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1 Background

In recent years, there has been significant progress in the field of deep learning, par-
ticularly in the development of large language models (LLM). These models, such as
OpenAl’'s GPT-3, have demonstrated remarkable capabilities in natural language un-
derstanding, generation, and reasoning. They have been successfully applied to various
tasks, including language translation, text summarization, and question answering.

While these language models have shown great potential, their application in the field of
formal theorem proving remains relatively unexplored. Formal theorem proving involves
using mathematical logic and rigorous reasoning to establish the correctness of mathe-
matical statements or prove theorems. Traditionally, formal theorem proving has been
a complex and time-consuming process, often requiring deep expertise in mathematical
logic and substantial manual effort. Like games, it substantially demands planning and
symbolic reasoning [2]. However, due to the extensive range of formal mathematics, any
significant reasoning achievement attained within this field holds greater significance
compared to similar achievements in games. In addition, these achievements could po-
tentially have practical applications in important areas like software verification, and
addressing real-world problems.

Currently, formal theorem proving is mainly performed using specialized proof assis-
tants like Coq, Isabelle, and HOL Light [1]. These systems provide a framework for
mechanically checking proofs, but they often require users to write detailed and ex-
plicit formal proofs, which can be laborious and error-prone. Moreover, the learning
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Statement: Suppose n is a natural number such that n leaves a remainder of 3 when divided by 7. Show that (2n+1) leaves a
remainder of 0 when divided by 7.

Subgoal-based Proof:

Step 1: Expressnas 7k + 3 for some k € N

Step 2: Substitute the expression for n into the expression for 2n + 1 and simplify.
Step 3: Show that the resulting expression 1s divisible by 7.

Formal Sketch:
theorem mathd_numbertheory_370:
fixes n :: nat
assumes hO : "n mod 7 = (3::nat)’
shows "(2*n+1) mod 7 = (0::nat)"
proof -
(* Step 1: Express nas 7k + 3 for some k € N. *)
have "n=7 * (n div 7) + (n mod 7)’
using div_mult_mod_eq[of "n" "7"] sledgehammer
alsohave "...=7 * (ndiv7)+3”
using hO sledgehammer
finally have c0: "n=7* (n div 7) + 3".
(* Step 2: Substitute the expression for n into the expression for 2n + 1 and simplify. *)
have "2*n+1 = 2*(7*(n div 7) + 3) + 1"
using c0 sledgehammer
also have ... = 14*(ndiv 7) + 7
sledgehammer
also have
sledgehammer
finally have c1: "2*n+1 = 7*(2%(n div 7) + 1)”
(* Step 3: Show that the resulting expression is divisible by 7.*)
show "(2*n+1) mod 7=0
using c1 sledgehammer

ed
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Figure 1: Taken from [4], it shows a formal sketch of a proof in the Isabelle prover, leveraging
both LLM and predefined prover tools (e.g., Sledgehammer).

curve associated with these proof assistants can be steep, making them less accessible
to newcomers in the field.

By employing LLM for interactive formal theorem proving, we aim to address these
challenges. The project will explore how Al techniques, combined with natural language
understanding and reasoning capabilities, can provide an intuitive and user-friendly
environment for theorem proving. The proposed system will potentially allow users
to interact with the language model using natural language queries, enabling them
to express mathematical statements, explore proof strategies, and receive real-time
suggestions and feedback.

The development of such an interactive formal theorem proving system holds several
advantages.

1. It has the potential to significantly reduce the time and effort required for theorem
proving tasks, making it more accessible to a wider audience. This could lead to



increased productivity among mathematicians and researchers, as well as facilitate
learning and collaboration in the field of formal mathematics.

2. Integrating AI into the theorem proving process can enhance the discovery and
exploration of new mathematical theorems. The language model can assist users
in formulating conjectures, identifying relevant theorems, and suggesting potential
proof strategies, fostering creativity and innovation in mathematical research.

3. By leveraging the power of LLM, the project aims to push the boundaries of
what is currently achievable in formal theorem proving. It presents an opportu-
nity to explore the capabilities and limitations of Al in the context of rigorous
mathematical reasoning, paving the way for advancements in both Al and formal
mathematics.

Current approaches towards this problem show limited performance on relevant bench-
marks. For example, the miniF2F benchmark [6] consists of a few hundred problem
statements drawn from various high-school-level mathematics competitions and the
International Mathematical Olympiad. Additionally, it includes material from high
school and undergraduate mathematics courses. To date, the state-of-the-art model
achieves 51.2% accuracy [5] on this benchmark, indicating that there is still large room
for improvement. Furthermore, many existing methods like GPT-f [3] can only handle
a maximum of around a hundred proof steps for proving a theorem. But more steps are
required for more complex theorems. Hence, augmenting LLM to improve reasoning
over long distances could yield substantial advantages.

2 Objective

The objective of this research-based project is to investigate and explore the potential
of LLM in the domain of interactive formal theorem proving. The project aims to
address the following research objectives:

1. Analysis of existing formal theorem proving techniques Conduct a com-
prehensive review of traditional formal theorem proving techniques, including
automated theorem provers, proof assistants, and interactive proof systems. An-
alyze their strengths, limitations, and areas where LLM can potentially enhance
the overall theorem proving process.

2. Exploration of LLM capabilities: Investigate the capabilities and limitations
of understanding and generating formal mathematical statements, logical rea-



soning, and proof structures. Identify the challenges specific to integrating the
models into the theorem proving context and propose potential solutions.

3. Design and implementation of an interactive framework: Develop a pro-
totype framework that integrates LLM into the formal theorem proving process,
allowing users to interact with the system using natural language queries and
obtain coherent and accurate responses.

4. Identification of challenges and future directions: Identify the challenges,
limitations, and potential areas for improvement in the integration of LLM into
formal theorem proving. Propose future research directions to address these chal-
lenges, such as refining the training process, fine-tuning methodologies, or explor-
ing alternative language models.

5. Documentation of findings: Document the research methodology, experimen-
tal setup, implementation details, and evaluation results in a comprehensive re-
search report.

By accomplishing these research objectives, this project will contribute to the existing
body of knowledge in formal theorem proving and demonstrate the potential of LLM
in this domain. The outcomes of this project will provide insights, guidelines, and
directions for future research efforts in integrating language models into formal theorem
proving systems, paving the way for more advanced and efficient approaches in this field.

3 Methodology

1. Data Collection and Annotation: The first step is to gather a comprehensive
dataset of formal mathematical statements, proofs, and related annotations. This
dataset will serve as the training data for LLM. The collection process may involve
accessing existing theorem proving libraries or databases, consulting mathemat-
ical literature, and collaborating with domain experts to ensure the dataset’s
quality and diversity.

2. Preprocessing and Dataset Preparation: Once the dataset is collected, it
needs to be preprocessed and transformed into a suitable format for training the
language model. This may involve cleaning the data, converting mathematical
symbols into textual representations, and organizing the data into appropriate
input-output pairs that align with the interactive theorem proving framework.

3. Development of Theoretical Framework: With an understanding the limi-
tations of existing methods, we propose potential solutions by modifying or es-
tablishing theories for modeling the reasoning process behind theorem proving.
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Knowledge from symbolic regression might be needed as an insight for design-
ing such theoretical framework. We can also consider employ techniques from
reinforcement learning to design learning objectives.

. Model Training and Fine-tuning: The next step is to train our model using
the prepared dataset. This involves employing techniques such as unsupervised
learning and transfer learning to optimize the model’s performance on formal
theorem proving tasks. Fine-tuning the model on the specific dataset may be
necessary to improve its understanding of mathematical concepts and reasoning.
Given limited compute, we might need to skip the training process and perform
in-context learning instead.

. Evaluation and Analysis: Once the model is developed, rigorous evaluation
is conducted to assess its effectiveness and efficiency. This evaluation involves
comparing the performance of the framework with traditional theorem proving
techniques, both in terms of proof generation time and accuracy. User feedback
and domain expert input are collected to gauge the usability and usefulness of
the framework.

By following this project methodology, the implementation of LLM for interac-
tive formal theorem proving will be systematically carried out, ensuring a well-
structured and coherent approach to harnessing the capabilities of LLM for en-
hancing the theorem proving process.

Schedule and Milestones

Below we outline a list of expected outcomes at different time stages of our project. An
estimated number of learning hours is given at the end of each outcome. We assume
that approximately 50 hours will be spent on the project every month.

1. October 2023 (done)

e survey sub-areas in Al for science
e survey existing methods in formal theorem proving

e submit deliverables of Phase 1, including the detailed project plan (i.e., this
document) and project web page

2. December 2023

e achieve objective 1 (analysis of existing formal theorem proving techniques)
- 20 hours



e achieve objective 2 (exploration of LLM capabilities) - 20 hours

e partially achieve objective 3 (design of an interactive framework) - 60 hours
3. January 2024

e partially achieve objective 3 (implementation of an interactive framework) -
30 hours
e verify our method on relevant benchmarks - 10 hours

e give first presentation - 10 hours

e submit deliverables of Phase 2, including the preliminary implementation
and detailed interim project report - 10 hours

4. March 2024

e achieve objective 3 by improving upon our initial design and implementation
- 50 hours

e conduct extensive evaluation and analysis of our method - 30 hours
5. Early April 2024

e achieve objective 4 (identification of challenges and future directions) - 10
hours

e achieve objective 5 (documentation of findings) - 40 hours
6. Late April 2024

e submit deliverables of Phase 3, including the finalized tested implementation
and final report - 20 hours

e attend project exhibition - 20 hours
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