Automated Social Media Research and Sentiment Analysis using LLMs

Group: FYP23047

Students:
Hung Jasper (3035787671)
Ko Berrick Eldridge (3035784710)

Supervisor:
Dr. Kong Lingpeng

26 April 2024
I. Abstract

Social media provides organizations with valuable insights into user feedback and public sentiment. However, manual social media research can be impractical, and existing sentiment analysis approaches have demonstrated vulnerabilities. This project aims to overcome these challenges by developing an automated system that performs social media research and conducts aspect-based sentiment analysis using state-of-the-art LLMs. The system comprises five main procedures: data collection, aspect identification and classification, aspect-based sentiment analysis, aspect-based summarization, and result visualization. Successfully implemented using Reddit and Gemini, the system achieves high accuracy. This project not only presents a valuable tool for organizations but also contributes to a broader understanding of LLMs and their capabilities.
II. Acknowledgement

I would like to express my sincere gratitude to all those who have contributed to this project. I would like to thank my supervisor, Dr. Kong Lingpeng, for his guidance and support throughout the project. I would also like to thank my groupmate, Jasper, for his contributions and collaboration. Finally, I would like to thank my CAES9542 instructor, Mr. Matthew Anderson, for his guidance in technical writing and presentation.
III. Table of Contents

I. Abstract.. 1
II. Acknowledgement.. 2
III. Table of Contents... 3
IV. List of Figures.. 5
V. List of Tables.. 6
VI. Abbreviations.. 7

1. Introduction... 8
 1.1 Background.. 8
 1.1.1 User Feedback.. 8
 1.1.2 Social Media... 8
 1.1.3 Sentiment Analysis.. 9
 1.1.4 Large Language Models.. 9
 1.2 Project Motivations.. 9
 1.2.1 Automated Social Media Research.. 9
 1.2.2 Sentiment Analysis using LLMs... 9
 1.3 Objectives.. 10
 1.4 Deliverables.. 10
 1.5 Project Contributions.. 10
 1.5.1 Invaluable Tool for Organizations... 10
 1.5.2 Exploring Potential of LLMs.. 10
 1.6 Report Outline.. 11

2. Literature Review.. 12
 2.1 Related Work.. 12
 2.1.1 Sentiment Analysis.. 12
 2.1.2 Large Language Models... 13
 2.1.3 Sentiment Analysis with Large Language Models.. 14
 2.2 Research Gap.. 15

3. Methodology.. 16
3.1 System Design.. 16
3.2 Procedures.. 17
 3.2.1 Data Collection.. 17
 3.2.2 Data Analysis.. 21
 3.2.3.1 Aspect Identification and Classification... 21
 3.2.3.2 Aspect-based Sentiment Analysis... 23
 3.2.3.3 Aspect-based Summarization.. 24
 3.2.4 Result Visualization... 26
3.3 Testing and Evaluation... 26

4. Results and Discussion.. 27
 4.1 Data Collection... 27
 4.2 Data Analysis... 28
 4.2.1 Aspect Identification and Classification.. 28
 4.2.2 Aspect-based Sentiment Analysis... 29
 4.2.3 Aspect-based Summarization.. 30
 4.3 Result Visualization.. 31

5. Future Works.. 33
 5.1 Improved Data Collection.. 33
 5.2 Use of Offline Models... 34
 5.3 Depth of analysis... 35

6. Conclusion... 36

VII. References... 37
IV. List of Figures

Figure 1. An overview of the system workflow 16
Figure 2. API plans for accessing X’s data 18
Figure 3. “Page Public Content Access” permission required to access Meta’s data 18
Figure 4. Quota system for accessing YouTube’s data 19
Figure 5. Workflow for aspect identification and classification 21
Figure 6. Workflow for aspect summarization 24
Figure 7. A sample CSV file with data collected from Reddit 27
Figure 8. A sample CSV file with data classified into identified aspects 28
Figure 9. A sample CSV file with data and assigned sentiment scores 29
Figure 10. A sample summary for an identified aspect 30
Figure 11. A sample overview page in a generated report 31
Figure 12. A sample summary page in a generated report 31
Figure 13. Posts sorted by “relevance” or “hot” in Reddit 33
Figure 14. An internal server error occurred when using Gemini 34
Figure 15. Collecting textual content and rating of relevant comments 35
V. List of Tables

Table 1. Targeted social media platforms for data collection 17
Table 2. Scores assigned to each sentiment 23
VI. Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLM</td>
<td>Large Language Model</td>
</tr>
<tr>
<td>NLP</td>
<td>Natural Language Processing</td>
</tr>
<tr>
<td>BERT</td>
<td>Bidirectional Encoder Representations from Transformers</td>
</tr>
<tr>
<td>GPT</td>
<td>Generative Pre-trained Transformers</td>
</tr>
<tr>
<td>MAST</td>
<td>Multifaceted Analysis of Subjective Texts</td>
</tr>
<tr>
<td>RoBERTa</td>
<td>Robustly optimized BERT approach</td>
</tr>
<tr>
<td>BART</td>
<td>Bidirectional and Auto-Regressive Transformer</td>
</tr>
<tr>
<td>T5</td>
<td>Text-To-Text Transfer Transformer</td>
</tr>
<tr>
<td>MMLU</td>
<td>Massive Multitask Language Understanding</td>
</tr>
<tr>
<td>API</td>
<td>Application Programming Interface</td>
</tr>
<tr>
<td>CSV</td>
<td>Comma-Separated Values</td>
</tr>
<tr>
<td>VPN</td>
<td>Virtual Private Network</td>
</tr>
<tr>
<td>PDF</td>
<td>Portable Document Format</td>
</tr>
<tr>
<td>HTML</td>
<td>HyperText Markup Language</td>
</tr>
</tbody>
</table>
1. Introduction
This section introduces the project. Section 1.1 provides the project’s background; section 1.2 explains the project’s motivations; section 1.3 outlines the project’s objectives; section 1.4 details the project’s deliverables; section 1.5 justifies the project’s contributions; section 1.6 provides an overview of the remaining content of the report.

1.1 Background
1.1.1 User Feedback
User feedback is an invaluable resource for businesses, enabling them to gain insights into the needs and preferences of their users [1]. This understanding allows them to identify areas for improvement, and make informed decisions in the development of new products [1]. Effectively addressing user feedback also make users feel acknowledged and result in enhanced customer loyalty.

Traditionally, collecting user feedback involves the usage of questionnaires, interview, and focus groups [2]. However, these approaches come with several drawbacks. Firstly, they rely on limited sample sizes, leading to inadequate representation of certain user segments. Furthermore, designing and conducting these methods require significant time and effort. Additionally, they typically provide predefined questions and lack open-ended discussions, thereby limiting the depth of the feedback collected.

1.1.2 Social Media
In today’s digital age, social media has emerged as an integral part of our lives, offering individuals a means to freely express opinions and engage in discussions. As of March 2024, it is estimated that over 63% of the world’s population are active social media users [3]. The wide usage in social media has resulted in a substantial volume of user-generated content across such platforms, making them valuable resources for organizations to gain insight into user feedback and public sentiment.

Social media encompasses a wide range of platforms that cater to different content and communication styles. They can be broadly classified into several categories: social networking sites, such as Facebook, facilitate connections and socialization; discussion forums, like Reddit, allows users to engage in question-and-answer interactions; video-sharing platforms, like YouTube, focus on the sharing and viewing of videos [3].
1.1.3 Sentiment Analysis
Sentiment analysis is the process of analyzing emotions expressed in text and classifying them into positive, neutral, or negative sentiments [4]. It has found broad applications, especially for businesses to perform brand monitoring, conduct market research, or analyze user feedback [5].

1.1.4 Large Language Models
Large Language Models (LLM) are machine learning models designed for Natural Language Processing (NLP) tasks. Leveraging transformer architectures, these models demonstrate proficiency in understanding and generating human-like languages, making them valuable assets in various applications such as translation and text generation [6]. Prominent examples of state-of-the-art LLMs include Bidirectional Encoder Representations from Transformers (BERT), Generative Pre-trained Transformers (GPT) and Gemini.

1.2 Project Motivations
1.2.1 Automated Social Media Research
The vast amount of user-generated content on social media offers organizations a valuable resource for collecting user feedback and conducting sentiment analysis. However, the conventional manual approach of collating, analyzing, and synthesizing findings can be labor-intensive, time-consuming, and prone to errors, primarily due to the sheer volume of posts and comments across multiple platforms [1]. Therefore, this project aims to address these challenges by developing a tool to automate the research process.

1.2.2 Sentiment Analysis using LLMs
Existing approaches to sentiment analysis have shown limitations, particularly in understanding human language accurately [7]. Considering the capacity of LLMs to comprehend human language [6], this project aims to explore the utilization of LLMs as an improved approach to sentiment analysis.
1.3 Objectives

The aim of this project is to develop an automated system that conducts social media research and performs sentiment analysis utilizing state-of-the-art LLMs. In line with this agenda, this project is designed to achieve the following objectives:

1. Collect textual data from social media that are relevant to user-specified keywords.
2. Conduct aspect-based sentiment analysis on the collected data using LLMs.
3. Generate reports with appropriate visualizations to present the analysis result.

1.4 Deliverables

This project aims to deliver a command-line program that accomplishes the objectives mentioned in section 1.3. The program should encompass the following procedures: data collection, aspect classification, aspect-based sentiment analysis, aspect-based summarization, and report generation.

1.5 Project Contributions

1.5.1 Invaluable Tool for Organizations

The system delivered by this project functions as a powerful tool for organizations to collect user feedback and analyze public sentiment. By inputting relevant keywords, such as product names, the system can generate comprehensive reports that provide a clear understanding of the overall opinion surrounding the products. This enables them to readily identify areas for improvement and strategically plan their next steps. Moreover, the utilization of this system effectively addresses the labor-intensive and time-consuming aspects of manual analysis, while also offering the advantage of improved analysis accuracy.

1.5.2 Exploring Potential of LLMs

Several tools in this domain do already exist, such as Brandwatch and Brand24 [8, 9]. However, this project also explores the capabilities of state-of-the-art LLMs. These models have demonstrated remarkable performance in tasks such as question answering and text generation [6]. This project seeks to demonstrate the potential of these models in the context of aspect-based sentiment analysis.
1.6 Report Outline
The remainder of this report is organized into five sections. Section 2 presents work related to the project; section 3 explains and justifies the methodology employed in the project; section 4 discusses the results obtained from the project; section 5 proposes areas of improvement for future work; section 6 summarizes the essential components of this report.
2. Literature Review

This section presents the literature related to the project. Section 2.1 summarizes the work on related topics; section 2.2 identifies research gaps for this project.

2.1 Related Work

2.1.1 Sentiment Analysis

Sentiment analysis has emerged as an evolving research area in the field of NLP owing to two fundamental factors. First, sentiment analysis has witnessed an increase in its applications, particularly in light of the exponential growth of user-generated content [10]. This includes business activities such as monitoring opinions and extracting market insights [11]. Second, as explained by Bubeck et al. [12], the ability to comprehend sentiments from text plays a crucial role not only in sentiment analysis itself but also in the broader context of human-level intelligence.

The analysis can be classified into various types based on scope and complexity. At its fundamental level, document-level sentiment analysis examines the sentiment of an entire text [13]. Building upon this foundation, sentiment analysis has progressed along two dimensions: depth and width [14]. In terms of depth, aspect-based sentiment analysis explores further by identifying specific aspects within a text and analyzing the sentiment associated with each identified aspect [15]. On the other hand, the wide direction expands the analysis to encompass multilayered analysis of subjective texts (MAST), performing specialized tasks focusing on specific sentiment, such as hate speech detection and irony detection [16]. Nevertheless, these types of analysis involve determining sentiment in either binary format (positive, negative) or multi-class format (positive, neutral, negative) [17].

There are three main approaches to performing sentiment analysis. The first approach is the lexicon-based approach, which involves assigning sentiment scores to keywords based on a predefined dictionary, and aggregating these scores to determine the overall sentiment of the context [18]. While this method is straightforward and easy to interpret, it is susceptible to inaccuracies since the same word can convey both positive and negative meanings depending on the context [19]. The second approach is the traditional machine learning approach, which utilizes supervised learning techniques to predict sentiment in text, with algorithms such as Naive Bayes and Random Forests [20]. This method is more sophisticated and surpasses the lexicon-based approach in capturing contextual nuances of text [21]. However, it still falls
short of fully comprehending human language, particularly in areas like irony and sarcasm [7]. The third and most recent approach involves the use of transformer-based models. This method demonstrates superior contextual understanding compared to the previous approaches, and exhibits capability to handle negations, intensifiers, and implicit sentiments [22]. Experimental results indicate that this approach achieves 20% higher accuracy than the lexicon-based approach, and 10% higher accuracy than the traditional machine learning approach [23].

2.1.2 Large Language Models

LLMs are machine learning models specifically designed to comprehend and generate human-like language, enabling them to perform a wide range of NLP tasks. They are trained on extensive collections of unlabeled text corpora using self-supervised learning techniques, allowing them to acquire an understanding of the inherent context, grammar, and structure of language [24]. One notable feature of LLMs is their remarkable capabilities in zero-shot or few-shot learning settings [14]. Zero-shot learning refers to the model’s ability to execute a task without any training examples. Instead, it relies on its own understanding of the underlying language. Similarly, few-shot learning refers to the ability of the model to learn quickly from a limited number of training examples. These capabilities contribute to the versatility and adaptability of LLMs, enabling them to handle NLP tasks even when there is limited or unavailable training data. The applications of LLMs span a wide range of areas, including language translation, text summarization, question-answering chatbots, and sentiment analysis [6].

LLMs can be categorized into three types based on their architectural design. The first type is known as encoder-based models, which solely utilize the encoder of a transformer model to produce input representatives [6]. These models are commonly employed in tasks such as sentence classification and sentiment analysis [6]. Prominent examples include the Bidirectional Encoder Representations from Transformers (BERT) and its variants like the Robustly optimized BERT approach (RoBERTa) [25, 26]. The second type is referred to as decoder-based models, which solely utilize the decoder of a transformer model to generate output sequences given an input text [6]. They are particularly well-suited for text generation tasks [6]. The Generative Pre-trained Transformers (GPT) and Gemini are notable representatives of this group [27, 28]. The third type is the encoder-decoder model, which incorporates both the encoder and decoder components, thereby enabling the generation of
output sequences based on input representatives [6]. Such models are advantageous in text summarization tasks [6]. Examples of this type include the Bidirectional and Auto-Regressive Transformer (BART) and the Text-To-Text Transfer Transformer (T5) [29, 30].

Various strategies have been devised and implemented to improve the performance of LLMs. One prominent approach is prompt optimization. By designing well-optimized prompts, significant improvements can be achieved in the capabilities and output quality of LLMs [31]. Key elements of a well-optimized prompt include clear instructions, relevant context, example implementation, input data, and an output indicator [31]. In a recent study by Yao et al. [32], the concept of “Tree of Thoughts” was introduced as an extension of prompt optimization. This approach involves decomposing a task into smaller sub-tasks and solving them sequentially, guided by reasoning chains generated by LLMs themselves [32].

Gemini, introduced by Google on 6 December 2023, is a recent addition to the landscape of LLMs. It features a decoder-only architecture and is characterized by its multimodal capability to process text, images, audio, and videos [28]. Notably, it showcases exceptional performance in the domain of Massive Multitask Language Understanding (MMLU), achieving results comparable to those of the GPT-4 model [28].

2.1.3 Sentiment Analysis with Large Language Models
Multiple attempts have been made to leverage LLMs for sentiment analysis. Kheiri and Karimi explored the use of GPT-3.5 Turbo model for document-level sentiment analysis [31]. They investigated prompt-based GPT models, fine-tuned GPT models, and embedding-based GPT models. Among these approaches, their prompt-based GPT model implementation demonstrated superior performance, with accuracy rates over 90%. On the other hand, Hoang et al. [33] employed the BERT model to conduct aspect-based sentiment analysis. They developed three distinct models for aspect classification, sentiment classification, and combined aspect-sentiment classification. Their combined model achieved accuracy rates of more than 85%.
2.2 Research Gap

As shown in section 2.1.3, it is observed that there are existing research closely related to our project. However, their work primarily focused on few-shot learning, which involves training LLM with a number of samples. This presents a research gap regarding the application of LLMs for sentiment analysis within the context of zero-shot learning.

To bridge this gap, this project aims to develop a system that leverages LLM to perform aspect-based sentiment analysis, under zero-shot learning conditions. The successful implementation of the project would deliver a system that is capable of adapting to new and emerging topics in real-time, without the need for extensive pre-training on specific domains.
3. Methodology
This section explains and justifies the methodology employed in the project. Section 3.1 highlights the overall design of the system; section 3.2 elaborates the procedures involved in conducting social media research and sentiment analysis; section 3.3 introduces the dataset used for testing and evaluation.

3.1 System Design
The system was developed as a command-line program. This approach allowed for a more focused allocation of efforts, prioritizing the enhancement of core capabilities for social media research and sentiment analysis, and avoiding the complexities associated with designing and developing dedicated frontends or backends. Additionally, the use of command-line programs provides organizations with flexibility in integrating the system with their existing applications. Furthermore, it offers room for future expansions, for example enabling support for additional social media platforms as needed.

Python was chosen as the programming language for the system based on two reasons. First, Python provides access to a wide range of libraries, such as csv and pandas, that align well with the specific requirements of the project. Second, Python is widely recognized as the preferred language for data analysis and machine learning, ensuring access to a wealth of online resources and documentation.

![Figure 1. An overview of the system workflow](image-url)
Figure 1 illustrates the overall workflow of the system. First, users were prompted to input keywords of interest, which could be specific product names or other relevant terms. Then, the system would initiate social media research by collecting data related to the provided keywords. Subsequently, sentiment analysis would be performed on the collected data. Finally, the system would generate a report to present the analysis results.

3.2 Procedures
The system consists of three primary procedures for performing social media research and sentiment analysis: data collection, data analysis, and result visualization.

3.2.1 Data Collection

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Reddit</th>
<th>YouTube</th>
<th>Facebook</th>
<th>Instagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>rank [3]</td>
<td>10th</td>
<td>15th</td>
<td>3rd</td>
<td>1st</td>
<td>4th</td>
</tr>
<tr>
<td>type</td>
<td>discussion forums</td>
<td>video-sharing platform</td>
<td>social networking sites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>official API</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Table 1. Targeted social media platforms for data collection

Table 1 presents the social media platforms initially identified for data collection, namely X, Reddit, YouTube, Facebook, and Instagram. These platforms were chosen for several reasons. First, they are among the most widely used social media platforms, ensuring availability of extensive user-generated content. Second, the selection encompasses major types of social media, allowing the collection of diverse content from different platforms. Third, each of the chosen platforms provides official APIs for reliable and efficient access to their data.
Figure 2. API plans for accessing X’s data [33]

Figure 3. “Page Public Content Access” permission required to access Meta’s data [34]
Figure 4. Quota system for accessing YouTube’s data [35]

However, in the final implementation of the system, only Reddit was utilized as the source for data collection. The implementation for the other platforms was prevented by certain obstacles. In the case of X, although an official API is available, it comes with a significant cost of US$100 per month for read access to its data, as depicted in Figure 3. Considering the project’s budget of HK$2,000, utilizing the API was not feasible due to financial constraints. Regarding Facebook and Instagram, Meta provides official APIs for both platforms, but accessing their public data requires obtaining the “Page Public Content Access” permission, as shown in Figure 3. Unfortunately, obtaining this permission had proven to be challenging. As for YouTube, an affordable and accessible official API does exist. However, its usage is constrained by a quota cost of 10,000 units, as shown in Figure 4. For instance, searching for relevant videos incurs a cost of 100 units [35]. Such limitation restricts the amount of data that can be collected from the platform. While web scraping could potentially address the challenges posed by these platforms, it is explicitly stated in their terms of service that such a practice is prohibited [33, 34, 35].

Nevertheless, by focusing solely on Reddit, the implementation was streamlined and ensured consistency throughout procedures. Furthermore, in addition to the keywords of interest, the final implementation allowed users to specify a particular subreddit page from which the
system would collect data from. Consequently, the collected data became more relevant and directly applicable to the desired subject matter.

During data collection, the primary focus was on extracting the textual content of relevant posts or comments, regardless of the availability of other data types such as images and videos. This is to align with the subsequent analysis, which primary revolves around text-based content. However, due to the vast amount of content available on Reddit, it would be impractical to collect all available data relevant to the provided keywords. To strike a balance between computational feasibility and data comprehensiveness, the system limited the number of data instances collected to a maximum of 5,000.

Following the data collection process, the collected data was stored in Comma-Separated Values (CSV) files. This file format was chosen for its ease of retrieval and compatibility with subsequent procedures.
3.2.2 Data Analysis
The collected data then underwent analysis using LLMs. Following the approach proposed by Hoang et al. [33], this analysis procedure was divided into three distinct stages: aspect identification and classification, aspect-based sentiment analysis, and aspect-based summarization. CSV files were utilized as a means to transfer results between stages.

3.2.3.1 Aspect Identification and Classification

![Figure 5. Workflow for aspect identification and classification](image)

In this stage, aspects within the pre-processed data was identified, and the data was classified based on these identified aspects. The overall flow for this stage is illustrated in Figure 5. First, the data was structured into a suitable prompt and input into a LLM for aspect identification. The identified aspects were then utilized to structure another prompt, subsequently fed into a separate instance of the LLM for aspect classification.

Due to the limitations on input prompt length for LLMs, the described process was executed in batches of 50 data instances. In each batch, all 50 data instances were used to structure the prompt for aspect identification. However, for the prompt used in aspect classification, the batch was further divided into groups of 5. This setup resulted in the best accuracies during testing, as it allowed the LLM to conduct classification with greater focus and manageability. Moreover, to ensure consistency and avoid variations in the wording of the same aspect
across different batches of data, the identified aspects from previous batches were included as references in the prompt for aspect identification.

Following the guide provided by Li and Liang [31], the prompts were optimized to include clear instructions, relevant context, example implementation, input data, and an output indicator. Below are the prompts used for aspect identification and classification respectively:

"You are analysing comments collected regarding `{keywords}` from the subreddit page `{subreddit}`. Given the following comments, identify the key aspects that are most frequently mentioned. The aspects can and are preferred to be general categories. The output should be a list of strings, each enclosed in quotation marks. For example, given the comments ['pasta needs more flavour', 'pasta is too soft', 'pasta is too expensive', 'floor is dirty'], the output should be ['food', 'pasta', 'price', 'environment']. Please ensure the output is in this format only. Here are some previously identified aspects for your reference: {identified_aspects}. It is preferred to reuse these aspects, but feel free to introduce new ones if necessary. The comments for analysis are as follows: {comments}.

"You are analysing comments collected regarding `{keywords}` from the subreddit page `{subreddit}`. Given the following comments and a list of identified aspects, assign the most relevant aspect(s) to each comment. A comment can be associated with multiple aspects if it covers more than one aspect. The output should be a list of tuples, where each tuple contains the comment's corresponding aspect(s). If there is no aspects to be assigned, leave the aspects part as an empty list. For example, given the identified aspects ['food', 'price', 'environment', 'water'] and the comments ['pasta needs more flavour', 'too expensive', 'I love the ambiance', 'the pasta needs more flavour and is too expensive', 'nice music'], the output could be [('pasta needs more flavour', ['food']), ('pasta is too expensive', ['price']), ('I love the ambiance', ['environment']), ('the pasta needs more flavour and is too expensive', ['food', 'price']), ('nice music', [])]. Please ensure the output is in this format only. The identified aspects are: {aspects}. The comments for analysis are as follows: {comments}.

Based on the research by Kheiri and Karimi [31], the GPT model was initially selected as the LLM of choice to extend their implementation from document-level sentiment analysis to aspect-based sentiment analysis. However, it was subsequently discovered that direct access to GPT services from Hong Kong was not officially supported. While this was temporarily
addressed with the use of a virtual private network (VPN), the access to GPT services was once blocked again when it became necessary to provide payment information, specifically a foreign credit card, after the expiration of the free trial period. Consequently, Gemini was utilized as the chosen LLM in the final implementation. Although a VPN was still necessary to establish access to Gemini services, the services were free of charge and did not require a foreign credit card for usage.

3.2.3.2 Aspect-based Sentiment Analysis

<table>
<thead>
<tr>
<th>Sentiment</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>0</td>
</tr>
<tr>
<td>Neutral</td>
<td>1</td>
</tr>
<tr>
<td>Negative</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 2. Scores assigned to each sentiment

Once the data was categorized into the identified aspects, the next stage involves classifying them into specific sentiments related to their respective aspects. This was accomplished by assigning scores to data based on their underlying sentiment, determined by the LLM’s understanding of the context, language, and structure of the data. This approach takes inspiration from encoder-based models that are proficient in performing sentiment analysis [6]. The multiclass format was employed to differentiate between positive, neutral, and negative sentiments. Table 2 provides an overview of the scores assigned to each sentiment.

The following prompt was formulated and input into the LLM to perform the above task:

“You are analysing comments collected regarding ‘{keywords}’ from the subreddit page '{subreddit}'. Given a list of comments and a specific aspect, perform sentiment analysis on the comments with respect to the given aspect. The sentiment should be classified as positive, neutral, or negative. Assign a numerical label to each sentiment: 2 for positive, 1 for neutral, and 0 for negative. The output should be a list of these numerical labels, in the same order as the provided comments. For example, given the aspect ‘pasta’ and the comments [‘pasta
needs more flavour’, ‘pasta is too expensive’, ‘I love the ambiance’, ‘pasta needs more flavour and is too expensive’, ‘nice music’, ‘taste delicious’], the output should be [0, 1, 1, 0, 1, 2]. Note that comments not relevant to the aspect should be labeled as ‘neutral’ (1). Comments that are satisfactory towards the current state shall be classified as positive. Beware of the use of sarcasm within the comments too. The given aspect is: {aspect}. The comments for analysis are as follows: {comments}.

For the same reasons elaborated in section 3.2.3.1, Gemini was employed as the LLM of choice for this stage.

3.2.3.3 Aspect-based Summarization

Following the sentiment analysis performed on individual data, the results were aggregated and summarized to provide aspect-based insights. The overall flow of this state is depicted in Figure 6. The first step involved filtering out non-essential data by utilizing an appropriate prompt and an instance of the LLM. This process facilitates the extraction of aspect-specific sentiments. Subsequently, another prompt and a separate instance of the LLM were employed to generate a summary of the sentiment associated with each aspect.

In addition to the sentiment analytics, the system also extracted key points from the data during the summarization procedure to provide a comprehensive result. This involved
identifying prevalent positive and negative viewpoints expressed within the data, as well as any suggested advice for improvement. The summarization capabilities of the LLMs were leveraged to generate concise and informative summaries. The elements were formatted in bullet points instead of paragraphs to enhance readability.

The following prompts were utilized for data filtration and aspect summarization respectively:

“You are analysing comments collected regarding '{keywords}' from the subreddit page '{subreddit}'. You are preparing to include certain comments in a subsequent market report. The collected comments have been categorized into various aspects, and you are currently examining the aspect {aspect}. From the provided comments, you need to select the ones that you deem important and valid for further analysis and inclusion in the report. Label the comments you wish to analyze later with 1, and the rest with 0. Return the results as a list of labels. For example, if the comments were ['pasta needs more flavour', 'pasta is too expensive', 'I love the ambiance', 'pasta needs more flavour and is too expensive'] and you consider the first and fourth comments as important, return [1, 0, 0, 1]. You must only provide the required format (the list) without any explanations. The comments for analysis are as follows: {comments}.

“You are analysing comments collected regarding '{keywords}' from the subreddit page '{subreddit}'. Focus specifically on the aspect: '{aspect}'. When comments contain multiple aspects, extract and include only the information pertinent to the aspect in focus. In other words, ignore other aspects as they will be covered in other paragraphs written later. The comments will be presented in a list format. Your objective is to synthesize a comprehensive report based on these comments, highlighting the predominant sentiments, suggestions, and requests articulated by the users. Where comments reflect both positive and negative sentiments, delineate and summarize these viewpoints distinctly. Delve into the context and subtleties within the comments to unearth valuable insights that may inform future strategies or decisions. The comments for analysis are as follows: {comments}.
3.2.4 Result Visualization

The results obtained from the data analysis procedure were presented using suitable visualization and exports as a Portable Document Format (PDF) file.

For textual information, such as prevailing viewpoints, suggestions, and other insights, they were presented as obtained from the previous procedure. As for statistical data, including the frequency distributions of aspects and the sentiment ratios, they were visualized using Matplotlib to create appropriate diagrams and charts.

To combine all the elements together and export them as a report, FPDF was utilized. The library was chosen for its versatility and its ability to support Markdown and HyperText Markup Language (HTML), enabling customization options.

3.3 Testing and Evaluation

To evaluate the performance of the utilized prompts as well as LLM, data collected from Reddit relevant to World of Warships was utilized for testing. It is a player-versus-player game that has generated substantial debates concerning the concept of “game balance”, which refers to the fairness and equilibrium of power among different warships in the game. Discussions found on Reddit provided clear definitions of the aspects, corresponding to the specific warships under discussion, as well as the stance, indicating whether the warship is perceived as too strong or weak. This clarity in the dataset allows for a straightforward quantification and assessment of the system’s performance. In each test, 100 data instances were randomly selected from the resulting CSV files and subjected for evaluation.
4. Results and Discussion

This section presents and discusses the results of the project. Section 4.1 discusses those regarding data collection; section 4.2 discusses those regarding data analysis; section 4.3 presents those regarding result visualization.

4.1 Data Collection

![Sample CSV file](image)

Figure 7. A sample CSV file with data collected from Reddit

Regarding data collection, the system was able to collect relevant posts and respective comments from Reddit, based on the user-provided keywords and, if applicable, a specific subreddit. Figure 7 shows an example of the resulting CSV files. At this stage, the CSV files only consist of the “Text” column, which represents the textual content of the relevant posts and comments.

The data collection process was efficient, typically requiring less than three minutes to gather thousands of data instances. This promptness could be attributed to the utilization of the official Reddit API, along with the Python Reddit API Wrapper (PRAW) library that streamlined the interaction between the system and the API.
4.2 Data Analysis

4.2.1 Aspect Identification and Classification

Using the collected data, the system was able to first identify aspects within the data, and then classify the data into the identified aspects. Figure 8 provides an example of the resulting CSV files, with data collected from the previous procedure and classified into the identified aspects. These files consist of an additional column “Aspects”, which lists the aspects identified from the corresponding post or comment.

The system required around 30 minutes for every 1000 comments during the procedure, and achieved an accuracy rate of 0.8649 for this task. It is worth noting that most inaccuracies occurred due to the LLM generating generic outputs. One particular scenario involved comments mentioning multiple ships in the game. In such cases, the LLM tended to classify the comment under the broad aspect of 'warships' instead of recognizing and categorizing each individually mentioned warship.

The accuracy was tested against an alternative using the facebook/bart-large-mnli model, which is an encoder-based model specifically designed for zero-shot classification. However, the accuracy achieved by this alternative model was only 0.3514, significantly lower than that by Gemini. This discrepancy in performance can be attributed to several factors. Firstly, the encoder-based model demonstrated a strong bias towards exact wordings, resulting in
numerous false classifications. Additionally, the alternative model struggled with capturing some abbreviations, leading to the omission of many aspects during the classification process. While it is possible that these issues could be mitigated through further fine-tuning of the encoder-based model, it is important to highlight the advantages of LLMs in this context, in particular their ability to generalise information and comprehend text beyond exact wordings.

4.2.2 Aspect-based Sentiment Analysis

With the data classified into the identified aspects, the system was able to assign a sentiment score to each aspect of the data. Figure 9 illustrates a resulting CSV file from this procedure. These files include an additional column labelled “Sentiments”, which lists the sentiment scores assigned to each classified aspect of the data.

During manual evaluation, it was observed that the performance of the sentiment analysis results varied depending on the nature of the aspect being analyzed. On controversial topics characterized by a high volume of arguments and complaints, the system achieved a higher accuracy of 0.8461. However, on less controversial topics where comments tended to be more neutral or the sentiments expressed are less polarized, the accuracy of the system degraded to a range of 0.5 to 0.7.
The performance degradation can be attributed to the inherent complexity of aspect-based sentiment analysis. For instance, comments that exhibit mixed sentiments can pose challenges. An example comment like "Glad that I bought an RTX4090 before its price skyrocketed" contains both positive sentiment, expressed by “glad”, and a hint of dissatisfaction related to the price increase. Such mixed sentiments can make aspect-based sentiment analysis difficult, even for human evaluators. It was observed that these comments with mixed sentiments were more prevalent in less controversial topics, leading to a lower accuracy in sentiment analysis for these topics.

4.2.3 Aspect-based Summarization

In the final stage of data analysis, the system was able to generate summaries for the identified aspects. These summaries included prevailing positive and negative viewpoints, suggestions and requests, as well as any additional insights generated by Gemini. Figure 10 provides an example of an aspect summary generated by the system.
4.3 Result Visualization

In the result visualization procedure, the system was able to generate appropriate visualizations to present the required statistical data. These visualizations included a pie chart illustrating the frequency distribution of the identified aspects, as well as bar charts illustrating the sentiment ratios associated with each aspect.

![Pie chart illustrating frequency distribution and bar charts illustrating sentiment ratios](image1)

Figure 11. A sample overview page in a generated report

![Bar chart illustrating sentiment ratios](image2)

Figure 12. A sample summary page in a generated report
Subsequently, these visualizations were combined with other textual results from the data analysis procedure, creating a report in PDF format. A report consists of the following pages:

1. Cover page
2. Overview
3. Table of Contents
4. Summary pages for the 10 most mentioned aspects
5. Future Works

This section presents areas for improvement of the system in future work. Section 5.1 focuses on enhancing data collection; section 5.2 discusses improvements regarding the use of offline models; section 5.3 addresses enhancing the depth of analysis.

5.1 Improved Data Collection

In the current implementation, users are prompted to input keywords of interest, and optionally specify a subreddit from which the system collects data. If a specific subreddit is provided, the system collects data in the order of “hot”, which is suitable for the data analysis procedure. However, when data is collected from all subreddits, it is ordered by “relevance”. This ordering by relevance may result in collected data that could be outdated, which is undesirable for insightful data analysis.

To address this limitation, a potential enhancement would be to dynamically identify the most relevant subreddit based on the provided keywords. One approach is to analyze the top posts and identify the subreddit that appears most among these posts. Another approach is to utilize a LLM and determine the most relevant subreddit. With this improvement, the system can ensure that the collected data remains both relevant and up to date.
5.2 Use of Offline Models

![Internal Server Error](https://developers.generativeai.google/guide/troubleshooting)

Figure 14. An internal server error occurred when using Gemini

During the development of the system, the use of Gemini through its online services revealed instability, with frequent interruptions and timeouts. Figure 7 shows one such example, where Gemini’s services experienced timeouts during peak usage hours. These interruptions raised significant concerns regarding the reliability and performance of the system. To overcome these challenges, incorporating offline models is a logical solution. In addition to the freedom from connectivity issues, this approach also brings the benefit of avoiding potential future charges associated with online services. Moreover, offline models can be easily fine-tuned to better align with the system's requirements and offer improved performance. Furthermore, the synthesis of different models can be explored to further enhance the system's accuracy and efficiency.
5.3 Depth of analysis

In the current implementation, only the textual content of the comments are collected and used for analysis. However, it is crucial to recognize that other information, such as the number of likes, can also be easily collected, as demonstrated in Figure 15. Incorporating this additional information is essential for uncovering more accurate sentiments. For instance, a comment receiving a substantial number of likes indicates widespread agreement with the expressed opinion. By incorporating these supplementary details, a more comprehensive and accurate analysis can be achieved.

![Figure 15. Collecting textual content and rating of relevant comments](image)
6. Conclusion

The vast amount of user-generated content on social media offers organizations a valuable resource for collecting user feedback and public sentiment. However, the conventional manual approach can be impractical, and existing approaches to sentiment analysis have shown limitations, particularly in understanding human language accurately. Hence, this project aims to address these challenges, by developing a system to automate the process of social media research and to perform aspect-based sentiment analysis using state-of-the-art LLMs.

The system was completed with the utilization of Reddit and Gemini, and it was capable of great performances. The successful implementation of the system not only offers organizations with a valuable tool to conduct social media research and sentiment analysis, but also contributes to the broader understanding of LLMs and their capabilities.
VII. References

[29] BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension

