforgeeks.org/unit-testing-software-testing/
https://www.geeksforgeeks.org/software-engineering-integration-testing/
https://www.geeksforgeeks.org/software-testing-uat-user-acceptance-testing/
https://rnfirebase.io/
https://ai.google.dev/gemini-api/docs/get-started/node
https://www.npmjs.com/package/expo-location
https://docs.expo.dev/versions/latest/sdk/sensors/
https://www.npmjs.com/package/react-native-call-detection

55

[25] NoCodeAPI website

https://nocodeapi.com/ (accessed: Apr 1, 2024)

[26] Google Fit, Rest API

https://developers.google.com/fit/rest (accessed: Apr 1, 2024)

https://nocodeapi.com/
https://developers.google.com/fit/rest

