MARKET MANIPULATION DETECTION USING SUPERVISED LEARNING

Project Supervisor Dr. Liu Qi, Assistant Professor of Computer Science **Second Examiner** Dr. Zou Difan, Assistant Professor of Computer Science

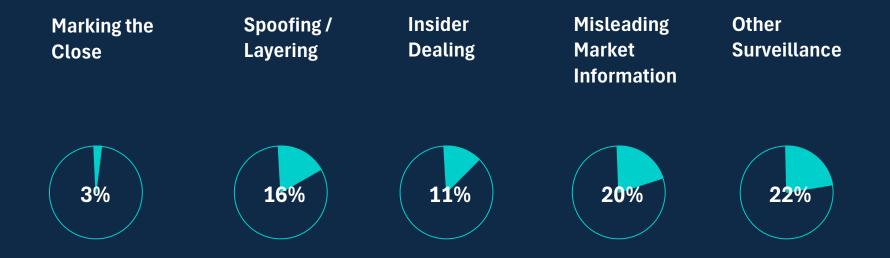
Group Members Ho Megan Qian Hua (3035832749) Li Wo Him (3035783986) Tsang Hoi Wei (3035785879)

18 April 2024

Table of Contents

01 BACKGROUND & MOTIVATION

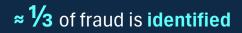
Spectrum of Market Manipulation is **Diversified**



% of number of Global Incidents

There is still a **Detection Gap** in Financial Fraud

≈ ²/₃ of fraud is NOT identified



Impact in 2021:

- ≈10% of large publicly traded companies engaged in fraud
- **≈\$830 billion** in losses

The early researchers (Allen and Gale, 1992) conducted pioneering studies on stockprice manipulation.

Action-based

Information-based

Trade-based

The early researchers (Allen and Gale, 1992) conducted pioneering studies on stockprice manipulation.

Action-based

Information-based

Trade-based

Action-based

Information-based

In 2017, a group of researchers have made further investigations on the problem statement and transformed theoretical perspectives into practices.

"Daily and tick real time trading stock data in evaluate those supervised machine"

(Aihua, Jiede, Zhidong, 2017)

Action-based

Information-based

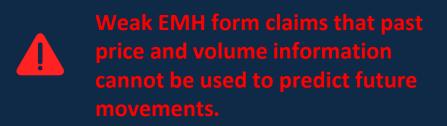
In 2017, a group of researchers have made further investigations on the problem

statement and transformed theoretical perspectives into practices.

Action-based

Information-based

In 2017, a group of researchers have made further investigations on the problem statement and transformed theoretical perspectives into practices.



Best solution: Looked into more financial indicators rather than price ticks

Researchers mentioned the consideration of factors such as:

Best solution: Looked into more financial indicators rather than price ticks

Researchers mentioned the consideration of factors such as:

"Size of company, ratios, liquidity of stock, status of information clarity, and structure of shareholders "

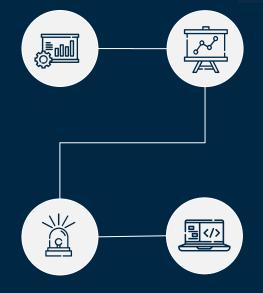
(Fallh and Kordlouie, 2011)

02 METHODOLOGY

Methodology Overview

Model Building

- Support Vector Machines
- Decision Trees
- Naïve Bayes
- Logistic Regression



Threshold Detection

 Flagging suspicious activities

Webpage Development

Historical Data Analysis

Analyse **companies** involved

in stock manipulation

Display empirical results

There are 6 STEPS in this part.

How do we collect data?

Step 1/6: The labelled data (with or without market manipulation) is obtained from https://global-csmar-com.eproxy.lib.hku.hk/ CSRC's Enforcement Actions.

Timeframe

The latest amendment of security law for Shanghai Stock Exchange and Shenzhen Stock Exchange happened in 2019.

Raw Data

Total of 2781 Samples 1508 Negative Samples & 1273 Positive Samples

Eyeball Observation

It <u>seems like a balanced dataset</u> upon initial data collection.

How do we collect data?

Step 1/6: The **labelled data** (with or without market manipulation) is obtained from <u>https://global-csmar-com.eproxy.lib.hku.hk/</u> CSRC's Enforcement Actions.

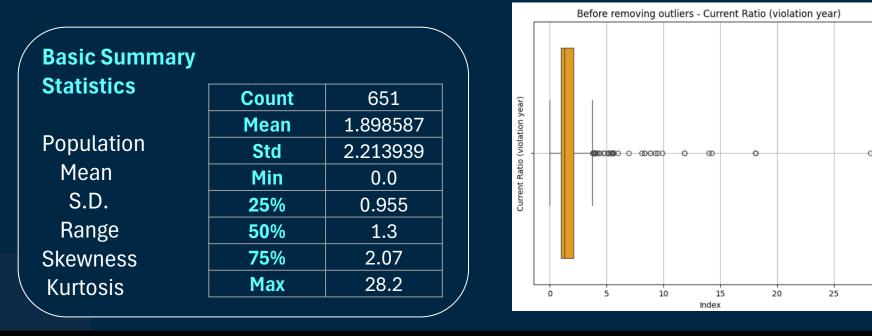
Stock	Violation Date	Violation Type	[Other Irrelevant Fields]	Market Manipulation?
0001	03 May 2020, 12 July 2020	Α		YES
0002	20 October 2021	A		NO
0003	19 January 2020	В		YES
0004	02 May 2022, 9 May 2022	В		YES

How do we process data?

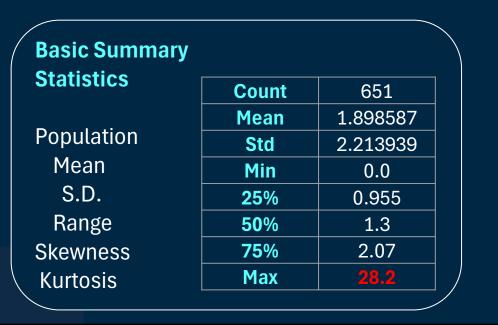
Violation may or may not be market manipulation.

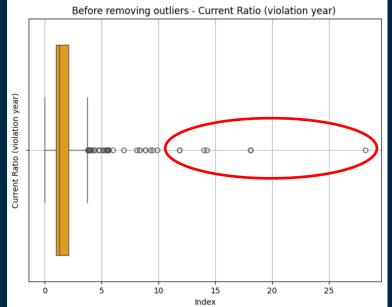
Stock	Violation Date	Violation Type	[Other Irrelevant Fields]	Market Manipulation?
0001	03 May 2020, 12 July 2020	Α		YES
0002	20 October 2021	А		NO
0003	19 January 2020	В		YES
0004	02 May 2022, 9 May 2022	В		YES

Step 2/6: Examining & summarizing data to gain, identify patterns, detect anomalies.



Step 2/6: Examining & summarizing data to gain, identify patterns, detect anomalies.



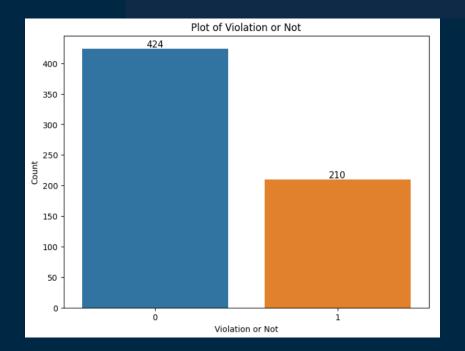


Step 2/6: Examining & summarizing identify NaN values, detect anomalies.

The bar chart shows number of positive and negative samples.

Check whether additional steps is necessary for **imbalanced dataset**.

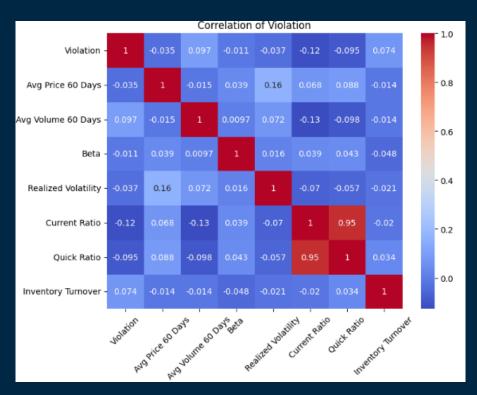
**Before removing outliers – 651 samples
** After removing outliers – 634 samples



Step 2/6: Examining & summarizing data to gain, identify patterns, detect anomalies.

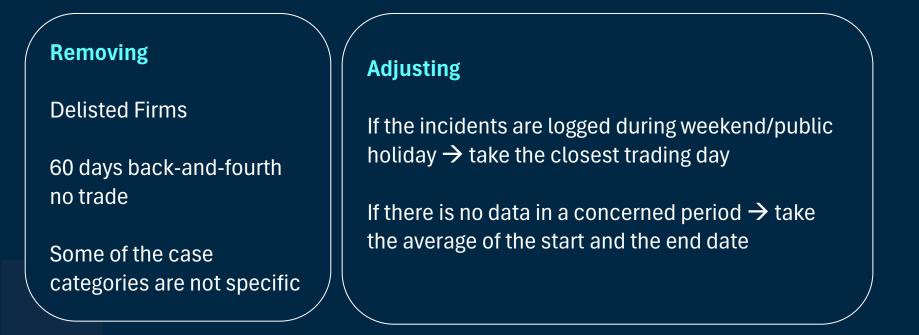
According to the heatmap, there are **weak correlations** among all features.

It may favour the model training of Naïve Bayes Model.



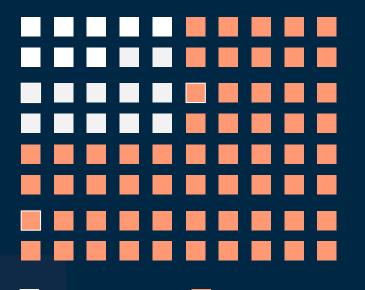
How do we process data?

Step 3/6: Removing and adjusting data according to the condition below



How do we process data?

2020 – 2022 Data



Stock	Violation	Violation	Market
	Date	Type	Manipulation?
			YES / NO

Step 4/6: Choose cases from 2020, 2021, and 2022 (focused on case P2512 – Illegal Stock Trading), 651 cases in total

Labelled as **YES** Labelled as NO

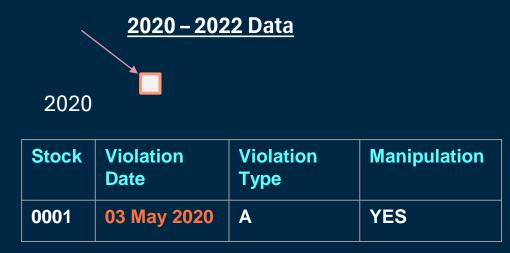
VWAP (Volume-Weighted Average Price) Analysis

VWAP Level (±60 days)

03 May 2020

Stock	Violation Date	Violation Type	Manipulation
0001	03 May 2020	Α	YES

- 1. Average price change 60 days before and after the manipulation date
- 2. Average volume change 60 days before and after the manipulation date



- 1. Average price change 60 days before and after the manipulation date
- 2. Average volume change 60 days before and after the manipulation date

3. Inventory turnover

Inventory turnover

= Cost of Goods Sold Average Price of Inventory

Indicates liquidity

- Higher ratio = More efficiently manage inventory
- Better performance -> Affect
 investment decision

Stock	Violation Date	Violation Type	Manipulation
0001	03 May 2020	Α	YES

- 1. Average price change 60 days before and after the manipulation date
- 2. Average volume change 60 days before and after the manipulation date

3. Inventory turnover

4. Beta

 $\beta_{i} = \frac{Covariance(r_{i}, r_{m})}{Variance(r_{m})}$ $\beta_{i} = market \ beta \ of \ asset \ i$ $r_{i} = expected \ return \ on \ an \ asset \ i$ $r_{m} =$ $average \ expected \ rate \ of \ return$ $on \ the \ market$

Stock	Violation Date	Violation Type	Manipulation
0001	03 May 2020	Α	YES

- 1. Average price change 60 days before and after the manipulation date
- 2. Average volume change 60 days before and after the manipulation date

3. Inventory turnover

4. Beta

5. Realized Volatility

- Measure by standard deviation on logarithmic return
- Higher volatility = Higher risk and uncertainty
- More susceptible to market manipulation

Stock	Violation Date	Violation Type	Manipulation
0001	03 May 2020	Α	YES

- 1. Average price change 60 days before and after the manipulation date
- 2. Average volume change 60 days before and after the manipulation date

3. Inventory turnover

4. Beta

5. Realized Volatility

6. Current Ratio

7. Quick Ratio

 $Current Ratio = \frac{Current Asset}{Current Liability}$ $Quick Raio = \frac{Cash \& Equivalents}{Current Liability}$

How do we train the model?

Step 6/6: Run each record once and train learning models in pipeline

Stock	Violation Date	Violation Type	Manipulation
0001	03 May 2017, 12 July 2017	Α	YES
0002	20 October 2019	Α	NO
0030	05 March 2012	E	YES

How do we train the model?

Step 6/6: Predict whether it involves market manipulation or not

1: Stock Manipulation

0: No Stock Manipulation

03 RESULTS & DISCUSSION

Building Machine Learning Models

Common Settings

- Current training size : current testing size = 3 : 1
- Use of Standard Scaler
- K-Fold Cross Validation, k = 10

Select 4 Models

- 1. Decision Trees
- 2. Naïve Bayes
- 3. Support Vector Machines
- 4. Logistic Regression

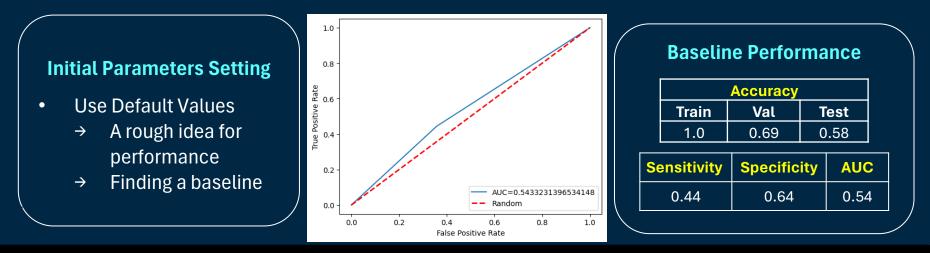
Evaluation

- By accuracy
- By sensitivity, specificity
- By ROC curve and AUC

Model 1/4 – Decision Tree

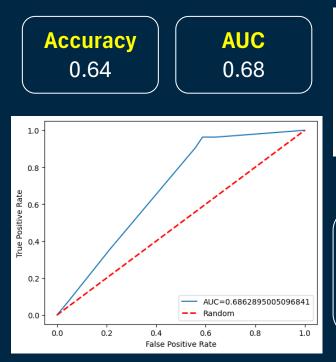
Parameters

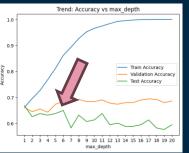
- Criterion determines the quality of a split
- Max_depth Maximum depth of the tree
- Min_samples_split Minimum number of samples required to split an internal node
- Min_samples_leaf Minimum number of samples required to be at a leaf node

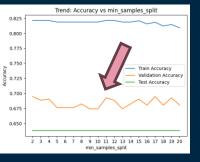


Model 1A/4 – Single Decision Tree

•



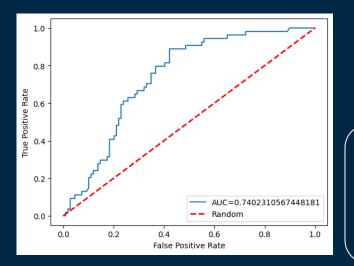


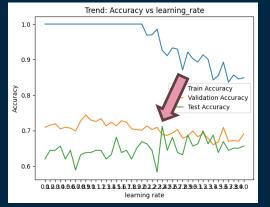


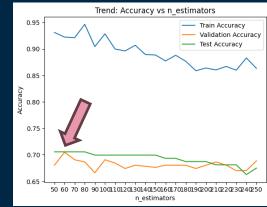
- **Fair performance in terms of accuracy and AUC.**
- Test if performance can be further improved by implementing boosting and random forest classifiers.

Model 1B/4 – Adaboost Classifier

Accuracy
0.71AUC
0.74





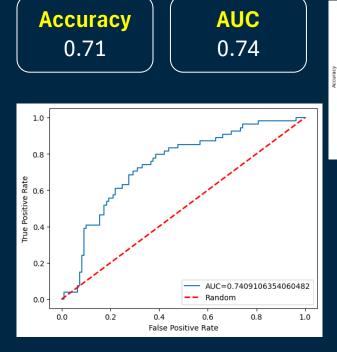


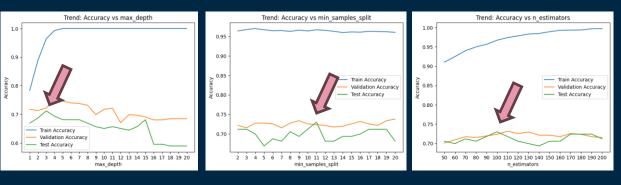
- High accuracy and AUC, showing that the model can classify majority of data correctly.
- **0.61 sensitivity and 0.75 specificity, showing that the model's true positive and negative rate is close and balanced.**

Background & Motivation | Methodology | Results & Discussion | Challenges & Mitigation Plans | Future Plans & Conclusion

•

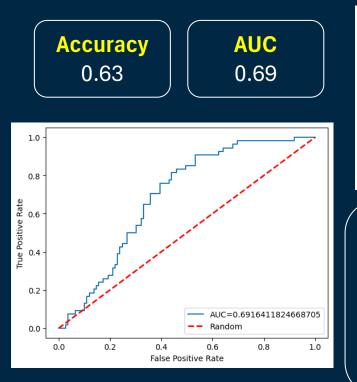
Model 1C/4 – Gradient Boosting Classifier

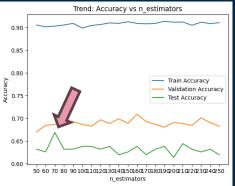




- High accuracy and AUC, showing that the model can classify majority of data correctly.
- 0.5 sensitivity and 0.84 specificity, showing that the model has room of improvement in detecting true positive.

Model 1D/4 – Random Forest Classifier





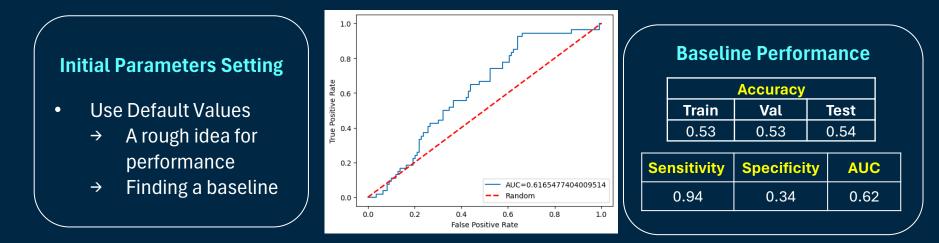
Accuracy				AUC
Train	Val		Test	
0.91	0.68		0.63	0.69
Sensitivity		Spe	cificity	F1 score
0.33		C).79	0.38

- Lack of accuracy might be due to the insufficient data and features.
- **Sensitivity** is low, more likely to miss identifying the positive samples when it is present.
- Low F1-score shows the model has a high false positive or negative rate.

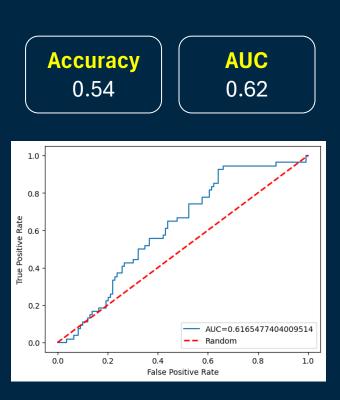
Model 2/4 – Naïve Bayes

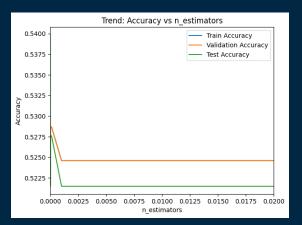
Hyperparameters

- Priors Prior probability assigned to different classes
- Smoothing parameter handling the issue of zero probability when measuring variance



Model 2/4 – Gaussian Naïve Bayes





	Accuracy	
Train	Val	Test
0.53	0.53	0.54

Sensitivity	Specificity	AUC
0.94	0.34	0.62

- **Priors and smoothing parameter have no significant effect on the model's performance.**
- Given there's only weak correlation between features, it is possibly caused by insufficient data, or irrelevant features.

Model 3/4 – Support Vector Machine (SVM)

Hyperparameters

- Kernel type determines the linearity of the relationships
- Regularization (C) control by maximizing margin & minimizing classification error
- Gamma determines the influence of individual samples on decision boundary

```
print("Best: %f using %s" % (clf.best_score_, clf.best_params_))
```

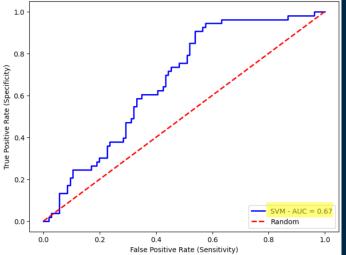
Initial Parameters Setting

- Use RandomizedSearchCV
 - → Computational power
 - → Better coverage of hyperparameter space

Model 3A/4 – Support Vector Machine (SVM)

Accuracy 0.62 **AUC** 0.67

Receiver Operating Characteristic (ROC) Curve



Fold 1:	Train	Accuracy:	0.5667,	Validation	Accuracy:	0.5417
Fold 2:	Train	Accuracy:	0.6042,	Validation	Accuracy:	0.6250
Fold 3:	Train	Accuracy:	0.6487,	Validation	Accuracy:	0.6667
Fold 4:	Train	Accuracy:	0.5878,	Validation	Accuracy:	0.6875
Fold 5:	Train	Accuracy:	0.5761,	Validation	Accuracy:	0.6042
Fold 6:	Train	Accuracy:	0.5888,	Validation	Accuracy:	0.6383
Fold 7:	Train	Accuracy:	0.5794,	Validation	Accuracy:	0.4681
Fold 8:	Train	Accuracy:	0.5724,	Validation	Accuracy:	0.5532
Fold 9:	Train	Accuracy:	0.6308,	Validation	Accuracy:	0.7660
Fold 10	: Trair	Accuracy	0.6519	, Validatio	n Accuracy:	0.5957
Average	train	accuracy:	0.600697	71043358358		
Average	valida	ation accur	racy: 0.0	5 <mark>146276</mark> 59574	14681	
Test se	t accur	racy: 0.610	53522012	578616		

0.5417	SVC(C=10,	gamm	na=0.1	, ker	nel='sig	(moid')		
0.6250	Sensitivit	:y: 0	.43					
0.6667	Specificit	:y: 0	.71					
0.6875	Accuracy:	0.62						
0.6042	F-score: @).43						
0.6383			preci	sion	recal	l f1-	score	support
0.4681								
0.5532		0		0.71	0.7	1	0.71	106
0.7660		1		0.43	0.4	3	0.43	53
0.5957								
	accura	асу					0.62	159
	macro a	avg		0.57	0.5	7	0.57	159
	weighted a	avg		0.62	0.6	2	0.62	159

- Lack of accuracy might be due to the imbalanced datasets.
- Sensitivity is low, more likely to miss identifying the positive samples when it is present.
- F1-score shows the model is weak in detecting the class 1 (positive samples).

Over-sampling methods to address class imbalance

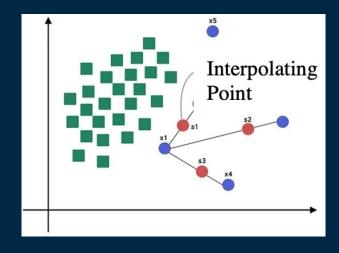
Compare TWO over-sampling methods with SVM:

1. SMOTE

 Generate synthetic samples for the minority class by interpolating between existing minority class instances

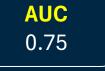
2. SVM SMOTE

- Tailored to SVM
- Focused on increasing minority points along the decision boundary



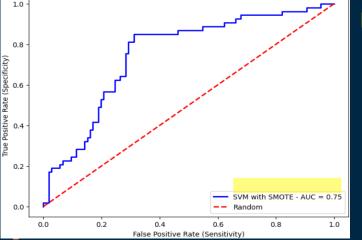
Model 3B/4 – SVM with SMOTE

Accuracy 0.72



Fold 1: Train Accuracy: 0.8566, Validation Accuracy: 0.765 Fold 2: Train Accuracy: 0.8619, Validation Accuracy: 0.656 Fold 3: Train Accuracy: 0.8671, Validation Accuracy: 0.703 Fold 4: Train Accuracy: 0.8636, Validation Accuracy: 0.672 Fold 5: Train Accuracy: 0.8654, Validation Accuracy: 0.674 Fold 6: Train Accuracy: 0.8811, Validation Accuracy: 0.562 Fold 7: Train Accuracy: 0.8821, Validation Accuracy: 0.562 Fold 8: Train Accuracy: 0.8621, Validation Accuracy: 0.714 Fold 9: Train Accuracy: 0.8621, Validation Accuracy: 0.746 Fold 9: Train Accuracy: 0.865304677870123 Average train accuracy: 0.878050795 Test set accuracy: 0.7169811320754716

56	SVC(C=0.8, gam	mma=1.0)			
62	Sensitivity: (0.72			
31	Specificity: (0.72			
50	Accuracy: 0.7	2			
19	F-score: 0.63				
25		precision	recall	f1-score	support
25					
43	0	0.84	0.72	0.77	106
60	1	0.56	0.72	0.63	53
508					
	accuracy			0.72	159
	macro avg	0.70	0.72	0.70	159
	weighted avg	0.74	0.72	0.72	159



Receiver Operating Characteristic (ROC) Curve

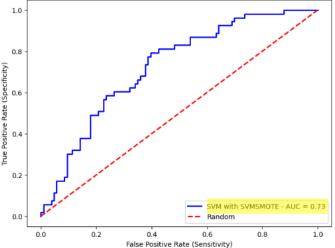
- Demonstrate a slight overfitting with higher testing accuracy.
- Higher AUC, the model has better performance in classifying positive and negative classes.
- Consistent sensitivity and specificity.

Model 3C/4 – SVM with SVMSMOTE

•

Accuracy 0.70 **AUC** 0.73

Receiver Operating Characteristic (ROC) Curve



Fold 1: Train Accuracy: 0.6731, Validation Accuracy: 0.6406 Fold 2: Train Accuracy: 0.6976, Validation Accuracy: 0.5938 Fold 3: Train Accuracy: 0.7185, Validation Accuracy: 0.6944 Fold 4: Train Accuracy: 0.6626, Validation Accuracy: 0.6948 Fold 5: Train Accuracy: 0.7343, Validation Accuracy: 0.5469 Fold 6: Train Accuracy: 0.7045, Validation Accuracy: 0.5469 Fold 7: Train Accuracy: 0.6911, Validation Accuracy: 0.6349 Fold 8: Train Accuracy: 0.7243, Validation Accuracy: 0.6349 Fold 9: Train Accuracy: 0.7016, Validation Accuracy: 0.7302 Fold 10: Train Accuracy: 0.7073, Validation Accuracy: 0.7464 Average validation accuracy: 0.635515873015873 Test set accuracy: 0.6981132075471698

6	SVC(C=0.15, ga	mma=1)			
8	Sensitivity: 0	.51			
4	Specificity: 0	.79			
8	Accuracy: 0.70				
6	F-score: 0.53				
9		precision	recall	f1-score	support
9					
0	0	0.76	0.79	0.78	106
2	1	0.55	0.51	0.53	53
60					
	accuracy			0.70	159
	macro avg	0.66	0.65	0.65	159
	weighted avg	0.69	0.70	0.69	159

- Training and Testing accuracy are consistent.
- Still lack of performance in identifying the positive samples after performing SVM SMOTE

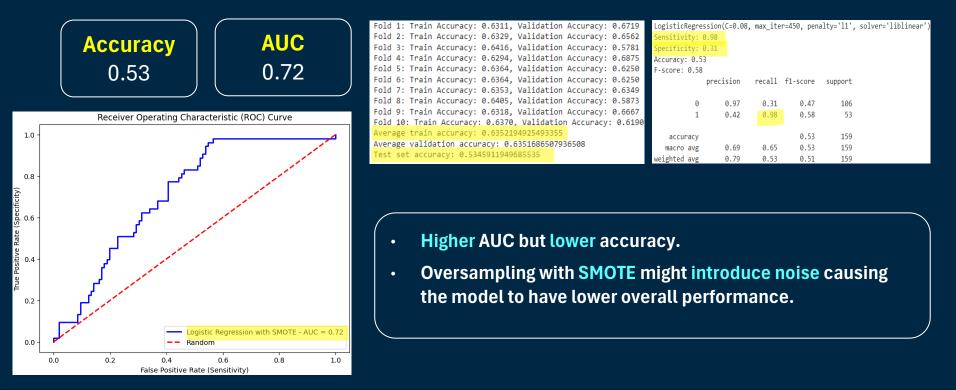
Model 4A/4 – Logistic Regression

AUC Accuracy 0.70 0.67 Receiver Operating Characteristic (ROC) Curve 1.0 0.8 Positive Rate 0 90.4 ٠ 0.2 aistic Regression - AUC = 0.70 0.0 Random 0.0 0.2 0.4 0.8 1.0 0.6 False Positive Rate

uracy: 0.6875	LogisticRegre	ssion(C=0.07,	<pre>max_ite</pre>	r=250, pena	alty='l1',	solver='liblinear'
uracy: 0.7292	Sensitivity:	0.02				
uracy: 0.6875	Specificity:	0.99				
uracy: 0.6667	Accuracy: 0.6	7				
uracy: 0.6458	F-score: 0.04					
uracy: 0.5957		precision	recall	f1-score	support	
uracy: 0.6809						
uracy: 0.6170	0	0.67	0.99	0.80	106	
uracy: 0.7660	1	0.50	0.02	0.04	53	
curacy: 0.5745						
	accuracy			0.67	159	
5	macro avg	0.58	0.50	0.42	159	
	weighted avg	0.61	0.67	0.54	159	

- **Sensitivity is 0.02 (correctly identify 2% of actual positive samples).**
- Specificity is 0.99 (correctly identify 99% of the actual negative samples).
- Very low F-score, poor in precision and recall.

Model 4B/4 – Logistic Regression with SMOTE



Summary – Model Performance

Model	Accuracy	Sensitivity	Specificity	F-score	AUC
Support Vector Machine (SVM)	0.62	0.43	0.71	0.43	0.67
SVM with SMOTE	0.73	0.72	0.72	0.63	0.75
SVM with SVMSMOTE	0.70	0.51	0.79	0.53	0.73
Single Decision Tree	0.64	0.35	0.79	0.40	0.68
Decision Tree (Gradient Boosting)	0.71	0.56	0.80	0.57	0.74
Decision Tree (Random Forest)	0.63	0.33	0.79	0.38	0.69
Gaussian Naïve Bayes	0.54	0.94	0.34	0.58	0.62
Logistic Regression	0.67	0.02	0.99	0.04	0.70
Logistic Regression with SMOTE	0.53	0.98	0.31	0.58	0.72

SVM with SMOTE is the best model

Model	Accuracy	Sensitivity	Specificity	F-score	AUC
SVM with SMOTE	0.73	0.72	0.72	0.63	0.75

Overall Performance

- The SVM with SMOTE outperforms the rest of the models with the highest accuracy and AUC.
- Balanced sensitivity and specificity in determining the true positives and true negatives.
- The high AUC demonstrated that the model is suitable for binary classification, which aligns with our dataset of detecting violated cases and non-violated cases.

04 CHALLENGES & MITIGATION PLANS

Project Challenges and Mitigation Plans

	Challenges	Description	Mitigation Plans
01	Data Collection	Financial ratio collection for each unique companies (e.g.: Average price change 60 days before and after the manipulation date)	Get data from Yahoo Finance API using Python
02 (Data Quality	Historical data inconsistency and incompleteness due to data access limitations	Perform preprocessing steps like data cleaning & standardization
03	Imbalanced Dataset	Class imbalanced can lead to biased models that favor majority classes	Apply SMOTE techniques and continuous tuning for best results
04	Model Generalization	Model might not generalize well to new and unseen data	Apply technique like cross- validation and regularization

05 FUTURE PLANS & CONCLUSION

We have **3 FUTURE PLANS** in this part.

PLAN 1/3 – Sourcing Social Media

Some types of market manipulations are largely contributed by retail investors.

Analyze the news and events with Natural Language Processing (NLP) algorithms.

PLAN 2/3 - Separate Model Training

Separate the table according to violation type and train each model to each violation type to reduce the bias brought by the treatment effect.

Violation Type ID	Violation Type Description
P2501	Fictitious Profit
P2502	Fictitious Assets
P2503	False Recordation (Misleading Statements)
P2504	Delayed Disclosure
P2505	Material Omission
P2506	Other False Information Disclosure
P2507	Fraudulent Listing
P2511	Insider Trading
P2512	Illegal Stock Trading
P2513	Stock Price Manipulation

PLAN 2/3 - Separate Model Training

Stock	Violation Date	Violation Type	Manipulation
0001	03 May 2017, 12 July 2017	P2501	YES
0002	20 October 2019	P2501	NO

Learning Model P2501

Stock	Violation Date	Violation Type	Manipulation
0003	19 January 2020	P2502	YES
0004	02 May 2014, 9 May 2014	P2502	YES

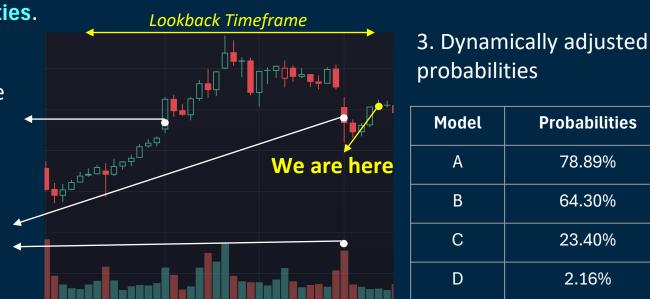
Learning Model P2502

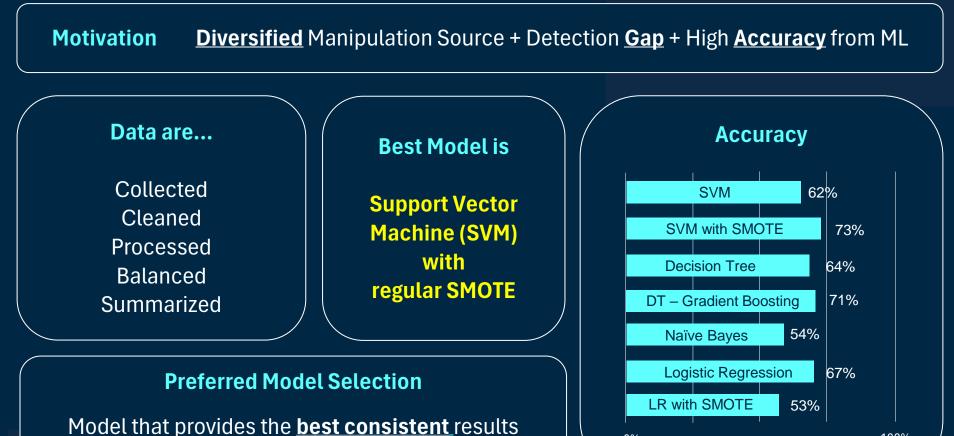
PLAN 3/3 - Anomalies Real-time Detection

By the help from the trained model, we will soon be able to provide real-time analytics. They detect strange / abnormal deviation of the parameters at a particular time and inform the related parties.

1. Higher-than-average volatility activates our models

2. Models will also flag the featured trading time slots





0%

100%

across accuracy, F-score and AUC

THANK YOU

References

- Everton Gomede, P. (2023, July 30). Synthetic minority over-sampling technique (SMOTE): Empowering AI through Imbalanced Data handling. Medium. https://medium.com/@evertongomede/synthetic-minority-over-sampling-techniquesmote-empowering-ai-through-imbalanced-data-handling-d86f4de32ea3
- Golmohammadi, K., Zaiane, O. R., & Diaz, D. (2014). Detecting stock market manipulation using supervised learning algorithms. *2014 (DSAA)*. https://doi.org/10.1109/dsaa.2014.7058109
- Liu et al. (2021). Detecting stock market manipulation via machine learning: Evidence from China Securities Regulatory Commission punishment cases. doi:https://doi.org/10.1016/j.irfa.2021.101887
- Tsipursky, Dr. G. (2023, April 12). The hidden epidemic of corporate fraud. Forbes. <u>https://www.forbes.com/sites/glebtsipursky/2023/04/11/the-hidden-epidemic-of-corporate-fraud/?sh=6c7410a16787</u>
- Tramplin, T. (2023). Market Manipulation. Retrieved from Finance Strategists: https://www.financestrategists.com/financialadvisor/business-ethics/market-manipulation/

Appendix 1

Types and values of a particular company listed in CSRC's Enforcement of Action

Column	Description	Attribute
Date	Trading date	Ordinal
Open	Daily open price	Numeric
High	Daily highest price	Numeric
Low	Daily lowest price	Numeric
Close	Daily close price	Numeric
Adj Close	Daily adjusted closing price	Numeric
Volume	Daily Trading Volume	Numeric

Appendix 2

Descriptions for common types of market manipulations (Tramplin, 2023)

Туре	Description	
Pump and Dump	Artificially boost the price of a security by disseminating false or	
	deceptive information	
Spoofing	Make fake orders in the market without execution to create a	
	false image	
Wash Trading	Buying and selling same securities at one time and create an	
	illusion of increased trading volume	
Insider Trading	Individuals access to non-disclosure trading information, leaving	
	unfair advantage to other investors	
Cornering the Market	Dominant in a security, commodity, or any financial instrument	
	to manipulate and control the price and supply	
Front-Running	Exploiting advanced knowledge of impending orders or trades	
	and earning from price fluctuations	

Appendix 3

Descriptions for underfitting and overfitting in machine learning

Underfitting	Characteristics	Overfitting
Model is not complex	Model	Model is too complex
Not Accurate	Training Dataset	Accurate
Not Accurate	Testing Dataset	Not Accurate
Increase number of features	Reduction Techniques	Reduce number of features
Increase training duration		Introduce early stopping
Increase model complexity		Reduce model complexity
Remove noise from data		Increase training data

Appendix 4 - SMOTE-Technique for Imbalanced Dataset

