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Abstract

3D reconstruction from images is an important and challenging problem in computer vision. This

progress report outlines research on a framework for reconstructing 3D models from single or multi-view

images. A combination of diffusion models [4] and neural radiance fields [13] is proposed to enable high-

quality reconstruction from sparse inputs. The diffusion model leverages strong priors to synthesize novel

views and refine geometry. The neural radiance field [13] reconstructs an implicit 3D representation that

can be rendered from any viewpoint. A preliminary version of the framework has been implemented. While

the multi-view diffusion model gives a relatively satisfying result, reconstruction result is not satisfactory.

We may investigate adopting 3D Gaussians Splatting to reconstruction process with only 1 forward pass in

the future. Meanwhile, further evaluation of tradeoffs in reconstruction quality and efficiency compared to

state-of-the-art methods will also be done in the future.
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1 Introduction

1.1 Background

Humans can effortlessly interpret the 3D structure of an object from a mere collection of 2D images.

This marvelous ability rooted in our cognitive faculties results from imagination and strong prior knowl-

edge from our visual experiences. However, enabling machines to perform 3D reconstructions just like

humans remains an open challenge, while there are many substantial applications across medicine, games,

augmented reality and more.

1.2 Motivation

In 3D reconstruction, classic multi-view stereo (MVS) [3, 21] methods can reconstruct 3D models from

multiple images taken from known viewpoints. However, they struggle with textureless surfaces, lighting

variations, and thin structures. MVS also requires many input views captured in a controlled setting.

Lately, numerous methods have adopted neural radiance field (NeRF) to model 3D scenes, demonstrat-

ing strong reconstruction performance and high fidelity results [13, 23, 14, 8]. They use implicit neural

representations, directly leveraging the learnable neural networks, despite traditional voxel, mesh or point

cloud methods. However, they normally require considerable input images with known poses and may

produce blurry output when facing unseen areas.

More recently, 3D Gaussian Splatting achieves real-time rendering of a trained 3D scene using 3D

Gaussians as an explicit representation [5]. It still adopts the learning techniques as in NeRF [13], allowing

faster backpropagation and reconstruction of a 3D scene, though it still needs enough images with pose

inputs.

On the track of image generation, denoising diffusion probabilistic models (DDPM) [4, 17] have shown

remarkable performances. Techniques based on DDPM [4] primarily learn a noise predictor from the

forward process, which continuously adds noise to natural images. This learned noise predictor is then

used in the reverse process to generate images from the Gaussian noise, through a series of diffusion steps.

Thus, this project hypothesizes that the confluence of NeRF [13], 3D Gaussians Splatting [5] and dif-

fusion models may represent a new paradigm in 3D reconstructions, especially under the sparse-views

condition. Furthermore, reconstructing 3D models from merely a few images taken from your phone may

have vast applications in various domains like gaming and augmented reality.

1.3 Project objectives

The key objectives of this project are to develop a framework for 3D reconstruction with sparse input

images, which should be capable of:

• Single-view 3D reconstruction: This framework should be capable of reconstructing 3D models

from single image inputs and synthesizing consistent hidden views using the prior knowledge from

diffusion models.
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• Incremental multi-view enhancement: This framework should be capable of refining the quality

of 3D models generated from single-view inputs. Enhancements may include correcting the textures

and geometry of the model with additional inputs.

• Flexable input handling: This framework should be capable of directly handling inputs from the

open world without needing categorical priors, masks, or predefined poses. This flexibility will make

the framework more adaptable to real-world, uncontrolled scenarios.

• Evaluation and analysis: Evaluate the reconstruction quality compared to SOTA methods in closed-

world benchmarks quantitively and qualitatively for open-world inputs. Analyze tradeoffs between

single vs multi-view reconstruction in terms of quality, reconstruction time, and other available met-

rics.

1.4 Outline of the report

The remaining parts of this report proceed as follows. Section 2 analyzes the current research state and

identifies literature review gaps. Section 3 offers a discussion on methodology and describes the frame-

work’s construction. Section 4 presents the work that has been accomplished, what remains to be done,

plans for the future, and problems encountered. We round off with a conclusion restating objectives and

progress.

2 Literature Review

The literature review summarizes related current research. We will first go through the basics of diffu-

sion models, nerual radiance field [13] and 3D Gaussians Splatting [5]. Afterwards, we’ll look into some

view-conditioned diffusion models that are able to generate images from novel viewpoints leveraging the

prior knowledge of large pre-trained 2D diffusion models. Finally, we’ll see how diffusion models reforms

the 3D generation and reconstruction tasks.

2.1 Diffusion Models

2.1.1 Denoising Diffusion Probabilistic Model

The denoising diffusion probabilistic model (DDPM) [4] marks a new paradigm for image generation.

The orginal DDPM [4] models a Markov chain as shown in the figure below.

Figure 1: The Markov chain of DDPM [4]

Given x0 d representing the observed distribution of an arbitrary natural image and xT representing the

pure Gaussian noise, DDPM [4] learns a noise predictor from the forward process q(xt|xt−1) of adding
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noise from x0 to xT . Since we are modeling a Markovian process, the forward process can be modeled as:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) (1)

Also, DDPM [4] assumes all latent variables in the encoder are a Gaussian distribution centered around the

previous one and sets the mean and variance of the Gaussian encoder as follows, with αt as a coefficient

that may vary.

q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I) (2)

With αt evolving over steps t and p(xT ) being a standard Gaussian distribution, i.e. p(xT ) = N (xT ;0, I):

p(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt) (3)

DDPM [4] then defines its trainable noise predictor by minimizing the KL divergence. ϵ is a random

variable sampled from standard Gaussian. The final loss function used to train the noise predictor evolves

to:

Lθ = Et,§+0,ϵ

[∣∣∣∣ϵ− ϵθ
(√

αtx0 +
√
1− αtϵ, t

)∣∣∣∣2] (4)

2.1.2 Latent Diffusion Models

Due to the sequential and repeated nature of the DDPM [4], training and inference of the model should

be performed step by step. Meanwhile, the DDPM [4] directly operates on the pixel space, it requires a large

amount of memory during training and generating high resolution images. To resolve the above issues, the

latent diffusion model [17] is trained to generate the latent representations of images, which applies the

denoising process in the latent space. It utilizes a variational autoencoder (VAE) to encode the image into

latent space during training while decoding the latent representations into images during inference process.

Figure 2: Architecture of latent diffusion model [17]

In the latent space, a U-Net [18] structure is used to predict the noise. This U-Net consists an encoder

and a decoder. While the encoder downsamples the image’s latent representation, the decoder upsamples
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it back to the original size with less noise, making this U-Net output predicting the noise residual which is

used to denoise the image’s latent representation. Moreover, this model is also capable of conditioning on

the additional input, such as text, image or semantic map via a cross-attention layer.

The cross-attention layer works with a pre-trained embedding model. Taking Stable Diffusion [17] as

an example. It utilizes CLIP [16] to encode text prompt into a text embedding vector that could be fed into

the cross attention layer. This makes it possible for the image generation processes to focus on the input

text prompts.

Figure 3: Cross Attention Mechanism

2.2 Neural Radiance Field

In the vanilla NeRF [13], a scene could be represented using a function taken in coordinate x = (x, y, z)

in the 3D space, along with a viewpoint d = (θ, ϕ) to reconstruct colors c = (r, g, b) and densities σ along

the ray.

Figure 4: Neural Radiance Field [13] scene representation

The vanilla design of NeRF [13] uses sets of MLPs to model the radiance and density functions with

trainable parameters. These MLPs are then trained using multi-view images of a scene to learn the implicit

neural representation. Afterward, the novel view can be synthesized by querying these MLPs and rendering

using volume renderings. Given the camera ray r(t) = o + td, the color in the bounds tn to tf can be

derived as [13]:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt (5)

In addition, the author found that directly operating on coordinate x = (x, y, z) and viewpoint d =
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(θ, ϕ) results in underfitting problem, that the network cannot perform well when there’s high variation of

color and geometry in the scene. Therefore, it uses a positional encoding to embed the 5D vector into a

higher dimensional space utilizing the sine and cosine functions, which is similar to that in the Transformer

[22] architecture. Meanwhile, it introduces the volume rendering method with hierarchical volume sampling

to avoid useless repeated sampling.

However, under our scenario of 3D reconstruction with sparse input images, the original design of NeRF

[13] often produces blurry outputs, since itself does not have the ability to make prediction on the unseen

areas. Meanwhile, due to its implicit representation design, it’s slow to train and render. These downsides

have been emphasized in future works. Instant-NGP [14] used a multi-resolution hash encoding, promi-

nently improves the speed in training and rendering. NeuS [23] and Neuralangelo [8] used implicit signed

distance function and novel volume rendering method to reconstruct smooth surface. Mip-NeRF 360 [1]

focuses on resolve the blurry boundary issue by using online distillation and distortion-based regularizers.

2.3 3D Gaussians Splatting

3D Gaussians Splatting [5] is a more recent study adopting the key idea of training in NeRF [13] while

using a relatively explicit 3D scene representation. It outperforms most NeRF-based method in terms of

quality (SSIM, PNSR) and efficiency (FPS, Training Time).

Figure 5: Performance Evaluation of 3D Gaussians Splatting [5]

3D Gaussians Splatting [5] uses anistropic 3D Gaussians as an explicit representation of a 3D scene.

Each Gaussian can carry the feature vector like opacity and spherical harmonics to fit the directional ap-

pearance of the radiance field and itself carries position information naturally by centering itself at a specifc

position. Then, by projecting relavant Gaussians onto a 2D plane using a differentiable tile rasterizer, it

can render the image from a specific camera viewpoint. Compared to Point-NeRF [24], which also stores

features in points but using volume rendering and linear interpolation, this process effectively leverages the

explicit representation of the point cloud, the scene could be rendered way more faster than some NeRF-

based methods which need to make inference through multiple MLPs.
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Figure 6: Flow of 3D Gaussians Splatting [5]

Another major contribution of the 3D Gaussian Splatting is its adaptive density control method. The

control method basically checks on the gradient applies to each Gaussian. When the gradient is too large,

proving that one Gaussian may not be enough to represent the scene at its position, then this Gaussian will

be cloned or splitted as in the following diagram. Similarly, after some interations, remove the Gaussians

that have opacity below the threshold, which means these Gaussians have nearly no impact on the rendering.

Figure 7: Densify (Clone/Split) Scheme of 3D Gaussians Splatting [5]

However, same as NeRF [13] methods, 3D Gaussian splatting still requires a large amount of images

input, with camera poses. It will produce blurry outputs for unseen areas as well due to lack of prediction

ability. Meanwhile, we found that 3D Gaussians Splatting cannot produce a sharp output when there’s a

large variance in shape and color, or in the boundary position.

Figure 8: Simulation on recovering the left-side ground truth using 3DGS [5]
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2.4 View-conditioned diffusion models

The pioneer work Zero-1-to-3 [10] make use of the large pre-trained 2D diffusion models, Stable Diffu-

sion [17], to learn a control mechanism that could manipulate camera viewpoint during the image generation

process, enabling the zero-shot ability.

Figure 9: Model of Zero-1-to-3 [10]

It uses the Objaverse [2] dataset, which contains a large amount of 3D objects, processing it into view-

point and image pairs to finetune the Stable Diffusion [17] model. However, since it’s generating only one

image at a time, even using the same view prompt, due to the probabilistic nature of the diffusion model,

this may lead to inconsistency problems. One is the multi-face problem that the diffusion model repeatedly

generates content that might be invisible in some angle, and the other is the content drift problem that some

content in the image might be loss or gradually become other things.

Figure 10: Pipeline of MVDream [20]

To resolve the above mentioned issue and keep the consistency cross views, SyncDreamer [11] and MV-

Dream [20] both propose to generate multiple views at the same time. While SyncDreamer [11] finetunes

from Zero-1-to-3 [10] and aims to model a joint distribution across different views, using a synced noise

predictor for views from different angles. MVDream [20] finetunes from pre-trained 2D diffusion models

and uses a 3D attention mechanism across the views to maintain consistency. Future work Wonder3D [12]

also utilizes this 3D self-attention mechanism to ensure multi-view consistency, as well as generating paired
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normal images for 3D reconstruction using SDF method.

2.5 Diffusion Guided 3D Generation and Reconstruction

DreamFusion [15], as a pioneer work, introduces the score distillation sampling technique that allows

the 3D reconstruction process to be guided by the pre-trained diffusion models, as its pipeline shown in the

following figure.

Figure 11: Pipeline of DreamFusion [15]

DreamFusion [15] firstly initialize the NeRF [13] model with parameters θ. Then, given a specific

camera viewpoint, it uses the NeRF [13] model to render the 2D image and adds noise to this rendered

image. Afterwards, using the text prompt describing the viewpoint and the object that should be generated

and the noised rendered image as the input to the pre-trained diffusion model. The diffusion model should

be able predict the noise we just added to the rendered image. The difference between this prediction and

the noise we add will be backpropagate onto the weights of the NeRF [13] model. Under this setting,

DreamFusion proposes the following SDS loss, which is derived from the loss of the diffusion model and

let the gradient to flow outside:

∇θLSDS(ϕ,x = g(θ)) = Et,ϵ

[
w(t)(ϵ̂ϕ(zt; y, t)− ϵ)

∂x

∂θ

]
(6)

However, the drawbacks of this method is obvious. Firstly, the vanilla DreamFusion directly uses a text-

to-image diffusion model, Imagen [19], to serve as the guidance. As the training procedure of these kind of

models did not focus on the view angle information, directly using text prompts to control the angle may be

hard. Though this can be resolved by using fine-tuned view-conditioned diffusion model like Zero-1-to-3

[10], its need of per instance optimization still leads to ineffiency. Problem of inaccurate colors and textures

also happens from time to time.

8



Figure 12: Pipeline of One-2-3-45 [9]

Under this scenario, One-2-3-45 [9] directly utilizing the Zero-1-to-3 [10] to generate novel views from

multiple angles in and reconstruct them using SDF-based method NeuS [23]. Though it could generate the

mesh in one forward pass, it still suffers from the inconsistency problem from Zero-1-to-3. Also, it needs

to retrain on the 3D datasets for the latter part of depth prediction using SDF method, which may affect the

generalization ability.

Figure 13: Pipeline of Wonder3D [12]

Wonder3D [12], a more recent work, directly fine-tunes the diffusion model to be able to output the

paired normal images. In that case, there’s no need to estimate depth information from colored image, and

this output could be directly feed into SDF-based reconstruction method, achieving smooth surface while

maintaining the efficiency by reconstruction in one forward pass as well.

3 Methodology

We design the prelinminary version of the framework to have three modules, a preprocessing module,

a multi-view diffusion model conditioning on the input image for novel view synthesize and a 3D recon-

struction module to do the reconstruction under the guidance of the multi-view diffusion model.

3.1 Preprocessing Module

The preprocessing is mainly the masking procedure that separate the object out from the environment

and resize the image into the resolution of 256×256. We simply uses the out-of-box Segment Anything [6]

model to create the alpha channel for the input images.
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3.2 Multi-view Diffusion Model

We finetune our multi-view diffusion on the Stable Diffusion Variations model [7] on a small subset of

Objaverse [2] dataset to generate 4 views of an object given the single image input.

Figure 14: Pipeline of our multi-view diffusion model

Similar to text-conditioning in Stable Diffusion [17], we use CLIP [16] to embed the conditioning image

and feed it into the cross attention block. Meanwhile, the original input image is also be encoded using the

VAE to feed into the self attention block which is used to maintain multi-view consistency.

For camera embeddings, we adopt the world camera system and utilize a 2-layer MLP to encode the 4

camera postions of front, back, and sides. The camera embeddings are then directly added to the embedded

timestamps like residual.

3.3 3D Reconstruction Module

We directly insert our multi-view diffusion model into the DreamFusion [15] pipeline and uses the SDS

loss to do the reconstruction.

4 Progress and Prelinminary Results

4.1 Project schedule

The project schedule is shown in the Appendix A.

4.2 Work accomplished to date

Currently, the project is in its last phase. All work in previous thress phases are completed in time with

satisfactory, including:

• A complete and comprehensive literature review.
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• Reproduction of some studies like Zero-1-to-3 [10], DreamFusion [15], SyncDreamer [11].

• Implementation and training of the multi-view diffusion model.

• Integration of multi-view diffusion model with SDS method for 3D reconstruction.

• Draft of the interim report

• Preliminary implementation of novel view synthesis module

4.3 Prelinminary results

We’ve already fine-tuned the multi-view diffusion model and created an interface for generating novel

views from specific angles. This demo can be directly run on a Macbook Pro with M2 Max chip in around

30 seconds, setting denoising steps to be 50.

Figure 15: Interface of our multi-view diffusion model

Following are some images generated using our multi-view diffusion model.
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Figure 16: Images generated by multi-view diffusion models (gt, left, front, right, back)
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Afterwards, we’ve tested to use DreamFusion [15] pipeline to do 3D reconstruction with our multi-view

diffusion model. We run it for 15000 steps and this process takes 1 hour using 2 RTX3090s.

Figure 17: Reconstruction result of a chair

The surface isn’t smooth, while the texture is also not satisfying as well. When we analyze the log

during optimization, NeRF [13] rendering and propagation consumed 3/4 of the total time, which is truly

time-consuming.

4.4 Future plan

In the last phase, we will focus on improving the performance and provide a comprehensive quantitive

and quantitive analysis. We may focus on the adoption of 3D Gaussian Splatting, abandoning the SDS

method and provide a one-stop interface for 3D reconstruction.

5 Conclusion

In conclusion, this interim report outlines progress on developing a framework for 3D reconstruction

from sparse image inputs using diffusion models and neural radiance fields. The key objectives are to enable

high-quality 3D reconstruction from single images, allow incremental enhancement with additional views,

handle real-world inputs flexibly, and analyze tradeoffs compared to state-of-the-art methods.

The literature review summarizes relevant research on diffusion models, neural radiance fields, 3D

Gaussian splatting, and recent works combining these approaches for novel view synthesis and 3D recon-

struction.

The proposed methodology combines a preprocessing module, a multi-view diffusion model for novel
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view synthesis, and a 3D reconstruction module guided by the multi-view diffusion model. Preliminary

multi-view generation results are quite satisfying, though 3D reconstruction results are still coarse.

Future work will focus on improving reconstruction quality, efficiency, and flexibility. This includes

adopting 3D Gaussians Splatting [5] to avoid slow volumetric rendering in NeRF [13]. A more comprehen-

sive analysis will be performed in the future.
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A Project Schedule

Phases Duration

Preparation and Literature Review

• Focus on literature review

• Reproduce results from relevant areas

• Finalized plan and methodologies

• Setup environment and framework (PyTorch)

Sep 1, 2023 - Oct 15, 2023

Prelinminary implementation of the framework

• Implementation of a prelinminary version

• interim

• Assume input images have masks and camera positions

• Fine-tune the diffusion and reconstruction network

Oct 16, 2023 - Dec 30, 2023

Improvement of Implementation

• Performance improvement

• Interim report

Jan 1, 2023 - Jan 15, 2024

Finalization and Future Work

• Finalize all implementation and report

• Future work includes deploying an online demo

• Invesigating on 3D Gaussians Splatting method, without

SDS

Jan 16, 2024 - Apr 15, 2024

Table 1: Project Timeline
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