
i

FITE4801 Final Year Project Interim Report

Sentiment Analysis for Finance News Headlines

Kwok Ka Tin (UID: 3035684843)

17th January 2024

ii

Abstract

Computer experts have been using artificial intelligence (AI) in the finance sector for

investments since the 1990s. While stock price prediction based on historical price data remains

one of the more popular ways to use AI, the use of Natural Language Processing (NLP) for

sentiment analysis on financial text such as financial news headlines has gained traction.

Models like FinBERT are developed for this purpose. However, most of these models are

unable to analyse the sentiment of the different entities mentioned in the headline. This paper

proposes the development of a new model that can analyse the sentiment of the different entities

separately. The data used were from the datasets FiQA Task 1 and SEntFiN 1.0. There are three

types of candidate classification algorithms that this project may choose from: Scikit-Learn

classifiers, Long Short-Term Memory (LSTM), and XLNet. The candidate models were

developed after the data goes through data preprocessing steps and a train-test split. The models

were evaluated by their accuracy and F1 score. For the first experiment, the Logistic Regression

model from Scikit-Learn is the best performing model, with an accuracy of 76%. The poor

performances of the LSTM and XLNet models can be attributed to the lack of finetuning, the

lack of understanding, and flawed word embedding methods. Therefore, by the end of February,

solutions to tackle these three problems will be executed to improve the performances of the

two models.

iii

Table of Contents
Abstract .. ii

List of Tables ... v

List of Abbreviations .. vi

1. Introduction .. 1

2. Literature Review... 2

3. Proposed Methodology .. 2

3.1 Outline of the program .. 3

3.2 Datasets ... 3

3.2.1 FiQA Task 1 ... 3

3.2.2 SEntFiN 1.0.. 4

3.3 Classification Algorithms .. 4

3.3.1 Scikit-Learn Classifiers .. 4

3.3.2 LSTM ... 4

3.3.3 XLNet .. 5

3.4 Languages and Libraries ... 5

3.5 Data Preprocessing .. 6

3.5.1 Standardizing Labels .. 6

3.5.2 Data Cleaning: Identifying and Removing Noises .. 6

3.5.3 Data Cleaning: Character Normalization ... 6

3.5.4 Word Tokenization .. 7

3.5.5 Text Vectorization ... 7

3.5.6 Train-Test Split .. 7

3.6 Evaluation Methods... 7

4. Model Experiment and Results .. 8

4.1 Cross-Validation Test .. 8

4.2 First Results of Models ... 8

iv

6. Results Discussion ... 9

6.1 No Finetuning .. 9

6.2 Lack of Understanding .. 9

6.3 Unideal Text Vectorization Techniques .. 10

7. Project Schedule... 11

8. Conclusion ... 11

References .. 12

v

List of Tables

Table 1: Mean accuracy and standard deviation of the cross validation of the 4 Scikit-Learn

classification algorithms. ... 8

Table 2: The test accuracies and F1 scores from the primary experiments of the 4 models. 8

vi

List of Abbreviations

Abbreviations Definition

AI Artificial Intelligence

NLP Natural Language Processing

BERT Bidirectional Encoder Representations from

Transformers

AE Autoencoding

AR Autoregressive

MLM Masked Language Model

LLM Large Language Model

FiQA Financial Opinion Mining and Question

Answering

LSTM Long Short-Term Memory

POS Part of Speech

NER Named-Entity Recognition

BoW Bag of Words

SVC Support Vector Classification

1

1. Introduction

Ever since the 1990s, computer experts have come up with ways to make use of artificial

intelligence (AI) for trading financial instruments in global markets [1]. Using AI for trading

can improve accuracy and efficiency as it can analyse large amounts of ever-changing market

information in real-time in minutes, replacing the old method of manual research which can

take weeks [2]. However, trading with AI is not without its weaknesses. Since AI is heavily

dependent on the training data it receives. When the historical training data does not fit with

the current market conditions, AI cannot predict the trends correctly and produce outdated

decisions [2]. Since past results can only reflect how the market reacts to previous external

events, it cannot ensure how it would behave under current conditions and events.

Therefore, instead of predicting trends by analysing past data, predicting market reactions by

analysing current events seems to be a better idea. Current events are often expressed textually

in financial news or reviews. To analyse these textual data, sentiment analysis or opinion

mining can be used. Sentiment analysis is the method of classifying the opinions of an author,

usually either positive or negative, by analysing the texts the author wrote [3]. If the news

expresses positive attitudes towards a stock, it can raise the collective confidence of investors,

which will lead to better performance of the stock [4].

While any individual investor or financial analyst can scrutinise finance news and reviews and

classify them by their “positiveness”, going through the vast amount of news and reviews

published by different media outlets and stock companies would be a strenuous task. Besides,

human classification will risk human bias and ineptness if the analyst is inexperienced [5].

Therefore, AI, which as previously mentioned can predict with better accuracy and efficiency,

can also be adopted here. This can be achieved by Natural Language Processing (NLP), which

is a combination of AI and computational linguistics, to let computers read and understand

human language and textual data [6]. This project aims to create an NLP model that can predict

the trend of a certain stock by performing computational sentiment analysis on financial news

headlines.

The rest of this progress report is structured as follows: Section 2 discusses previous attempts

at applying sentiment analysis and artificial intelligence to the finance sector. Section 3

describes the proposed designs and methods that will be used to develop the sentiment analysis

program. Section 4 suggests some expected results of the proposed methodology and discusses

2

some foreseeable challenges during development. Finally, Section 5 concludes this progress

report with a summary of the entire report.

2. Literature Review

“FinBERT” is an existing sentiment analysis model developed for financial news sentiment

analysis. It is developed by Araci and it is based on a language model named BERT

(Bidirectional Encoder Representations from Transformers) [7]. BERT is an autoencoding (AE)

language analysis model. As its name suggests, it can comprehend text bidirectionally as

compared to autoregressive (AR) language models like GPT (Generative Pre-trained

Transformer), which can only read text unidirectionally [8]. BERT achieves its bidirectionality

by using a masked language model (MLM) that replaces some words from the input with a

masked token. The model then attempts to predict the masked words based on the words around

them [9]. When FinBERT was published in 2019, it claimed that it outperformed the best NLP

models by a significant margin at that time. However, it has been 4 years since FinBERT was

introduced and new language models were also introduced during these years, such XLNet,

which is said to outperform BERT in several text classification tasks, including sentiment

analysis [10]. BERT is also revealed to have disadvantages. The use of MLM corrupts input

data and information will be lost. BERT also assumes all masked tokens are independent,

which might be problematic if many of the important words are masked [11].

Moreover, FinBERT is unable to output sentiments based on the different entities in the text.

For instance, for the news headline “Nikkei rises as Yen plumbs 6 years low”, FinBERT

outputs “Negative”. However, Nikkei, which is said to be rising, should have a positive

sentiment. Similar headlines which mention multiple entities with polarizing sentiment appears

often. Outputting only one sentiment of one entity is inefficient and will easily cause confusion

to users. Therefore, this project aims to fix this problem of FinBERT and create a model that

can output a different sentiment for the different entities in the headline.

3. Proposed Methodology

This section elaborates on the proposed methodology of this project, starting brief explanation

of the outline of the program. Next, the datasets, the classification algorithms, and the language

and libraries that will be used and experimented with will be introduced. The data

preprocessing stage will also be elaborated. Finally, the evaluation metrics for the sentiment

analysis models will be covered.

3

3.1 Outline of the program

The main idea of the program is to take a financial news headline as input. When the program

receives an input, it first cleans the text and removes noises and meaningless parts. Next, it will

recognize entities or organizations from the headline and extract them. For example, the

program should be able to find “Nikkei” and “Yen” from the headline “Nikkei rises as Yen

plumbs 6 years low”. This extraction is planned to be done by a pre-trained Named-Entity

Recognition (NER) model that can recognize proper nouns such as people and organizations

in a text effectively. After extracting, the headline and the name of entity pair will go through

another text preprocessing step which turns the text into computer-readable format, or number

vectors. The number vectors will be put into a trained language model. The model studies the

the entity and the headline and makes a prediction of the sentiment of the sentence towards the

entity. This prediction will be outputted to the user as the output of the program.

3.2 Datasets

Datasets are the relevant data used to develop machine learning models and artificial

intelligence. The model will create rules and find relationships based on the training datasets

which will be used for predictions. For this project, two datasets will be used. Both datasets

include financial news headlines, the entities mentioned in the headline, and the sentiment of

the headline to the corresponding entity.

3.2.1 FiQA Task 1

FiQA (Financial Opinion Mining and Question Answering) is an open challenge organized by

The Web Conference held in Lyon in 2018. The challenge was split into 2 tasks, Task 1 asked

participants to submit a system that can predict a sentiment score for a given financial text,

which is similar to the objective of this paper. This dataset scores the sentences with a value

between -1 and 1, with -1 being the most negative sentiment and vice versa. Apart from the

sentence and the sentiment score, this dataset also includes a “target” which is the company or

stock the sentence is referring to [12]. This dataset is chosen also for its credibility. The

challenge is part of a long-running, professional conference series [13]. The organizers of this

challenge are researchers and professors from credible universities and the European

Commission, which runs the European Union. Therefore, this dataset has a solid foundation

and can be trusted to be used as a reliable data source.

4

3.2.2 SEntFiN 1.0

SEntFiN 1.0 is a dataset created by Sinha, Kedas, and Kumar for the paper “SEntFiN 1.0:

Entity-Aware Sentiment Analysis for Financial News”. There are 10753 news headlines in this

dataset, with around 2800 of the headlines containing multiple entities. Since some headlines

with multiple entities may cause opposite sentiments to the entities, each entity is individually

annotated. There are overall 14404 sentiment annotations in this dataset, with 35.23% of the

entities receiving a positive sentiment, 26.48% negative, and 39.29% neutral [14]. The detailed

process of creating the dataset was published in a journal and the annotators also had

background in finance. Also, the indication of the entities of each sentence is helpful for the

latter stages. Moreover, the close percentages between positive, negative, and neutral sentiment

labels are appreciated.

3.3 Classification Algorithms

There are multiple machine-learning algorithms for classification tasks. Many of which are

suitable for NLP and sentiment analysis. This project picked three kinds of the algorithms to

experiment with to see which performs the best. The three kinds of algorithms are Scikit-Learn

classifiers, Long Short-Term Memory (LSTM), and XLNet.

3.3.1 Scikit-Learn Classifiers

The Scikit-Learn library offers multiple classification models. These models are easy to

implement and has active community support. Therefore, it is commonly used in many

different areas. The library also provides functions such as Grid Search and Cross Validation,

for evaluating models and selecting the best hyperparameters [15]. Therefore, some

classification models from this library will be used in this project. Due to the simplicity of the

models, they are used as benchmarks for the other two deep learning models.

This project evaluated 4 models from the library: Logistic Regression, Linear Support Vector

Classification (SVC), Naïve Bayes, and Random Forest. These four models were evaluated

with a 5-fold cross validation and the two best performing models will be used to compare with

the other two models.

3.3.2 LSTM

LSTM is an architecture of recurrent neural network (RNN) which is a deep learning algorithm.

LSTM is designed for modelling sequential data. LSTM overcomes the vanishing gradient

problem which is prevalent in RNNs. For an RNN, the neurons are connected with time as

layers. When building an RNN, the weights of a neuron are calculated and optimized by the

5

gradient descent method, which involves backpropagation, or multiplying back the previous

neuron weights in the network. As the network becomes deeper, the updated gradients have to

backpropagate through more layers to reach the first layer. During this process, the updated

gradients will be multiplied by neuron weights repeatedly, which diminishes the gradient. A

gradient too small cannot carry new information and update the weights in the neurons, which

is undesired. LSTM solves this problem by assigning a memory cell which helps remember

information back in time, making it optimal for sequential data [16]. Textual data can be

considered sequential. Therefore, LSTM, which can overcome this problem, will perform well

in NLP and sentiment analysis [17].

3.3.3 XLNet

XLNet is a pre-trained NLP model that uses AR modelling. As mentioned, traditional AR

models can only read text from one direction, and AE models like BERT can corrupt input data.

XLNet is designed to solve the disadvantages of both AR and AE. It can read contexts

bidirectionally without corrupting any important input data. This is executed by a permutation

language model which allows bidirectional understanding by permutating the words in the text.

As previously mentioned, XLNet boasts it outruns BERT on 20 tasks, including sentiment

analysis [10]. Since FinBERT is already developed, it is hoped that a similar model built with

XLNet can also outperform the FinBERT in the task.

3.4 Languages and Libraries

As a programming project, it is important to select an ideal programming language to complete

to task. Python was selected since it is the most popular programming language in machine

learning, with over half of the machine learning programmers using the language, surpassing

other languages specifically developed for machine learning such as R and Julia [18]. The

popularity of Python can be accounted for its simple and intuitive syntax, as well as its

extensibility that can be integrated with different platforms and languages. Most importantly,

Python provides easy access to many different libraries and frameworks that can be used to

perform various tasks, including machine learning and text analysis [19]. For this project, the

libraries Scikit-Learn, Keras, and Transformers will be imported for accessing the models of

Naïve Bayes, LSTM, and XLNet respectively. Pandas, SpaCy, and Textacy will be used for

the data preprocessing stage.

6

3.5 Data Preprocessing

“Garbage in, garbage out” is an important concept in computer science. It means if we input

bad-quality data into a system, the system will only output bad-quality results [20]. Therefore,

to ensure a quality prediction model, the input data used for training the model must not be

garbage. This is why the data preprocessing stage is a crucial stage in developing an artificial

intelligence model. For preprocessing textual data for this project, a number of stages is

required before training the model. These stages are elaborated below

3.5.1 Standardizing Labels

This step is essential for this project since this project uses two datasets which labelled their

sentence sentiment differently. To standardize all datasets, positive sentiments will be labelled

2, negative sentiments will be labelled 0, and neutral statements will be labelled 1. For FiQA

Task 1, which uses float numbers as sentiment scores, all negative sentiment scores will be

generalized to 0 and vice versa. This rule is chosen because classification models often output

an array of percentages of the certainty of the labels. Since arrays are indexed with integers

starting from 0, the percentages of the array outputted will follow the sequence: negative,

neutral, and positive. If the percentage at index 0 is the greatest, the model predicts a negative

sentiment and so on.

3.5.2 Data Cleaning: Identifying and Removing Noises

For text analysis, noises refer to the parts in a sentence that serve no value in the analysis and

prediction such as HTML tags, sequences of meaningless symbols, and URLs. These noises

provide no extra meaning to the sentence and therefore, will confuse the algorithm and lead to

poor performance if they remain in the input data. While it is unlikely for noises to appear in

proper news headlines, it is good practice to search for them just in case there are errors in the

datasets when importing.

3.5.3 Data Cleaning: Character Normalization

This step is to standardize the characters or symbols in a text into ASCII formats. Humans can

understand how characters with accents or umlauts, such as ć or ä, are sometimes replaced by

their unaccented version. But computers cannot and will treat the accented characters and the

unaccented counterparts as two completely different letters. This problem also persists for

symbols such as all different types of quotation marks. To standardize all these characters and

symbols, Textacy will be used. It has a preprocessing module that can normalize accented

characters and quotation marks, which makes this step simpler.

7

3.5.4 Word Tokenization

Tokenization is an important step when preprocessing data for NLP. In this step, the sentences

will be broken down into individual words known as tokens. By separating each word from a

complete sentence into tokens, the algorithm can understand the context of each token more

easily and analyse the text better [21]. This step is planned to be carried out by using the SpaCy

library.

3.5.5 Text Vectorization

After tokenization each word, the tokens will be transformed into number vectors. This step is

essential in NLP tasks because most computer models are not capable of interpreting words

and plain text like humans do. They are only great at calculating numbers. Therefore, before

building a computer model, the textual data needs to be turned into numerical form. To do so,

each token will be mapped into a number vector using a dictionary of words. This process is

called Text Vectorization or Word Embedding [22].

This project uses the Count Vectorizer function from Scikit-Learn to perform word

vectorization. This function makes use of a model called Bag-of-Words (BoW), which creates

a vocabulary of all words in the column and create a binary vector for each sentence based on

the presence of words in the sentence [23]. Since the Count Vectorizer can only be create a

BoW for one column at a time, the two columns of sentence and entity will have to be

concatenated before applying Count Vectorizer on the combined column.

3.5.6 Train-Test Split

After the extraction, the data frame is then split into 80% and 20% for the train-split, which

means that 80% of the total data will be used to train the data and the remaining 20% of the

data will be used for testing. Testing is where the models make predictions after establishing

rules from the training data and the prediction is compared to the actual label. This step is

important for evaluating the models to see which has the best performance.

3.6 Evaluation Methods

To compare the performances of the algorithms, the accuracy and F1 score of the results will

be calculated. Accuracy is the percentage of correctly predicted classes out of all predictions.

It is the most basic metric and works well even for multi-class classifications like this project.

The F1 score calculates the harmonic mean of the other common evaluation metrics Precision

and Recall [24]. Precision is the percentage of True Positives out of the sum of True Positives

and False Positives. True Positives are the cases predicted positive and are positive, while False

8

Positives are cases predicted positive but are negative. Recall is the percentage of True Positive

cases out of the sum of cases that are positives [25]. Since this project is a multi-class

classification, the weighted F1 score will be calculated. The weighted F1 score is the weighted

average of the F1 score of all three labels “0”, “1”, and “2”.

4. Model Experiment and Results

For the experiment, A cross-validation test was first performed on the 4 candidate classification

algorithms from Scikit-Learn with the SEntFiN 1.0 dataset. This is to find the algorithms with

the best accuracy. After which, simple models were built with the SEntFiN 1.0 dataset using

the two algorithms with the best accuracy in the cross-validation test, as well as LSTM and

XLNet. The accuracies and the F1 score were recorded and compared.

4.1 Cross-Validation Test

The 4 Scikit-Learn classification algorithms were put into a 5-fold cross validation and the

mean accuracy and the standard deviation is calculated. The results of the are listed in Table 1.

Model Mean Accuracy Mean Weighted F1 Score

Linear SVC 0.676596 0.675541

Logistic Regression 0.701173 0.700146

Multinomial Naïve Bayes 0.662674 0.662134

Random Forest Classifier 0.640605 0.628298

Table 1: Mean accuracy and weighted F1 score of the cross validation of the 4 Scikit-Learn classification algorithms.

The results suggest that Logistic Regression and Linear SVC are the best performing

algorithms of the four, with a mean accuracy of around 0.70 and 0.67 respectively. Therefore,

the following algorithms will be used in the next stage of the experiment.

4.2 First Results of Models

5. The test accuracy and F1 Score of all 4 models is listed in Table 2.

Model Name Test Accuracy Test Weighted F1 Score

Logistic Regression 0.765569 0.762049

Linear SVC 0.743822 0.743814

LSTM 0.747302 0.762049

XLNet 0.390184 0.505370

Table 2: The test accuracies and F1 scores from the primary experiments of the 4 models.

9

From the first results, it suggests that Logistic Regression has the best performance, with an

accuracy of 0.76 and a weighted F1 score of 0.76 as well. The LSTM model came second in

this run with an accuracy of 0.74 and a weighted F1 score of 0.76. However, the model

performance is unstable, the accuracy ranges from around 0.72 to 0.76. Therefore, its

performance is comparable to the Linear SVC model.

XLNet has the worst performance, with only an accuracy of 0.39. On closer inspection, it is

revealed that the model only predicted the Neutral label “1” for every input.

6. Results Discussion

The results from the primary experiment suggest that Logistic Regression is the best-

performing model. However, all Scikit-Learn models are planned to be benchmarks. They are

not planned be adopted in the final model. Therefore, the other two models failed to reach the

benchmark. The XLNet is not even a model for predicting the same label for everything. Three

possible reasons to the poor performance of the LSTM and XLNet, as well as the solutions, are

mentioned below.

6.1 No Finetuning

Finetuning is the process of taking a machine learning model that is already trained and making

minor adjustments to its hyperparameters so the model can perform better for a specific task

[26]. These pre-trained models are usually trained with a vast and diverse dataset. Therefore,

the model is already familiar with data. This results in more efficient training and better results.

With finetuning, the model can be trained to be a new model for a specific task. For instance,

a pre-trained language model can be used and finetune it into a model for analysing the

sentiment of financial news headlines.

For my initial models, I just quickly built a simple LSTM model. While building a model from

scratch can also lead to good performances, it requires much effort in tuning the learning rate,

dropout size, batch size et cetera. Since I did not tune any of these hyperparameters after the

first training, the model failed to reach the benchmark. Therefore, it is recommended that I

should try loading a pre-trained LSTM language model and finetuning it to the purpose of this

project. It is hoped that with finetuning, the model can be more efficient and accurate.

6.2 Lack of Understanding

The failure of the XLNet model can be attributed to my lack of understanding towards pre-

trained models. Since I have no experience in using pre-trained models from Hugging Face or

10

the Transformers library, I underestimated the effort needed to train the model. This results in

the numerous error messages I encountered during the experiment, such as a Value Error about

the incompatible shapes of the layers, as well as the poor performance of the final model.

To solve this issue, more research regarding XLNet will be done. This includes the detailed

mechanisms and the use cases of the model. I will also read more about the functions of the

Transformers library regarding XLNet so I can create a model quicker and encounter fewer

errors. Moreover, I will look up some example codes on the Internet to learn how experienced

programmers use the model. It is hoped that I can understand more about this model once I

finish researching and I can develop a more accurate model more effectively.

6.3 Unideal Text Vectorization Techniques

One highlight of this project is the ability to separate the different entities in a news headline

and figure out the sentiment of each entity. Therefore, two features are needed when training

the model: the sentence and the entity. Before feeding these textual features into the model,

they have to be numericized to become computer readable.

In my attempt, I used a BoW model, which is a very simple word vectorization technique.

However, as mentioned, this function can only create a BoW on one feature at a time. To

vectorize both the sentence and the entity feature, one solution is to create two separate BoW.

However, this is unideal as the entity feature is dependent on the sentence feature. A BoW with

only words in the entity feature cannot show the dependency between the entity and the

sentence. Therefore, a different solution is used, that is to concatenate the two strings into one

and then build a BoW on the combined string. However, this solution is also unable to show

the dependency.

To solve this problem, two more solutions are proposed. Firstly, feature extraction can be done

on the sentences. The SpaCy library can be used to extract keywords and phrases after the

target entity in a sentence. These extracted words and phrases can be put into a new feature and

these words will be vectorized instead of the sentence itself. This way, only the words that is

relevant to the entity is included, which can emphasize the entity better. Secondly, another

more advanced word vectorizer, such as GloVe, can be used. GloVe is a pre-trained word

embedding model with vectors for about 6 billion words and some other common symbols [27].

It can also understand semantic meaning of words as the model is trained with word pairs on a

co-occurrence matrix [28]. Since GloVe uses global statistics, it is unnecessary to combine the

11

two columns for the list of vocabulary. These two methods can be tested to see if improving

the vectorization of words can improve the performance of the models.

7. Project Schedule

For the second semester, the second phase of the project will be carried out, which is to

improving the LSTM and the XLNet models by adopting the solutions mentioned in the

previous section. It is planned that the second phase will conclude by the end of February. If

the solutions are ineffective and the models still failed to reach the benchmark, different

solutions will be devised. Otherwise, the third phase of the project will commence, that is to

explore more kinds of classification models, such as other RNNs and pre-trained LLMs. Also,

the NER for finding entities before the prediction has to be ensured that it can recognize

accurately. Otherwise, the prediction output might be incomplete.

8. Conclusion

In this paper, the development of a sentiment analysis program for financial news headlines

powered by AI is proposed. This program aims to analyse the hidden opinions behind a news

headline from a financial news which can help investors in choosing what companies to invest

in. While some projects have already attempted to develop models for text analysis tasks for

the finance industry, such as FinBERT, this project attempts to develop a model that can

identify entities and companies in the news headline and analyse the sentiment of each entity,

which is not a feature in FinBERT. The proposed method for developing the model is

mentioned in this paper. Two credible datasets were used as input data. Three kinds of

classification algorithms: Scikit-Learn classification models, LSTM, and XLNet were

experimented with to find out the best performer. Python was used for its simplicity and

accessibility to different libraries. The process of data preprocessing is elaborated and the final

models were evaluated by accuracy and F1 score. The experiment results suggest that the

Logistic Regression Classifier from Scikit-Learn has the best performance, with a accuracy of

76% and a F1 score of 0.76. However, since the Scikit-Learn models are meant to be used as a

benchmark, it is concluded that the other two more complicated models failed to reach the

benchmark. Three possible reasons for the poor performances of the two models are suggested:

no finetuning of models, lack of understanding of XLNet, and the suboptimal word embedding

techniques. To solve the above problems, experiments about finetuning pre-trained models and

new word extraction and embedding techniques, as well as more research about XLNet will be

conducted by February.

12

References

[1] F. G. D. C. Ferreira, A. H. Gandomi, and R. T. N. Cardoso, “Artificial Intelligence

Applied to Stock Market Trading: A Review,” IEEE Access, vol. 9, pp. 30898–30917,

Jan. 2021, doi: 10.1109/access.2021.3058133.

[2] A. O. Akin-Davidson, “The Use of Artificial Intelligence in Algorithmic Trading in the

Global Market.” Jan. 2023. [Online]. Available: https://www.linkedin.com/pulse/use-

artificial-intelligence-algorithmic-trading-alfred-olutola

[3] J. M. Brain, “‘Past performance is not necessarily indicative of future results’ - the

proven-in-use argument and the retrospective application of modern standards,” 5th IET

International Conference on System Safety 2010, 2010, doi: 10.1049/cp.2010.0833.

[4] Q. Xiao and B. Ihnaini, “Stock trend prediction using sentiment analysis,” PeerJ Comput

Sci, vol. 9, p. e1293, Jan. 2023, doi: 10.7717/peerj-cs.1293.

[5] A. Yadav, C. K. Jha, A. Sharan, and V. Vaish, “Sentiment analysis of financial news

using unsupervised approach,” Procedia Comput Sci, vol. 167, pp. 589–598, 2020, doi:

10.1016/j.procs.2020.03.325.

[6] IBM, “What is Natural Language Processing (NLP)? .” IBM. [Online]. Available:

https://www.ibm.com/topics/natural-language-processing

[7] D. Araci, “FinBERT: Financial Sentiment Analysis with Pre-trained Language Models,”

arXiv (Cornell University), Jan. 2019, doi: 10.48550/arxiv.1908.10063.

[8] M. Xiao, “Understanding Language using XLNet with autoregressive pre-training.” Jan.

2020. [Online]. Available: https://medium.com/@zxiao2015/understanding-language-

using-xlnet-with-autoregressive-pre-training-9c86e5bea443

[9] “Masked Language Models.” Jan. 2023. [Online]. Available:

https://saturncloud.io/glossary/masked-language-models

[10] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V Le, “XLNet:

Generalized Autoregressive Pretraining for Language Understanding,” Proceedings of

the 33rd International Conference on Neural Information Processing Systems, vol. 517,

pp. 5753–5763, 2019.

13

[11] A. A. Falaki, “What are the differences in Pre-Trained Transformer-base models like

BERT, DistilBERT, XLNet, GPT….” Jan. 2023. [Online]. Available:

https://medium.com/mlearning-ai/what-are-the-differences-in-pre-trained-transformer-

base-models-like-bert-distilbert-xlnet-gpt-4b3ea30ef3d7

[12] “Financial Opinion Mining and Question Answering.” [Online]. Available:

https://sites.google.com/view/fiqa/home

[13] I. W. W. W. C. Committee, “IW3C2.” [Online]. Available: https://www.iw3c2.org/

[14] A. Sinha, S. Kedas, R. Kumar, and P. Malo, “SEntFiN 1.0: Entity-aware sentiment

analysis for financial news,” J Assoc Inf Sci Technol, vol. 73, Jan. 2022, doi:

10.1002/asi.24634.

[15] avcontentteam, “Scikit-Learn vs TensorFlow: Which One to Choose?” Jan. 2023.

[Online]. Available: https://www.analyticsvidhya.com/blog/2023/08/scikit-learn-and-

tensorflow/

[16] S. Kumar, “Natural Language Processing – Sentiment Analysis using LSTM.” Jan. 2021.

[Online]. Available: https://www.analyticsvidhya.com/blog/2021/06/natural-language-

processing-sentiment-analysis-using-lstm/

[17] R. K. Behera, M. Jena, S. K. Rath, and S. Misra, “Co-LSTM: Convolutional LSTM

model for sentiment analysis in social big data,” Inf Process Manag, vol. 58, p. 102435,

Jan. 2021, doi: 10.1016/j.ipm.2020.102435.

[18] C. Voskoglou, “What is the best programming language for Machine Learning?” Jan.

2017. [Online]. Available: https://towardsdatascience.com/what-is-the-best-

programming-language-for-machine-learning-a745c156d6b7

[19] “Why is Python the Best-Suited Programming Language for Machine Learning?” Jan.

2019. [Online]. Available: https://www.geeksforgeeks.org/why-is-python-the-best-

suited-programming-language-for-machine-learning/

[20] R. Ozminkowski, “Garbage In, Garbage Out.” Jan. 2021. [Online]. Available:

https://towardsdatascience.com/garbage-in-garbage-out-721b5b299bc1

[21] M. Ali, “NLTK Sentiment Analysis Tutorial: Text Mining & Analysis in Python.” Jan.

2023. [Online]. Available: https://www.datacamp.com/tutorial/text-analytics-

beginners-nltk

14

[22] C. Goyal, “Text Vectorization and Word Embedding | Guide to Master NLP (Part 5).”

Jan. 2021. [Online]. Available: https://www.analyticsvidhya.com/blog/2021/06/part-5-

step-by-step-guide-to-master-nlp-text-vectorization-approaches/

[23] J. Brownlee, “A Gentle Introduction to the Bag-of-Words Model.” Jan. 2019. [Online].

Available: https://machinelearningmastery.com/gentle-introduction-bag-words-model/

[24] J. Korstanje, “The F1 score.” Jan. 2021. [Online]. Available:

https://towardsdatascience.com/the-f1-score-bec2bbc38aa6

[25] S. K. Agrawal, “Metrics to Evaluate your Classification Model to take the right

decisions.” Jan. 2023. [Online]. Available:

https://www.analyticsvidhya.com/blog/2021/07/metrics-to-evaluate-your-

classification-model-to-take-the-right-decisions

[26] Amanatullah, “Fine-Tuning the Model: What, Why, and How.” Jan. 2023. [Online].

Available: https://medium.com/@amanatulla1606/fine-tuning-the-model-what-why-

and-how-e7fa52bc8ddf

[27] pintusaini, “Pre-trained Word embedding using Glove in NLP models.” Jan. 2022.

[Online]. Available: https://www.geeksforgeeks.org/pre-trained-word-embedding-

using-glove-in-nlp-models/

[28] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global Vectors for Word

Representation.” Jan. 2014. [Online]. Available: https://nlp.stanford.edu/projects/glove/

