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Abstract 
 
Blockchain miners today heavily rely on the brute force method for mining. However, this 
approach consumes immense computational resources and has led to various environmental 
problems. Inspired by recent advancements in artificial intelligence, this project seeks to 
explore the application of machine learning to blockchain mining. More specifically, this 
work introduces the use of machine learning to 1) enhance nonce finding, 2) optimize 
transaction selection, and 3) discover optimal chain-level mining strategies. Historical mining 
data were first collected from blockchain explorers and APIs for model training and 
experiment evaluation. To enhance nonce finding, different iteration methods were compared 
and regression was applied to predict the starting nonce for iteration. A reinforcement 
learning algorithm was also developed to optimize the selection of block transactions while 
adhering to the weight limit. Finally, the blockchain mining process was modelled as a 
Markov Decision Process and solved using both undiscounted and discounted solvers to 
attain an optimal chain-level mining strategy. It is hoped that the insights gained from this 
project could encourage miners to adopt more environmentally conscious mining methods in 
the future. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 iii 

Acknowledgements 
 
I would like to express my sincere gratitude to my supervisor, Dr. Liu, Qi. for the guidance 
and support provided throughout the project. His expertise and mentorship have been 
instrumental in shaping the direction and success of this work. I would also like to extend my 
thanks to the University of Hong Kong for providing the necessary computational resources 
and budget crucial for my work. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 iv 

Table of Contents 
Abstract ............................................................................................................................. ii 

Acknowledgements ........................................................................................................... iii 

List of Figures .................................................................................................................. vi 

List of Tables .................................................................................................................... vii 

List of Equations ............................................................................................................. viii 

List of Abbreviations ......................................................................................................... ix 

1. Introduction .............................................................................................................. 1 

1.1 Background ................................................................................................................... 1 

1.2 Motivation ..................................................................................................................... 1 

1.3 Project Objectives ......................................................................................................... 1 

1.4 Project Deliverables ...................................................................................................... 2 

1.5 Paper Outline ................................................................................................................ 3 

2. Project Background and Literature Review ................................................................ 4 

2.1 Project background ...................................................................................................... 4 
2.1.1 Blockchain Technology .......................................................................................................... 4 
2.1.2 Proof of Work mining ............................................................................................................ 4 
2.1.3 Brute Force mining ................................................................................................................ 6 
2.1.4 Honest Mining ....................................................................................................................... 6 
2.1.5 Selfish Mining ........................................................................................................................ 6 
2.1.6 Machine Learning ................................................................................................................. 6 

2.2 Literature Review ......................................................................................................... 7 
2.2.1 Regression ...................................................................................................................................... 7 
2.2.2 Reinforcement Learning ................................................................................................................. 8 
2.2.3 Markov Decision Processes ........................................................................................................... 8 

3. Methodology ............................................................................................................ 11 

3.1 Historical Data Collection ................................................................................................. 11 

3.2 Enhanced Nonce Finding ................................................................................................... 11 
3.2.1 Iteration Methods ......................................................................................................................... 11 
3.2.2 Regression to Predict Starting Nonce ........................................................................................... 12 
3.2.3 Custom Difficulty Formula .......................................................................................................... 12 

3.3 Transaction Selection Optimization with Reinforcement Learning .................................. 13 
3.3.1 Naive Methods ............................................................................................................................. 13 
3.3.2 Action Space ................................................................................................................................ 13 
3.3.3 Reward Policy .............................................................................................................................. 13 
3.3.3 State Space ................................................................................................................................... 15 
3.3.4 Policy Learning ............................................................................................................................ 15 

3.4 Optimal Chain-level Mining Strategy with Markov Decision Process .............................. 16 

3.4.1 Blockchain Model Simulation ..................................................................................... 16 



 v 

3.4.2 Action Space ................................................................................................................................ 16 
3.4.3 State Space ................................................................................................................................... 17 
3.4.4 MDP solvers ................................................................................................................................. 17 

4 Experiments and Results .......................................................................................... 18 

4.1 Enhance Nonce Finding ..................................................................................................... 18 
4.1.1 Iteration Methods ......................................................................................................................... 18 
4.1.2 Starting Seed ................................................................................................................................ 19 

4.2 Mining Fee Optimization ............................................................................................ 21 

4.3 Optimal Mining Strategy with Markov Decision Process ................................................. 23 
4.3.1 Selfish Mining vs Honest Mining ................................................................................................ 23 
4.3.2 Comparing different MDP solvers ............................................................................................... 24 

5 Project Schedule ...................................................................................................... 28 

6 Limitations and Future works .................................................................................. 29 

6.1 Scalability and Validation of Experiments ........................................................................ 29 

6.2 Deployment in Real-World Applications ........................................................................... 29 

6.3 Security of blockchain network ......................................................................................... 29 

6.4 Promoting Sustainability in Blockchain Mining ............................................................... 30 

7 Conclusion .............................................................................................................. 31 

Reference List ................................................................................................................. 32 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 vi 

List of Figures 
 
Figure 1. Energy consumption of bitcoin, compared with countries’ reading (TWh) in 2021. 
Adopted from [6] ....................................................................................................................... 2 
Figure 2. Data structure of a proof of work blockchain. Adopted from [10] ............................ 5 
Figure 3 Data fields of Bitcoin block data extracted ............................................................... 11 
Figure 4 Data fields of Bitcoin transactions attained .............................................................. 11 
Figure 5 Custom difficulty formula ......................................................................................... 12 
Figure 6. Number of nonces tested per block for different iteration methods ......................... 19 
Figure 7. Number of nonces tested per block for different starting seed ................................ 20 
Figure 8. Relationship between fee and weight for the transaction dataset ............................ 21 
Figure 9 displays the mining reward per block for various transaction selection methods 
under weight limit 250,000 and 500,000. ................................................................................ 22 
Figure 9. Mining reward per block for different transaction selection methods ..................... 22 
Figure 10. Performance comparison between selfish mining and honest mining ................... 23 
Figure 11 Performance comparison between mining polices solved with different MDP 
solvers ...................................................................................................................................... 24 
Figure 12. Comparing Optimal Mining Policy solved by Relative Value Iteration with Selfish 
Mining and Honest Mining ..................................................................................................... 25 
Figure 13. Visualization of the mining policy derived by Relative Value Iteration ............... 26 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 vii 

List of Tables 
 
Table 1. Average number of nonces tested for different iteration methods ............................ 18 
Table 2. Average number of nonces tested for different starting seed .................................... 19 
Table 3. Number of wins for different methods in predicting the starting nonce ................... 20 
Table 4. Total mining reward for different transaction selection methods ............................. 21 
Table 5. Project schedule ......................................................................................................... 28 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 viii 

List of Equations 
 
Equation 1. Formula for Running Average of Total Aggregated Fees (RATAF) ................... 14 
Equation 2. Formula for the Fee-to-Weight ratio .................................................................... 14 
Equation 3. Formula for Mining pool exploration penalty ...................................................... 15 
Equation 4. Formula for relative revenue ................................................................................ 23 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 ix 

List of Abbreviations 
 
Abbreviation Definition 
PoW Proof of work 
DNN Deep neural network 
RL Reinforcement learning 
ML Machine learning 
A2C Advantage Actor-Critic 
MDP Markov Decision Process 
RATAF Running Average of Total Aggregated Fees 
TWh Terawatt-hours 
ASICs Application-Specific Integrated Circuits 
API Application Programming Interface 
GPU Graphics processing unit 
HKU The University of Hong Kong 

 
 
 

 

 

 

 

 

 

 

 

 

 



 1 

1. Introduction 
 
In this section, we provide an introduction of the project, including the background, 
motivation, project objectives, proposed deliverables, and an outline of this progress report. 
 
1.1 Background  
 

Blockchain technology is becoming increasingly popular. As a decentralized system, it could 
increase trust, security, transparency and traceability of data across a business network [1]. It 
is therefore applied in various industries. In finance, it is used for cross-border payments and 
smart contracts. In Supply Chain Management, blockchain allows businesses and consumers 
to track the origin, movement, and authenticity of products. In healthcare, Blockchain helps 
securely store and share patient medical records. 
 
Mining is crucial in blockchain for block creation and transaction validation [2]. The block 
creation process differs across various consensus mechanisms employed in the blockchain. 
Proof of Work is the one of the most prominent consensus mechanisms. To create a block 
under PoW, miners have to 1) collect pending transactions, 2) verify their validity, and 3) 
construct the block header by solving the hash problem [3]. The hash problem involves 
miners searching for a nonce (numerical value) that generates a hash value complying to 
predefined criteria [3]. This process ensures the security and integrity of the blockchain by 
discouraging malicious actors from altering the blockchain's history [4].  
 
1.2 Motivation 
 

There has been a long-held belief that trial and error is the only feasible and profitable block-
mining strategy for PoW [5]. Therefore, miners with greater computational resources have a 
higher capacity to explore a larger number of solutions, thus increasing their chances of 
winning. This resource-based competition has led to excessive energy consumption. Figure 1 
displays the annual energy consumption of Bitcoin in 2021, measured in terawatt-hours 
(TWh). It can be seen that Bitcoin's energy consumption exceeded 100 terawatt-hours (TWh) 
annually, surpassing the total energy usage of nations such as Sweden, Ukraine, Norway, and 
Argentina — and nearly half that of the United Kingdom. The predominant use of fossil fuels 
in mining operations not only contributes to substantial greenhouse gas emissions but also 
intensifies global climate change concerns. Furthermore, the need for miners to continually 
upgrade equipment fosters a cycle of electronic waste, exacerbating the environmental impact 
of outdated mining rigs. Consequently, PoW blockchain mining emerges as one of the most 
environmentally damaging practices. 
 
1.3 Project Objectives 
 
Traditional Proof of Work (PoW) mining practices are not only energy-intensive but also 
increasingly non-viable due to escalating computational demands and environmental 
regulations. Therefore, the goal of this project is to apply machine learning to improve the 
efficiency and effectiveness of PoW mining methods. With this approach, we could not only 
enhance miners' mining outcomes but also move away from the traditional brute force 
methods, thus reducing the carbon footprint of blockchain mining. 
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Figure 1. Energy consumption of bitcoin, compared with countries’ reading (TWh) in 2021. Adopted from [6] 

 
To achieve this, we first conducted a detailed literature review to explore the intersection 
between machine learning and blockchain technology. Afterwards, we collected historical 
Bitcoin block and transaction data from blockchain explorers and APIs. This data was then 
used to examine different nonce iteration methods and to train various regression models for 
predicting the starting nonce for iteration. We also used the Bitcoin transaction data to 
develop a Reinforcement Learning algorithm to optimize transaction selection. Lastly, we 
modeled the blockchain mining process as a Markov Decision Process (MDP) and solved the 
problem to attain optimal chain-level mining strategies. Experiments specific to each of the 
improvement areas were conducted, where existing mining methods were compared to the 
developed ML-based methods to reflect the improved efficiency and effectiveness of mining. 
 
1.4 Project Deliverables 
 
By the end of the project, the following 3 deliverables will be presented: 
 

1) Research Report: A comprehensive research report will be produced, providing an in-
depth analysis of the background, objectives, methodology, and findings of the project. The 
report will examine and compare existing approaches with the developed algorithm to reflect 
its effectiveness in mining. 
 

2) Code: The project will provide the entire codebase, including relevant scripts, modules, 
and libraries utilized in developing the machine learning model and conducting the 
experiments. This code will enable others to replicate the work, extend it further, and validate 
the results. Proper documentation and comments within the code will ensure its 
comprehensibility. 
 

3) Presentation and Demonstration: A comprehensive presentation summarizing the project 
contributions will be prepared, highlighting the key findings, methodology, and outcomes. 
Additionally, a demonstration on the machine learning model’s functionality and 
performance will be provided to showcase its practical application in blockchain mining. The 
presentation and demonstration will be completed in a video format and be uploaded to the 
project website. 
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1.5 Paper Outline  
 
This report will discuss the current completion status of the project in detail. Section 1 will 
provide an introduction to the project. Section 2 will focus on the detailed project background 
and literature review, highlighting the necessary background knowledge, as well as existing 
applications of machine learning in blockchain. Section 3 will outline the methodology 
employed in this project, providing insights into the research approach. Section 4 will cover 
experiments and results, while Section 5 will focus on the project schedule. Finally, Section 6 
will cover limitations and future work, and a conclusion will be given in Section 7. 
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2. Project Background and Literature Review 
 
In this section, we first provide a comprehensive overview of the foundational concepts 
involved in the project. Then, we present a detailed literature review on related 
methodologies for machine learning in blockchain technology. 
 
2.1   Project background 
 

This section provides a comprehensive overview of the background knowledge required for 
our project. 
 
2.1.1 Blockchain Technology 
 

Blockchain technology is a transformative approach to managing data and transactions in a 
decentralized manner. It operates as a distributed ledger that records all transactions across a 
network of computers, ensuring transparency, security, and integrity.  
 
Blockchain technology has three main features. First, Decentralization [3]: Unlike traditional 
databases managed by central authorities, blockchain technology employs a distributed 
network of nodes, which means that no single entity has control over the entire chain. This 
reduces the risk of central points of failure and increases resistance to malicious attacks. 
Second, Immutability [7]: Once a transaction is confirmed and recorded in a block on the 
blockchain, it cannot be altered. This immutability is secured through cryptographic hash 
functions that link each block to its predecessor, creating a secure and unbreakable chain. 
Third, Transparency [3]: Every transaction on the blockchain is visible to all participants and 
is permanently recorded, making it nearly impossible to alter any aspect of the record without 
the network becoming aware. This level of transparency helps in building trust among users. 
 
To ensure consistency and reliability, consensus algorithms are pivotal in maintaining the 
integrity and security of blockchains. They make decentralized decision-making possible, 
allowing networks to agree on the validity of transactions without needing a central authority. 
Various consensus mechanisms currently exist in the marketplace, including Proof of Work 
(PoW) [3], Proof of Stake [8], and Practical Byzantine Fault Tolerance [9]. In this project, we 
will focus on the Proof-of-Work mining strategy. 
 
 
2.1.2 Proof of Work mining 
 

The proof of work blockchain was proposed by Nakamoto in the paper 'Bitcoin: A Peer-to-
Peer Electronic Cash System' [3].  From figure 2, we can see that a PoW block header 
contains the current and previous block hash, a Merkle root and a nonce value, while the 
block body holds a tree of transactions. Block hash in PoW is derived by applying a 
cryptographic hash function (SHA-256) to the block header. Including both the current and 
previous block hash in the header links the block to its predecessor in the blockchain, thereby 
creating an immutable chain. Altering any block retrospectively would require re-mining not 
only the altered block but all subsequent blocks due to the cascading change in hash values, 
thereby securing the blockchain against tampering. The Merkle root is a single hash that 
represents all of the transactions included in the block's body. More specifically, it is the root 
of a Merkle tree - a binary tree of hashes where the leaves are hashes of individual  
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Figure 2. Data structure of a proof of work blockchain. Adopted from [10] 

 
transactions and intermediate nodes are hashes of their respective child nodes. The Merkle 
root helps in efficiently and securely verifying the existence of transactions in a block. 
 
To mine a block under PoW, miners must have to complete the following steps [3]:                       

1) Transaction Collection: Miners select transactions from a pool of pending 
transactions. Each transaction typically includes a fee which acts as an incentive for 
miners to include it in their block.  

2) Transaction Verification: Miners check the validity of these transactions. This 
includes ensuring that the digital signatures are correct and that the transaction does 
not attempt to double-spend coins. 

3) Creating a New Block: After selecting and verifying the transactions, miners begin 
the process of creating a new block. They compile the valid transactions into a block 
and calculate the Merkle Root, which is a single hash that represents all the 
transactions in the block. 

4) Solving the Hash Problem: The core of PoW mining is solving the hash problem. This 
involves finding a nonce that, when combined with the hash of the previous block and 
the Merkle Root, produces a new hash that meets the network's difficulty target. More 
specifically, the hash value has to be below a certain target value and therefore start 
with a specific number of zeros. This difficulty target is dynamically adjusted by the 
blockchain network to ensure that the time to find a new block remains constant, 
despite fluctuations in the network's hashing power. This adjustment mechanism 
maintains the blockchain's security and efficiency, regardless of the total 
computational power dedicated to mining activities at any given time. 

 
The first to solve the hash problem can then add the block to the blockchain and will be 
rewarded [3]. The reward typically includes two components: a) Block Reward: This is a 
predetermined amount of the cryptocurrency given to the miner. The size of the block reward 
is subject to a reduction mechanism known as "halving," which occurs at regular intervals 
(e.g., every four years in the case of Bitcoin) [3]. Halving systematically reduces the block 
reward by half, which controls the rate of new coin creation and contributes to the currency's 
scarcity and potential value appreciation over time. b) Transaction Fees: These are fees paid 
by users to have their transactions included in a block. Transaction fees are decided by the 
users themselves and can vary based on the network's congestion and the urgency of the 
transaction. As block rewards diminish over time due to halving, these transaction fees 
become increasingly significant as a source of income for miners. This reward system not 
only compensates miners for their computational power and energy costs but also secures the 
network by decentralizing the validation process. 
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2.1.3 Brute Force mining 
 

According to the survey conducted by Wang et al. in 2019 [11], brute-force mining was 
recognized as one of the predominant mining approaches. Wang et al. described brute-force 
mining as miners iterating through an extensive range of nonce values in order to discover a 
valid solution to the hash puzzle. The study also revealed that brute-force mining demanded a 
significant amount of computational power. Early in the history of Bitcoin, miners could use 
ordinary personal computers for mining. But as the difficulty increased, more specialized 
hardware was developed. Today, ASIC miners are the standard for networks like Bitcoin 
because they offer the most efficient and powerful solution for brute force mining, providing 
a massive edge over older hardware like GPUs and CPUs [12].This intense computational 
requirement, however, has raised concerns about the environmental impact due to the 
significant energy consumption associated with continuous high-power operations. 
 
2.1.4 Honest Mining 
 

In honest mining, miners act in good faith by confirming and recording transactions correctly 
[13]. They contribute to the growth of the blockchain by adding new blocks to the network's 
longest-recognized chain. Miners solve complex cryptographic puzzles that secure the 
network and validate new transactions. Upon finding a new block, they immediately 
broadcast it to ensure it becomes part of the longest chain [13]. For their efforts, honest 
miners are rewarded with block rewards and transaction fees. These incentives not only 
compensate them for their computational work and energy expenses but also reinforce their 
commitment to maintaining the network's integrity and reliability. 
 
2.1.5 Selfish Mining 
 

Selfish mining is a strategic manipulation within the Bitcoin network where a miner or a 
group of miners discovers a new block but deliberately withholds this information from other 
participants in the network [2]. By not broadcasting the newly found block, selfish miners 
create a private fork of the blockchain on which they continue to mine secretly. According to 
Ittay. El This practice gives selfish miners several advantages [2]. Firstly, while other miners 
waste computational resources on an outdated chain, the selfish miners are already 
progressing on their private chain. If they can find subsequent blocks before the rest of the 
network catches up, they can create a longer chain in secret. According to Bitcoin's protocol 
[3], the longest chain is considered the legitimate one, so when selfish miners finally 
broadcast their version of the blockchain, it can potentially replace the previously accepted 
chain. 
 
2.1.6 Machine Learning 
 

Machine learning is a pivotal branch of artificial intelligence that empowers systems to learn 
from data and make decisions autonomously [14]. It encompasses various learning types, 
including supervised, unsupervised, and reinforcement learning, each suited to different 
applications. The ongoing advancements in machine learning are not only enhancing current 
technologies but are also paving the way for innovative solutions that can transform entire 
industries, such as finance, healthcare, retail, and more. Therefore, in this project, we would 
like to introduce machine learning to aid in blockchain mining. By optimizing and improving 
the efficiency of the mining process, we aim to decrease the overall power consumption and 
carbon footprint associated with PoW blockchain operations. 
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2.2   Literature Review 
 

In this literature review section, we delve into the methodology and related works of machine 
learning in blockchain mining. 
 
2.2.1 Regression  

 

Regression analysis aims to understand how the typical value of a dependent (target) variable 
changes when any one of the independent variables is varied, while the other independent 
variables are held fixed [15]. It is mostly used for prediction and forecasting, where its use 
involves fitting a model to observed data in order to make informed predictions or decisions 
about new data from the same population. 
 
The use of regression in blockchain has primarily centered on predicting cryptocurrency 
prices, and has achieved significant success [16, 17]. On the other hand, the application of 
regression in blockchain mining is relatively novel and has only been briefly explored. Simon 
et al [18] applied machine learning to analyze blockchain data on the Ethereum network and 
used linear and polynomial regression models to predict the next block rewards for miners. In 
'Sustainable Optimizing Performance and Energy Efficiency in Proof of Work Blockchain: A 
Multilinear Regression Approach,' [19] the author employed regression to study the energy 
efficiency and computational expenditure of PoW blockchain mining. More specifically, 
multilinear regression analysis is utilized to explore the relationships between GPU 
performance indicators such as power consumption, thermal dynamics, core speed, and hash 
rate, revealing that strategic adjustments can significantly enhance energy efficiency and 
computational performance in PoW mining. However, these methodologies did not directly 
apply regression to aid the mining process, and as such, were unable to enhance mining 
efficiency. 
 
2.2.1.1  Polynomial Regression 
 

Polynomial regression is an extension of linear regression in which the relationship between 
the independent variable 𝑥 and the dependent variable 𝑦 is modeled as an 𝑛 nth degree 
polynomial [20]. Unlike simple linear regression which models the response variable as a 
linear combination of the predictors, polynomial regression allows for a more flexible 
relationship involving higher powers of the input variables, thus enabling the model to 
capture the non-linear dependencies [21]. This flexibility makes polynomial regression 
particularly useful in cases where data exhibit curvature and more complex patterns that 
cannot be captured by a linear model alone. However, caution must be exercised to avoid 
overfitting, especially as the degree of the polynomial increases. The coefficients in 
polynomial regression are typically determined using the least squares method, aiming to 
minimize the sum of the squares differences between the observed and predicted values [22]. 
 
2.2.1.2  Random Forest Regression 
 

Random Forest Regression is a powerful and versatile machine learning technique that uses 
ensemble learning methods for regression tasks. It constructs multiple decision trees during 
training and outputs the mean prediction of the individual trees to form a more accurate and 
stable prediction [23]. Unlike a single decision tree that might suffer from high variance or 
overfitting, a random forest mitigates these issues by averaging multiple trees that 
individually overfit to different aspects of the data. This approach not only improves 
predictive accuracy but also provides robustness against noise present in the training dataset. 
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A key advantage of random forest regression is its capability to handle large datasets with 
high dimensionality and multicollinearity among features without extensive pre-processing 
requirements. Additionally, random forests provide useful insights into feature importance, 
offering a natural form of feature selection [23]. 
 
2.2.2 Reinforcement Learning 
 

Reinforcement Learning (RL) is a branch of machine learning where an agent learns to make 
decisions by performing actions in an environment to maximize some notion of cumulative 
reward [24]. RL agents learn from the consequences of their actions through trial and error 
[24]. This paradigm is powerful in complex decision-making tasks where explicit 
programming of correct actions is impractical. 
 
Reinforcement Learning has been applied in blockchain technology from various 
perspectives. A study by Mahatungade et al. [25] used RL to enhance the scalability of 
blockchain systems. It employed reinforcement learning to select miners for block mining, 
and their detailed analysis demonstrated this significantly improved the throughput of the 
blockchain network. 'Deep Bribe' [26] is another study that utilized deep reinforcement 
learning to analyse how a selfish miner might exploit petty-compliant miners to maximize 
revenue. They concluded that selfish miners will do so through bribery, by providing rational 
miners' rewards themselves, and this poses significant vulnerabilities in blockchain security. 
Related researches have also applied RL to examine miner behaviours and incentives [27, 
28], and achieved significant discoveries and results. These works illustrate the diverse 
applications of RL in blockchain mining, thereby inspiring our use of it to enhance the 
profitability of blockchain mining. 
 
2.2.2.1    Advantage Actor-Critic (A2C) algorithm 
 

Advantage Actor-Critic (A2C) is a reinforcement learning technique that combines policy-
based and value-based approaches through its actor-critic architecture [29]. The actor part of 
A2C determines actions based on the current policy, often represented by a neural network 
that outputs action probabilities. The critic evaluates these actions by computing a value 
function, another neural network that estimates the expected return from a given state. A2C 
utilizes the advantage function, calculated as Q(s,a)−V(s), to measure how much better an 
action is compared to the average action at that state, which aids in reducing the variance of 
updates during training [20]. The critic updates its value predictions based on observed 
returns, while the actor adjusts its policy using gradients scaled by the advantage, promoting 
actions with above-average returns. A2C improves upon previous actor-critic methods by 
updating models synchronously, enhancing stability and reducing variance in updates, 
making it suitable for complex applications, such as blockchain mining. 
 
2.2.3 Markov Decision Processes 
 

Markov Decision Processes (MDPs) provide a mathematical framework for modelling 
decision-making situations where outcomes are partly random and partly under the control of 
a decision-maker [30]. MDPs are particularly useful in environments that require a series of 
decisions over time, making them suitable for applications in blockchain mining, where 
miners must make continuous decisions regarding which blocks to mine and when to publish 
them.  
 
 



 9 

An MDP is characterized by four primary components [30]: 
 

- States (S): These are the various conditions or configurations that the system or 
environment can assume. Each state encapsulates all the relevant information that the 
decision-maker needs to know in order to make decisions. 

- Actions (A): For each state, there are typically several actions available to the 
decision-maker. Actions represent the different choices or decisions that can be made 
by the decision-maker from a particular state. 

- Transition Probabilities (P): For each state and action, the transition probabilities 
determine the probability of moving to any other state. This is typically denoted 
as 𝑃(𝑠′∣𝑠,𝑎), which is the probability of transitioning to state s′ from state s after 
taking action a. 

- Rewards (R): A reward function quantifies the immediate payoff resulting from 
taking a particular action in a specific state. Often denoted as 𝑅(𝑠,𝑎,𝑠′). It represents 
the reward received after transitioning from state 𝑠 to state 𝑠′ via action a. 

 
In the paper "Optimal Selfish Mining Strategies in Bitcoin," [31] the authors introduced the 
use of  Markov decision process (MDP) to model the blockchain mining process from the 
miner/adversary perspective. They found that solving the MDP could lead to much better 
mining profits compared to traditional honest mining and selfish mining. This forms the basis 
of our methodology and has inspired us to explore various MDP solvers, as well as states and 
actions spaces to discover profitable mining strategies through MDP. 
 
2.2.3.1  Undiscounted MDP: Relative Value Iteration 
 

In undiscounted MDPs, the goal is to maximize the cumulative reward with no consideration 
for the time value of rewards. This model is particularly relevant in environments where the 
immediate reward is as significant as any future reward [32]. 
 
Relative Value Iteration is a method used in undiscounted MDPs to find an optimal policy 
that maximizes the long-term rewards. This algorithm iteratively updates the value of each 
state under the assumption that the value eventually converges to the optimal. The relative 
value iteration helps determine the best action to take in each state by comparing the values 
of possible future states, adjusted by their respective probabilities [33]. 
 
2.2.3.2  Discounted MDPs: Q-Learning, Value Iteration, and Policy Iteration 
 

In many real-world situations, future rewards are considered less valuable than immediate 
rewards, modeled using discounted MDPs where rewards are discounted by a factor γ (0 ≤ γ 
< 1) each step into the future [32]: 
 

- Q-Learning: Q-Learning is a model-free reinforcement learning algorithm that does 
not require a model of the environment and learns the quality of actions directly from 
experiences of state-action pairs [34]. It updates the action-value function (Q-value) 
based on the reward received after an action is taken, making it ideal for environments 
like blockchain mining where the system dynamics may not be fully known. 

 

- Value Iteration: This algorithm operates on the principle of iteratively refining the 
values assigned to each state in a system to converge on the optimal decision-making 
strategy [35]. In each iteration, Value Iteration computes the expected utility of 
undertaking each possible action from a given state and then updates the state's value 
to reflect the highest expected utility [35]. This method ensures that, over time, the 
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values of states accurately represent the best possible outcomes achievable from those 
states, guiding decision-makers toward the most beneficial actions. Thus, it is 
particularly applicable to blockchain mining, where strategic decision-making directly 
influences mining efficiency and resource management. 

 

- Policy Iteration: Comprising two main steps—policy evaluation and policy 
improvement—Policy Iteration starts with an arbitrary policy and improves it 
iteratively [35]. During policy evaluation, the value of each state under the current 
policy is computed. In the policy improvement step, a new policy is formulated by 
choosing actions that lead to the highest-value states [35]. This iterative refining of 
policies makes Policy Iteration suitable for blockchain mining, where miners need to 
continually adapt their strategies to the changing dynamics of the network. 
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3. Methodology 
 
In this section, we delve into the methodology of the project. This includes historical data 
collection, enhanced nonce finding, transaction selection optimization with reinforcement 
learning, and optimal chain-level mining strategy with a Markov Decision Process. 
 
3.1 Historical Data Collection 
 

The blockchain.com API was utilized to systematically collect data on Bitcoin transactions 
for our model training and evaluation. The data collection process involved retrieving 
detailed information from 1,000 sequential Bitcoin blocks. The fields included Hash, 
Version, Previous Block Hash, Merkle Root, Timestamp, and Nonce.  
 

 
 

Figure 3 Data fields of Bitcoin block data extracted 

 
For each block, we further extracted data for 20 transactions, totalling 20,000 transactions. 
The fields for the transactions included Transaction ID, fee, and weight. This dataset provides 
a foundation for our experiments to derive insights into the effectiveness of applying machine 
learning in blockchain mining. 
 
 

 
 

Figure 4 Data fields of Bitcoin transactions attained 

 
3.2 Enhanced Nonce Finding 
 

To successfully mine blocks, miners must discover a nonce that produces a block hash 
meeting the difficulty requirement. Here, we apply various methods to find the correct nonce 
value with a fewer number of tries, thereby reducing the computational overhead of 
blockchain mining. 
 
3.2.1 Iteration Methods  
 

Existing miners have to iterate through an immense number of nonce values to find the 
correct solution. Here, different iteration methods were explored to find the most efficient 
way of traversing through nonce values. We compared the traditional approaches, which 
involve incrementing the nonce sequentially by one, with an alternative approach of 
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incrementing by 10, as well as applying the Collatz conjecture to iterate nonce values in a 
nonlinear fashion. 
 
3.2.2 Regression to Predict Starting Nonce 
 

To reduce the number of attempts needed to find the correct nonce value, we employed 
regression models to predict the starting point of nonce iteration. Our models were trained 
using historical data from previously mined Bitcoin blocks. Inputs to these models included 
the Merkle root (converted to integer format), the timestamp, and the previous block hash, all 
normalized before passing into the model. The output from the model is a suggested starting 
nonce value, ideally as close to the correct nonce value as possible. Then, we will apply the 
most effective iteration method found in Section 3.2.1 to iterate through different nonce 
value. We utilized advanced regression models such as Polynomial Regression and Random 
Forest Regression, alongside an ensemble method that averages the outputs from both 
models. These approaches were selected for their ability to capture complex patterns and 
relationships within the data, which is crucial for accurately predicting starting nonce values 
in block mining. 
 
3.2.3 Custom Difficulty Formula 
 

Mining under the official Bitcoin difficulty formula requires extensive computational 
resources and is not feasible for our experiments. Therefore, we adopted a custom difficulty 
formula that was more suitable for our low-scale experiments while ensuring the validity of 
our results. Figure 3 displays the code of the formula. 
 

 
 

Figure 5 Custom difficulty formula 

Similar to the official Bitcoin formula, once we have the block body, we pass it to the 
produce_hash function and apply SHA-256 to obtain the hash value. However, meeting the 
actual difficulty requirement is challenging due to our resource constraints. Therefore, we 
passed the hash value obtained to the puzzle_solution_is_correct function, which is a 
simplified difficulty setting to verify whether a given solution meets the determined difficulty 
level. Our method converts the solution, which is a hash string, to an integer and compares it 
against a threshold determined by the difficulty parameter. This threshold is calculated 
as 2^(256−difficulty), and the produced hash should have a value equal or below it. This 
makes the verification process simpler, while is still an efficient and effective method for 
validating the computational work done in a PoW blockchain. 
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3.3 Transaction Selection Optimization with Reinforcement Learning 
 

In blockchain mining, miners are tasked with selecting the most profitable transactions from 
the transaction pool while adhering to the block's weight limit to maximize their gains. The 
transaction pool typically contains a large number of transactions, each varying in size, fee, 
and complexity. Therefore, traditional selection methods may not be able to efficiently handle 
the dynamic and multifaceted nature of transaction pools. In this section, we developed a 
reinforcement learning algorithm to optimize the selection of transactions, aiming to 
maximize not only gain but also efficiency in constructing the optimal block 
 
3.3.1 Naive Methods 
 

Two fundamental approaches to transaction selection for blockchain mining were first 
explored. They serve as a baseline for comparing more advanced transaction selection 
algorithms. 
 
The "Random" method involves indiscriminately selecting transactions from the pool until 
the block reaches its weight capacity. This approach does not consider the fee or weight of 
transactions; instead, it relies purely on chance to populate the block. While this method is 
simple and requires minimal computation, it generally results in suboptimal block rewards 
since it does not strategically maximize the fees collected per block. 
 
The 'Sorted' method enhances the selection process by strategically organizing transactions 
before inclusion. Transactions are first sorted in descending order by fee and then in 
ascending order by weight. This method aims to optimize the total reward garnered from the 
block before reaching the weight limit. It represents a basic yet more effective approach 
compared to random selection, as it considers both the economic and spatial efficiencies of 
transaction inclusion. 
 
3.3.2 Action Space  
 

In reinforcement learning, the action space defines the set of all possible actions that the 
agent can take at any given state. In our reinforcement algorithm, the action space is defined 
by the binary decision to either 'select' or 'not select' a transaction for inclusion in the 
upcoming block. 
 
This binary action space, while seemingly simple, leads to a complex decision-making 
environment due to the combinatorial nature of block construction and the interdependencies 
between transactions. The reinforcement learning agent must learn to navigate this space 
effectively to optimize block composition for maximum profitability and adherence to 
blockchain protocols. 
 
3.3.3 Reward Policy  
 

The reward policy is a critical part of the reinforcement learning (RL) algorithm as it directly 
influences the agent's learning process by specifying the feedback it receives for its actions. 
In our RL agent, we experimented with two different reward policy criteria: Running 
Average of Total Aggregated Fees and the Fee-to-Weight Ratio. 
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3.3.1.1  Running Average of Total Aggregated Fees (RATAF) 
 

Our initial reward policy was centered around the running average of the total aggregated 
fees. RATAF is defined as the total accumulated fee divided by the total number of 
transactions currently in the block. 
 

𝑅𝐴𝑇𝐴𝐹 =
𝑇𝑜𝑡𝑎𝑙	𝐹𝑒𝑒	(𝑖𝑛	𝑆𝑎𝑡𝑜𝑠ℎ𝑖𝑠)

𝑇𝑜𝑡𝑎𝑙	𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 

 
Equation 1. Formula for Running Average of Total Aggregated Fees (RATAF) 

A positive reward is granted whenever the inclusion of a transaction increases the Running 
Average of Total Aggregated Fees (+1). Conversely, a negative reward is assigned (-1) if the 
inclusion of a transaction causes a decrease in this running average. This approach aims to 
help the RL agent include transactions that could maximize the profitability of each block. 

Yet, we realised this reward policy did not consider the weight of each transaction, leading to 
inefficient block utilization. To address this, we refined our approach by implementing the 
Fee-to-Weight ratio reward policy.  

3.3.1.2  Fee-to-Weight Ratio 
 

Transactions not only carry fees but also have associated weights, which are indicative of 
their sizes or resource requirements. To better optimize the selection of transactions for 
inclusion in a block, we redefine the reward policy with reference to the fee-to-weight ratio. 
This Fee-to-Weight ratio is defined as the total transaction fee over the transaction weight of 
all transactions in a block.  
 

Fee-to-Weight ratio = 	 !"#$%#&'()$	+,,	(($	.#')%/(%)
!"#$%#&'()$	1,(2/'	(($	3,(2/'	4$('%)

 
 

Equation 2. Formula for the Fee-to-Weight ratio 

 

Furthermore, a dynamic reward system was implemented to scale reward according to 
changes in the Fee-to-Weight Ratio. More specifically, a positive reward is given when a 
transaction that increases the ratio is selected, or when a transaction that would decrease the 
ratio is excluded. Conversely, a negative reward is assigned when a transaction reduces the 
fee-to-weight ratio, or when a transaction that would improve the ratio is excluded. We have 
further doubled the reward for correctly including a beneficial transaction and for excluding a 
detrimental transaction. This adjustment aims to incentivize the RL agents to focus on 
ensuring that the block created maximizes the total possible rewards. 
 
3.3.1.3  Mining Pool Exploration Penalty 
 

Throughout model training, it was identified that the RL agents may continuously exclude 
transactions for long periods of time in the hopes that better options will appear later. 
However, this behavior often leads to extended periods of inactivity, which in turn reduces 
the overall efficiency of the mining operation. To counteract this issue, we implemented a 
penalty mechanism aimed at discouraging prolonged inactivity. The penalty is defined as the 
number of transactions explored over the total number of transactions in the transaction pool, 
multiplied by 1000. Multiplying the ratio by 1000 ensures the penalty is significant enough to 
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influence decision making. The penalty will finally be deducted from the total reward earned 
by the agent. 
 

𝑀𝑖𝑛𝑖𝑛𝑔	𝑝𝑜𝑜𝑙	𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛	𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 	
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠	𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑

𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑎𝑣𝑎𝑙𝑖𝑎𝑏𝑙𝑒	𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 ∗ 1000 

 
 

Equation 3. Formula for Mining pool exploration penalty 

 

By imposing this penalty, we aim to promote a more dynamic and continuous transaction 
processing environment, ensuring that the RL agent maintains efficiency and effectiveness in 
its operations. 

3.3.3 State Space 
 

In our RL algorithm, the state space is defined by three key components that help determine 
the most efficient transactions to include in the mining block: (Cur_ratio, Tx_ratio, Prop) 
 

- Cur_ratio (Current Fee-to-Weight Ratio): This represents the fee-to-weight ratio of all 
transactions currently included in the block. It provides a baseline measure of the 
block's overall efficiency, allowing for reference with potential new transactions. 

- Tx_ratio (Transaction Fee-to-Weight Ratio): This is the fee-to-weight ratio of the 
transaction that is currently being considered for inclusion in the block. This metric is 
crucial for decision-making, as it directly compares the potential value of a new 
transaction against those already included. 

- Prop (Proportion of Transaction Pool Explored): This metric indicates the percentage 
of the total transaction pool that has been explored or processed so far. It is an 
important factor for assessing the thoroughness of the transaction selection process 
and helps in determining whether further exploration could yield more efficient 
transactions. It also ensures an efficient mining process. 

 
By monitoring these three factors, the RL agent can make informed decisions that optimize 
the Fee-to-Weight ratio of their blocks, thereby maximizing profitability while ensuring 
efficient use of block space. This state space framework supports dynamic decision-making 
in real-time, allowing for adjustments based on ongoing assessments of transaction value and 
pool exploration progress. 
 
 
3.3.4 Policy Learning 
 

In our exploration of different policy learning methods for optimizing transaction selection in 
blockchain mining, we found that the Advantage Actor-Critic (A2C) method performed the 
best. The algorithm was able to effectively balance exploration of new transaction selection 
strategies with the exploitation of known profitable strategies, thereby performing superiorly 
in maximizing block rewards while adhering to block weight constraints. 
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3.4 Optimal Chain-level Mining Strategy with Markov Decision Process 
 
Currently, there are various mining strategies [21] that achieve improved overall outcomes 
compared to traditional honest mining [19]. Therefore, we model blockchain mining as a 
Markov Decision Process (MDP) and apply different solvers to attain the optimal strategy. 
The block miner acts as an adversary and undertake different actions against the honest miner 
to maximize its own gain. 
 
3.4.1 Blockchain Model Simulation 
 

To effectively simulate the blockchain environment, we first establish the model parameters 
that define the dynamics and interactions within the network: 
 

- α: This parameter represents the fraction of the network's computing power controlled by 
the adversary. Conversely, the honest miners control the remaining fraction, represented 
as 1-α. 

- γ: This parameter indicates the proportion of miners in the network that would receive a 
block from the adversary first when both the adversary and an honest miner release their 
blocks simultaneously. 

- γ(1 - α): This expression quantifies the computing power of the network that will mine on 
the adversary's blocks when both the adversary and honest miners release their blocks at 
the same time. This is a crucial metric as it reflects the influence of the adversary's blocks 
on the network under simultaneous release conditions. 

- α / (1- α):  This represents the upper bound of the relative revenue that can be earned by 
the adversary, as defined in [31]. 
 

3.4.2 Action Space 
 

In our blockchain model simulation, we define the following actions that an adversary/miner 
can take. Each action represents a strategic decision in response to the current state of the 
blockchain: 
 

- Adopt: The miner adopts the current longest chain in the network, which is typically 
controlled by the honest miners. By mining on top of the latest block of this chain, the 
miner aligns with the network consensus and contributes to its growth. 
 

- Override: The miner attempts to gain a strategic advantage by releasing a chain that is one 
block longer than the currently accepted honest chain. This effectively makes the miner's 
chain the new longest chain, compelling the network to accept this new chain. 

 

- Match: This action creates a scenario of uncertainty and competition. The miner 
publishes a number of blocks that match the length of the current honest chain, resulting 
in a blockchain fork. This initiates a direct competition between two chains: one 
maintained by the honest network and the other by the adversarial miner. 

 

- Wait: The miner chooses to delay any public action by not publishing any blocks. Instead, 
the miner continues to mine in private, extending a secret chain with the potential intent 
to later execute an override or match action. This strategy can build up a significant 
advantage that could be leveraged in future moves. 
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3.4.3 State Space 
 

The state space, denoted 𝑆, is a crucial component of our Markov Decision Process model for 
blockchain mining. It is defined using three parameters: 𝑎, ℎ, and 𝑓𝑜𝑟𝑘, where: 
 
- 𝑎: Represents the chain length of the adversary. This indicates the number of blocks in the 

chain that the adversary has been able to confirm. 
 

- h: Represents the chain length of the honest miners. It indicates the number of blocks in 
the chain that the honest network has confirmed. 

 

- fork: Describes the current status of the blockchain in terms of chain splits. It can take 
one of three values: 

 

• Irrelevant: This status indicates that the latest block was mined by the adversary, 
and the blocks published by the honest network have already been accepted by the 
majority of the network. In this state, the action "Match" is not permitted because 
there is no need for the network to choose between two competing chains. 
 

• Relevant: This status is assigned when the latest block is mined by the honest 
network. If fork is set to "Relevant" and l(a)≥l(h), the action "Match" is allowed. 
This enables the adversary to introduce a competing chain of equal length, 
potentially leading to a fork if the network is undecided on which chain to 
continue. 

 

• Active: This value indicates that the adversary has previously executed the 
"Match" action, resulting in a blockchain split into two competing branches. The 
network is currently has a fork and nodes have to decide on which chain to extend. 

 
Each state in 𝑆 provides a snapshot of the current blockchain conditions, informing the 
strategic decisions available to both honest and adversarial miners. This state representation 
is fundamental for simulating and analysing different strategies under various blockchain 
network conditions. 
 
3.4.4 MDP solvers 
 

Various discounted and undiscounted MDP solvers were applied to solve for the optimal 
strategy. Discounted MDP techniques, including Value Iteration, Policy Iteration, and Q-
Learning, were applied with the discount factor, 𝛾 finetuned. We also leveraged an 
undiscounted MDP approach: Relative Value Iteration, which views immediate and future 
rewards as equally valuable. By leveraging these methodologies, we aim to comprehensively 
analyse and derive effective mining strategies under various network conditions and 
adversary capabilities. 
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4 Experiments and Results 
 
This section covers the various experiments conducted to examine the effectiveness of the 
proposed methods. Section 4.1 covers experiments and results on enhancing nonce finding, 
Section 4.2 covers the use of reinforcement learning in optimizing transaction fees, and 
Section 4.3 discusses the effectiveness of deriving optimal chain-level mining strategies with 
Markov decision processes. 
 
4.1 Enhance Nonce Finding 
 

In this experiment, we compared the average number of attempts needed to find the correct 
nonce for different iteration methods and starting seed. 800 Bitcoin blocks were used for 
training the regression models and 200 Bitcoin blocks were used for evaluation. The 
difficulty value was set to 20 in the custom difficulty formula as shown in Figure 3. 
 
4.1.1 Iteration Methods 
 

Table 1 displays the average number of nonces tested for different iteration methods over the 
mining of 200 Bitcoin blocks. It is evident that the traditional method of sequential increment 
by 1 performs the best, requiring only 1,082,461 attempts to attain a correct nonce, followed 
by sequential increment by 10 with 1,122,047 attempts, and the Collatz conjecture with 
1,409,675 attempts. 
 
 

Method Average Number of Attempts 

Sequential (+1) 1,082,461 

Sequential (+10) 1,122,047 

Collatz conjecture 1,409,675 

 
Table 1. Average number of nonces tested for different iteration methods 

 
Figure 6 displays the number of nonces tested per block using different iteration methods 
across 10 random blocks. The results show that there are cases in which the Collatz 
conjecture performed significantly worse compared to linear methods. More specifically, for 
block 7, the Collatz conjecture required around 10 times more than the number of attempts 
needed by sequential methods to attain correct nonce values. This indicates that using a non-
linear iteration method may not be ideal, as it could overlook many suitable nonce values. 
Furthermore, we can also see that iterating sequentially with too large an interval may lead to 
undesirable results, as observed in block 0 and block 8. When iterating sequentially by 1, all 
blocks required fewer than 2.0 x 1e6 attempts. Therefore, it is believed that the traditional 
way of iterating through nonce values is the most effective. 
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Figure 6. Number of nonces tested per block for different iteration methods  

 
4.1.2 Starting Seed 
 

In this part, we explore the use of machine learning to determine the starting seed for nonce 
searching. Section 4.1.1 demonstrates that iterating the nonce value by sequential increments 
of 1 is optimal; thus, upon establishing the starting seed, we continue with this approach to 
iterate through nonce values. 
 
Table 2 displays the average number of nonces tested for different methods of finding the 
starting seeds over 200 blocks. The results show that, on average, all methods required a 
roughly similar number of tries to mine all blocks. 
 
 

Method Average Number of Attempts 

Sequential (+1) 1,082,461 
Polynomial Regression 1,163,762 

Random Forest Regression 1,079,642 
Ensemble Method 952,824 

 

Table 2. Average number of nonces tested for different starting seed 

 
 
Yet, a more detailed examination of the individual mining results offers further insights. In 
Figure 7, we visualize the number of attempts required for both sequential and regression 
methods to attain the correct nonce value across 10 randomly selected blocks. Notably, in 8 
out of these 10 blocks, at least one of the regression methods outperformed the traditional 
sequential method, which starts mining from zero. Furthermore, for blocks 3 and 9, using 
random forest regression and polynomial regression respectively, were able to predict a 
starting seed that was very close to the correct nonce value. This suggests that regression 
methods could bring significant advantages in mining in various instances. 
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Figure 7. Number of nonces tested per block for different starting seed  

 
In the actual mining competition, the winner is the one who mines the block first. In Table 3, 
we display the number of wins out of 200 blocks for the traditional method as well as for 
using regression to find the starting seed for nonce iteration. 
 
 

Method Number of wins 

Sequential (+1) 50 

Polynomial Regression 42 

Random Forest Regression 52 

Ensemble Method 56 

 
Table 3. Number of wins for different methods in predicting the starting nonce 

 
 
From the results, we can see that Ensemble regression produced the most wins, with a total of 
56. Additionally, all regression methods were able to achieve more than 40 wins, which 
shows that there are various instances where finding the starting seed with regression is 
highly effective. This underscores the potential of regression techniques in enhancing the 
efficiency and success rate of mining operations. 
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4.2 Mining Fee Optimization  
 

In this experiment, we compare our proposed reinforcement learning algorithm with the two 
naive methods 'Random' and 'Sorted', as defined in Section 3.3.1 in maximizing the total fee 
accrued over the course of mining 15 blocks. We consider a dataset comprising 20,000 
transactions, each characterized by its unique Transaction ID, associated fee, and weight. We 
perform our experiments in two scenarios: one with a weight limit of 250,000 and the other 
with 500,000. 
 
First, we analyze our transaction dataset. From Figure 8, we can see that the transaction pool 
distribution is complex. There are 'good' transactions, where the weight is low and the fee is 
high, and 'bad' transactions, where the weight is high, and the fee is low, as well as ‘average’ 
transactions. Therefore, these transactions should be carefully managed to maximize rewards. 
 

 
 

Figure 8. Relationship between fee and weight for the transaction dataset 

 
Then, we display the total mining rewards of different transaction selection methods over 15 
blocks in Table 4. 
   

Random Sorted RL (Average Reward) RL (Fee-to-Weight ratio) 

53,790,148 62,399,034 72,593,261 86,625,949 
 

Weight Limit: 250,000 
 

Random Sorted RL (Average Reward) RL (Fee-to-Weight ratio) 

112,829,601 124,762,115 127,867,014 147,731,187 
     

Weight Limit: 500,000 
 

Table 4. Total mining reward for different transaction selection methods 
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From the results, it’s clear that the total mining rewards are lowest for 'Random', followed by 
'Sorted', while the rewards produced by the RL algorithms outperform both naive methods. 
Furthermore, the new reward policy based on the Fee-to-Weight ratio outperformed the 
previous one based solely on average fees by near 20% and more than 15% in weight limit 
250,000 and 500,000 respectively. Therefore, this reflects the Fee-to-Weight reward policy 
brought significant improvements in rewards earned by miners. 

Figure 9 displays the mining reward per block for various transaction selection methods with 
block weight limit of 250,000 and 500,000.  

 

 
 

 

Figure 10. Mining reward per block for different transaction selection methods 
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From the results, it is evident that the 'Random' strategy, which selected transactions 
randomly, was not able to leverage the characteristics of different transactions in the pool, 
resulting in suboptimal outcomes. The 'Sorted' strategy selected the best transactions first, yet 
this led to a significant performance degradation over time. In contrast, both reinforcement 
learning algorithms are capable of attaining a more balanced reward over 15 blocks, leading 
to a higher cumulative mining reward at the end. Using the Fee-to-Weight ratio reward policy 
further improved block profits as it evaluates a transaction based on not only the fee but also 
on the weight. Therefore, applying reinforcement learning with the Fee-to-Weight ratio 
reward policy is effective in constructing optimal blocks and maximizing rewards over time. 
 
4.3 Optimal Mining Strategy with Markov Decision Process 
 

To validate the effectiveness of the MDP mining strategy, we conducted experiments on a 
blockchain simulation to compare the performance of the solved MDP mining strategy 
against honest mining and selfish mining strategies under various α and γ parameter values as 
defined in Section 3.4.1. The maximum fork length allowed is 8. In this simulation, the 
primary goal of the adversary/miner is to maximize relative revenue, which is defined as the 
revenue of the adversary divided by the total revenue earned by both the adversary and 
honest miners. 
 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑅𝑒𝑣𝑒𝑛𝑢𝑒 =
∑ 𝑅((∈6

∑ 𝑅((∈6 +∑ 𝑅77∈8
 

 
Equation 4. Formula for relative revenue 

 
4.3.1 Selfish Mining vs Honest Mining 
 

The performance of Selfish Mining was first compared with Honest Mining in the defined 
blockchain environment under different α and γ values. 
 

 
 

Figure 11. Performance comparison between selfish mining and honest mining 
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From the result, it is clear that the performance of selfish mining improves with increased 
adversary hash power. This is due to its enhanced control over the blockchain. More 
specifically, higher computational power enables a selfish miner to withhold blocks with 
greater efficiency and potentially create a longer private chain. This enhances the likelihood 
of invalidating honest miners' blocks and earning extensive rewards when the adversary 
eventually broadcasts the chain. Additionally, when α exceeded 0.35, selfish mining 
outperformed honest mining across all γ values (0, 0.5, and 1). As γ increased, the 
effectiveness of selfish mining also enhanced. This shows that when a selfish miner has 
favourable hash power and communication factors, he can heavily outperform traditional 
honest mining. 
 
4.3.2 Comparing different MDP solvers 
 

We formulated the blockchain mining process as an Markov Decision Process. Here, we 
solved the problem using different MDP solvers and compared their performances under 
varying α with γ fixed at 0.5.  

 

Figure 12 Performance comparison between mining polices solved with different MDP solvers 

 
From the result, it is evident that Relative Value Iteration performed the best, followed by 
Value Iteration and Policy Iteration, and finally, Q-learning, which attained a suboptimal 
outcome. This reflects that Undiscounted MDP solvers (Relative Value Iteration) perform 
better than Discounted MDP solvers (Value Iteration, Policy Iteration, and Q-learning) in the 
task because they treat immediate and future rewards of the same importance. This therefore 
allows the policy to better prioritize short-term gains without devaluing long-term benefits, 
ensuring a more balanced approach to decision-making across all states. 
 
 
4.3.3 Comparing MDP mining strategy with Selfish Mining 
 

In Section 4.3.2, we determined that Relative Value Iteration solved for the best mining 
policy. Here, we compare its performance with traditional selfish and honest mining under 
different α and γ values. 
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Figure 13. Comparing Optimal Mining Policy solved by Relative Value Iteration with Selfish Mining and Honest Mining 
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From the results, we observe that for γ = 0, Relative Value Iteration performed better than 
selfish mining when α ranges from 0 to 0.3, but its performance is worse when α is larger or 
equal to 0.35. When γ is set at 0.5 and 1, both the MDP mining strategy outperformed selfish 
mining under the majority of α values. Furthermore, the improvement gap of the MDP 
strategy compared to selfish mining is larger when γ is 1 than when γ is 0.5, indicating that 
the increase in γ significantly enhances the strategy's effectiveness. This reflects the 
importance of effective communication in the MDP-derived mining strategy to achieve 
optimal and best performance. Better network connectivity allows for quicker block 
propagation, therefore blocks solved by the MDP strategy are more likely to be accepted and 
built upon by other nodes in the network, and this significantly increases the miner’s reward. 

It is also noted in the figure that when γ = 1, the derived mining strategy nearly reaches the 
theoretical upper bound of α / (1 – α). This reflects that the performance of the solved mining 
strategy is highly optimized and effective. 

4.3.4 Optimal Mining Strategy Policy 
 

We further explore the policy derived from solving the blockchain MDP with Relative Value 
Iteration, using parameters α = 0.3, γ = 0.5, and a maximum fork length of 8, as demonstrated 
in the below figure. This visualization outlines the actions taken by the policy across different 
chain lengths of both the adversary/miner chain and the honest chain. The actions include: 0 
for 'Adopt' (accepting the honest chain), 1 for 'Override' (publishing an additional block to the 
network), 2 for 'Match' (publishing a conflicting block to create a fork), 3 for 'Wait' 
(continuing to mine on one's own chain), and * for 'Unattainable State'. The figure also 
details the policy's responses under the three states: [Irrelevant, Relevant, Active]. 
 

 

Figure 14. Visualization of the mining policy derived by Relative Value Iteration 
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From the results, we can see that when the adversary has a lead, 𝑙(𝑎)>𝑙(ℎ), under the 
irrelevant state, the policy tend to choose the 'wait' action. The policy suggests the adversary 
continue mining on its own chain, which allows him to maintain their advantage and extend 
their lead. When the state is relevant, the policy suggests the 'match' action, to publish a 
conflicting block to create a fork. This is beneficial to the adversary as their current chain is 
much longer than the honest chain, allowing it to potentially overtake the honest chain and 
receive significant rewards. 
 
Secondly, when the honest chain is much longer than the adversary/miner chain, the policy 
tend to abandon their chain, as reflected by '*' which indicates unattainable states. This 
suggests that instead of continuing to mine on their shorter chain and hoping to catch up, the 
policy prefer to abandon this effort and not take any action. 
 
Finally, when the adversary chain reaches the maximum fork length of 8, the policy adopts 
the 'override' action.  It continues publishing one more block to the network to ensure its 
chain maintains the maximum fork length. This secures the adversary position in having the 
longest chain, and by doing so, they can maximize their rewards and influence within the 
network. 
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5 Project Schedule 
 
The project has been finished, and all designated tasks have been accomplished.  Table 5 
displays the development schedule and records the tasks undertaken throughout the final year 
project. 
 

Time Objectives 

 
 

Sep 2023 
(60 learning hours) 

 
 
 

Focus: Project Setup and Detailed Project Plan 
 

- Define project objectives, scope, and deliverable 
- Develop a detailed project plan, including 

timelines and resource allocation 
- Set up the WordPress website for progress 

updates 

 
 

Oct 2023 
(60 learning hours) 

Focus: Literature Review and Data collection 
 

- Conduct research on existing and related works 
on blockchain with machine learning  

- Collect historical blockchain data from various 
sources 

 
 

Nov 2023 – Jan 2024 
(200 learning hours) 

Focus: Environment Setup and Model Training 
 

- Develop regression models to aid in nonce 
finding. 

- Develop an RL algorithm based on the average 
reward policy for transaction selection. 

- Train and fine-tune model parameters. 
- Define metrics and baseline models for 

performance evaluation and comparison. 
 

 
 

Feb – Mid April 2024 
(200 learning hours) 

Focus: Model Improvements and Experiments 
 

- Attain more training data to perform more 
rigorous and detailed experiments. 

- Improve the RL reward policy to a fee-to-weight 
ratio, garnering better results. 

- Develop a Markov Decision Process to derive the 
optimal mining strategy. 
 

 
 

Late Apr 2024  
(80 learning hours) 

 

Focus: Documentation and Reporting:  
 

- Document the project findings, methodologies, 
and outcomes. 

- Prepare the final project report and presentation 
summarizing the research, analysis, and results. 

 
 

Table 5. Project schedule 
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6 Limitations and Future works 

In this section, the limitations of our project and identify key areas for further research and 
development are evaluated. While our study made promising strides in applying machine 
learning in blockchain mining, several challenges remain that need to be addressed to 
enhance the robustness, scalability, security and environmental sustainability of our work. 

6.1 Scalability and Validation of Experiments 
 

Our initial experiments were conducted on relatively small-scale simulations. This provided a 
solid starting point but did not fully encapsulate the complexities and variables of broader 
applications. To enhance the credibility and applicability of our findings, future work should 
scale these experiments to involve more extensive datasets and more complex simulation 
environments. This could examine the robustness and effectiveness of our algorithms under 
conditions that more closely mimic the actual blockchain systems. 

By conducting large-scale experiments, findings can be further validated by demonstrating 
consistent results across a variety of scenarios and setups. This will involve rigorous 
statistical analysis to ensure that the improvements observed are not only statistically 
significant but also repeatable and reliable under different conditions. Extending the scale of 
testing also allows us to explore the limits and capabilities of our algorithms, affirming their 
potential for broader use.  

6.2 Deployment in Real-World Applications 
 

Although our theoretical findings are promising, translating these models into practical 
applications presents several challenges. The integration of our models with existing 
blockchain systems requires careful consideration of compatibility and efficiency across 
different technological infrastructures. 

Furthermore, the models should be capable of handling real-time data and ensuring 
robustness and security in diverse environments. Effective real-time data processing is 
essential for the models to be relevant and useful in actual blockchain operations. Future 
research should also aim to maintain high levels of security and system integrity under varied 
operational conditions. With these improvements, theoretical models could be translated into 
practical applications that can perform reliably and effectively in the field. 

6.3 Security of blockchain network 
 

Introducing machine learning to Proof of Work (PoW) blockchain mining could significantly 
alter the difficulty of the mining process. This thereby may introduce new security 
vulnerabilities. Machine learning models might enable miners to forecast nonce values and 
other aspects of the mining puzzle more efficiently than traditional methods. This efficiency, 
while beneficial in reducing computational effort and energy consumption, could lead to 
disparities in mining power. A small number of miners might therefore leverage advanced 
machine learning techniques to dominate the mining process, disrupting the decentralized 
nature of blockchain. 

Moreover, if machine learning models are trained to manipulate the difficulty adjustment 
algorithms — which are designed to ensure a consistent block time despite fluctuating 
network power — they could artificially lower the difficulty levels, making the blockchain 
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susceptible to attacks such as double-spending. By making it easier to mine blocks rapidly, an 
attacker could also alter previously confirmed blocks if they achieve substantial control over 
the network's hash rate. This fundamentally undermines the blockchain's integrity, where the 
security commonly relies on the impracticality of altering all subsequent blocks following a 
transaction. Therefore, as machine learning integrates into blockchain mining, it is essential 
to carefully consider and mitigate potential impacts on network security and the equitable 
distribution of mining power. 

6.4 Promoting Sustainability in Blockchain Mining  
 

Our project highlighted the potential for more energy-efficient practices in blockchain 
mining, a critical step toward reducing the technology's environmental footprint. Further 
research should focus on related areas and develop methods that not only lessen the 
environmental impact but also enhance the performance and security of blockchain 
systems. With these improvements, we could achieve a greener and more sustainable future 
in blockchain mining. 
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7 Conclusion 
 
To conclude, blockchain miners today heavily rely on the brute force method for 
mining. This approach, however, consumes immense computational resources and has led to 
various environmental problems. Inspired by recent advancements in artificial intelligence, 
this project seeks to explore the application of machine learning to enhance the efficiency and 
sustainability of blockchain mining. More specifically, we addressed the problem from three 
perspectives. 1) Different nonce iteration methods were explored, and regression models 
were trained to predict the starting nonce for nonce iteration. 2) A reinforcement algorithm 
based on the Fee-to-Weight ratio reward policy was developed to optimize block transaction 
selection while adhering to the block weight limit. 3) The blockchain mining process was 
modeled as a Markov Decision Process and solved it to attain an optimal mining strategy. 
Our experiments and blockchain simulations demonstrated that the proposed methods were 
able to achieve significant improvements in mining rewards and efficiency compared to 
traditional methods. Finally, it is hoped that the insights gained from this project will 
encourage miners to adopt more environmentally conscious mining methods and contribute 
to a greener future in blockchain mining. 
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