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Abstract 
With the rise of the blockchain industry, concerns regarding high energy consumption in 

Proof of Work (PoW) blockchains have become a hotly debated topic. Various solutions have 

been suggested to address this issue, but they have often failed to maintain the competitive 

market nature of PoW, which is one of its key benefits. This project's main objective is to tackle 

high energy consumption by converting wasted energy into a resource for machine learning 

training. The project intended to develop a novel algorithm called Proof of Machine Learning 

(PoML), which operates alongside virtual machines. These servers serve as node providers, 

facilitating the distributed handling of machine-learning tasks. However, during the development 

of a novel consensus algorithm, the project soon realized construction of a novel algorithm could 

not be done within the time scope. Hence, the project decided to pivot and develop a 

Decentralized Application (dApp) where the motivation remains the same: solve high energy 

consumption problems by rewarding tokens to computational power.  
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1. Introduction 
Section 1.1 explains the background of the topic and the problem of the current platform. 

Section 1.2 depicts the motivation of the project. Section 1.3 illustrates the objectives of the 

project. Section 1.4 describes the scope and deliverables, and Section 1.5 outlines the research 

gap and significance followed by Section 1.6 with the outline of the report. 

 

1.1 Background 

Since the introduction of Bitcoin by Satoshi Nakamoto in 2008, blockchain has evolved 

to be applicable not only in finance, government, and education but also as pillars of a new web 

3.0 protocol. As blockchain networks do not have a central authority but instead adopt a shared 

database method as a peer-to-peer network, it increases trust, security, transparency, and 

traceability of data shared across a network; hence, favored by industries such as financial 

services, government, and even insurance. [1,2] 

 

However, there is one major downside of the whole system. High computational power 

results in high energy consumption as the blockchain tries to establish a competitive market.  

According to the University of Cambridge Electricity consumption index, it is estimated that 

blockchain consumes electricity at an annualized rate of 127 terawatt-hours, which contributes 

0.3% of global annual carbon emission [3,4]. The reason for such high consumption of energy is 

due to the nature of Bitcoin’s Proof of Work (PoW) consensus algorithm.  

 

With the rise of AI and machine learning, having access to powerful computing power is 

important for efficiency and speed. While machine learning that uses a centralized server has 

been the conventional approach, experiments conducted show that a distributed approach to 

machine learning accelerates the training of modest to large-sized models [5]. Popular models 

such as GPT and BERT are large machine-learning models. Therefore, an algorithm that utilizes 

the high computational power for machine learning can potentially solve both the downsides of 

blockchain and increase machine learning access in society. 

 



2 

1.2 Motivation 

There is a clear need to explore alternative consensus algorithms that can achieve 

decentralization in an energy-efficient manner. PoW possesses and advantage of formulating a 

competitive market but in return it wastes energy. If the project can leverage computing power 

for training machine learning datasets, then such energy is converted to be used in useful work 

[6]. For the given time scope the project seeks to implement a new web platform where a user 

who wants to train machine learning datasets can utilize the platform after paying ERC-20 tokens 

and node providers stake computational power to earn tokens. In the future, the project would be 

expanded to implement an actual layer 1 blockchain with a novel consensus algorithm. 

 

1.3 Objective 

 The objective of the project shifted from creating a layer 1 blockchain network with a 

novel consensus algorithm known as Proof of Machine Learning (PoML) to developing dApp for 

distributed machine learning. The application tackles the problem of high energy consumption 

by giving token incentives to whomever staking computational power to the project’s machine 

learning platform and providing a secure and transparent payment system through transactions 

via ERC-20 token in the PoS chain. The project aims to achieve this by completing 3 main 

objectives listed below: 

Objective 1: Develop a web platform through the integration of front-end and back-end 

Objective 2: Manage transactions on blockchain for a transparent payment system 

Objective 3: Provide a distributed training environment by leveraging federated  

        averaging 

Further details will be presented throughout the report. 

 

1.4 Scope and Deliverables 

 The project makes three contributions. First, it explains the development of the front-end 

for both user and node providers. The front end provides a user-friendly interface to use the 

platform. Second, the project introduces the core functionality of the back end. Unlike traditional 

back-end servers, the project’s server incorporates both API requests and federated averaging 

training. Lastly, participating nodes will be simulated in a cloud environment. Using Google 

Cloud Platform (GCP), servers will be set up to receive training data and models. The result will 
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be sent back to the back-end server which is the main server and trained results will be returned 

to the user. 

 

1.5 Research Gap and Significance 

This project will allow existing node providers that are wasting computational power to 

provide machine learning services to society. These node providers will be given tokens for their 

services. The project focuses on creating a sustainable environment where a user submits training 

datasets and node providers get tokens according to the training performance. Since such a 

concept of a platform where one can leverage federated average learning to train datasets without 

a cloud platform is novel the project will look more at the system cloud providers such as AWS 

or Google Cloud. The project will research and incorporate fundamental cloud computation 

methods to successfully develop the dApp platform. 

 

1.6 Outline of the Report 

 The report consists of 5 sections. Section 2 depicts the methodology of the project, 

Section 3 illustrates the current development progress and results, Section 4 discusses future 

implementation, and Section 5 concludes the overall report. 

 

 

2. Methodology 
 

2.1 Overview of Methodology 

 The platform consists of 3 major aspects: front-end, back-end, and a distributed machine 

learning algorithm. The combination of these three aspects allows users to train custom data 

using our platform and node providers to get tokens as a reward for providing computational 

power. 

 Section 2.2 summarizes our development platform. Sections 2.3 to 2.5 describe the 

procedures of how front-end, back-end, and distributed machine learning algorithms will be 

implemented. 
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2.2 Technologies and Platform 

 The development environment differs in the back-end and front-end. For the back-end, 

the entire codebase has been written in JavaScript with libraries such as Web3.js, express, and 

Mongoose. Using JavaScript allows the development of HTTPS requests and APIs for the 

database, blockchain, and the front-end. For the database, the project has adopted MongoDB as it 

is a non-schema database. The core of machine learning which is implemented in the back-end 

server is written in Python with a federated averaging library from TensorFlow.  For the 

development of the front end, HTML and CSS are used with vanilla JavaScript. 

 

2.3 Back End Development 

Development of the back end remains the main root of the project. The back end consists 

of two major backbones: API requests management, and the main server for federated machine 

learning. The figure below shows the architecture design of the back end. 

 

 
Figure 1 Simple Architecture design of back end server that is deployed on render. Illustrates two major 

components in the Main server which are the API requests handler and the main machine learning server. 

  

 

Unlike the traditional back end, the DML platform incorporates an additional layer to 

manage federated averaging machine learning training. 3 ports will be opened where one is for 

API requests management, one for WSS connection management with other node providers, and 
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the last for the Mongo database. Once the framework is set up, it will be deployed utilizing 

render.com which gives API strings that can be used. 

 

2.3.1 API Requests Handler 

As shown in Figure 1, the project utilizes a traditional back-end design for API request 

management. Utilizing the express library framework, the project developed HTTPS requests for 

the front end, database, and blockchain for transaction management. An additional Web3.js 

library has been utilized to allow transactions via smart contract interactions. During the 

development stage, API will be checked utilizing Postman framework and will identify errors. 

Moreover, the platform will handle HTTP standard errors such as 404 or 401. 

 

2.3.2 Main Node for Machine Learning 

For the development of the main server for the federated machine, additional network 

configuration is required for communication with node providers. A new port will be opened for 

websocket secure (WSS) connection with other node providers to transfer train data so that node 

providers can train and return the parameters back to the main server. The project plans to 

simulate 2 to 4 virtual machines with GPU. They will act as node providers. Set up will be done 

utilizing Google Cloud Storage. The setup allows machine-learning data sets to be trained in 

parallel. Once the main server receives the models from the node providers, aggregation, 

evaluation, and averaging will happen under the tensor flow federated learning library 

framework. After the loops of training are completed, created model parameters will be uploaded 

to Google Cloud Storage and a downloadable link will be sent to the user. 

	

2.3.3 Database Management 

The database has been deployed using Mongo database. Mongo database with mongoose 

library in Java Scripts allows easier implementation. The database will have three main schemas: 

user information, node provider information, and tickets. User information will hold the login 

details of users. It will allow users to create accounts and log in accordingly. The schema for 

node providers will hold information about node providers, their wallet addresses, and the node's 

status. Lastly, tickets are information about training data the user has submitted after payment. It 

holds information about transaction hash, pay amount, list of nodes who will train the data, and 
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status of the training. Since the project wants the main server to start machine learning once the 

user sends the data to Google Cloud Storage, the team will open up a port that will stream 

changes in collections of tickets. Once the ticket is created after the user successfully pays it will 

trigger the main node to download the data and start training. Such a stream will be implemented 

utilizing Mongoose. watch() function which allows to watch for new changes (insertions, 

updates, replacements, deletions, and invalidations) in this collection. 

 

2.4 Blockchain & ERC-20 contract 

 The project will utilize the Proof of Stake (PoS) chain as it does not use much energy and 

provides fast transaction time. Given a timeframe for the project, the team will utilize the 

Polygon test net to deploy token contracts and create API for interactions instead of the actual 

main net.  

ERC-20 contracts are standardized smart contracts that are fungible tokens. It allows 

developers to build products and services from ERC-20 token allowing easier interaction on 

blockchain for users at lower cost. Moreover, as ERC-20 tokens are standardized, exchanges 

with other tokens are flexible. The team will create a token under Openzepplin’s framework and 

deploy using hardhat. The coined token will be named the Decentralized Machine Learning 

(DML) token. Interaction on the front end will be done utilizing Web.js with meta mask and on 

the back end will be done solely with Web3.js. 

 

2.5 Production Management 

 The main server which consists of machine learning and API requests handling will be 

deployed utilizing render.com. To allow continuous integration and continuous development 

(CI/CD) environments, the project used Git to manage versions and updates. Moreover, 
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Figure 2 Screenshots of Project Management in Notion. Notion provides a simple environment to manage 

tickets and visualize project plans in a timeline and ticket manner. 
 

render.com provides a simple environment where deployment can be easily done once the git 

main branch has been updated. Such an environment allowed a better CI/CD environment. Secret 

and confidential information such as database connection string, password, wallet’s private key, 

and password for email has been managed in .env files. For production management, the team 

has used Notion to intuitively visualize remaining tasks and deadlines as shown in Figure 2. 

 
2.6 Front End Development 

Multiple technologies were used in building the front-end module of the application. This section 

will provide information about the technologies that were used. 

 

2.6.1 MetaMask 

MetaMask is a cryptocurrency wallet and browser extension that allows users to securely 

manage their digital assets and interact with decentralized applications (dApps). MetaMask acts 
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as a bridge between web browsers and the blockchain and enables users to create and manage 

accounts. Furthermore, it helps store and transfer tokens, and seamlessly connect with dApps. 

 

 
Figure 3 Flow chart of how MetaMask is used to connect the client to the blockchain 

 

 

MetaMask is extensively used in the application on the front end as it provides a gateway to 

connect the data being inputted from the client to the blockchain. Figure 3 shows how by 

utilizing MetaMask’s API within the client’s browser, the application can interact with Ethereum 

and other types of blockchain as well. A key library called Web3.js is also utilized to interact 

with the blockchain, and this is used to fetch accounts but also to transfer tokens. 

 

2.6.2 Google Cloud Storage  
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Figure 4 Google Cloud Storage Buckets are used to store data 

 

Google Cloud Storage buckets are scalable and durable storage containers provided by Google 

Cloud Platform (GCP). The buckets serve as a central repository for storing and accessing 

various types of data, including objects, files, and media assets and the project will utilize the 

buckets due to their high availability, reliability, and global accessibility across programming 

languages and regions. 

 

Since files are not stored inside a local server but instead on the cloud, buckets provide a 

modular way to upload and download files. Given that access to the buckets does not depend on 

programming languages and instead relies on specified credentials, it provides a secure way for 

both customers and the main server to retrieve and upload data. 

 

2.6.3 Vanilla JavaScript 

Vanilla JavaScript instead of other external frameworks will be utilized due to the limited 

number of functions required for the platform. Because the customer can start the entire machine 

learning process by uploading data, the website will consist of specific instructions on how to 

login/register and perform payment to upload data. Specific JavaScript functions will be 

developed that dynamically enable/disable buttons on the customer’s page, providing a smooth 

user interface. Additional functions will be developed so that once the data is fetched from the 
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local storage and uploaded to the Google Cloud, relevant alerts will be displayed on the screen to 

ensure that the customer is notified of the progress. 

 

For the node providers, while there are plans to further improve the home page for 

providers, the current version of the project supports only registration to the platform. Further 

use of other external libraries such as React will be considered when additional features are 

needed. 

 

2.7 Machine Learning Development 

 

 
Figure 5 Overall flow of the application 

 

Figure 5 shows the overall flow of the application. The application will work as follows. Once a 

customer pays a fee according to the data size, the customer will be able to upload the data onto a 

cloud storage server. A server attached to the storage server will act as the central node and 

establish connections with the participating nodes on the network. Participating nodes that have 

TensorFlow’s library of tools will be allocated customer data and an initial model. The node will 

use the local data to train the initial model. The updated parameters will then be sent back to the 

server for consolidation. Once the parameters are received, the central server aggregates the 

models and forms a global model through a technique known as federated averaging. 
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2.7.1 Federated Averaging 

While there have been numerous successful applications of deep learning that use 

stochastic gradient descent (SGD) for optimization, when SGD is applied to federated learning 

optimization, large rounds of training are required to produce good models on limited data [7]. 

To tackle this problem, Chen et al. [8] suggests that using large-batch synchronous SGD, where 

parameters of models are commonly initialized before distribution, outperforms asynchronous 

approaches where the parameters are independently initialized. When this approach is applied in 

a federated learning environment, studies show that combining the tuned parameters and 

averaging the models results in a significant decrease in loss [9].  

 
Figure 6 The system architecture and data flow for Federated Averaging.  Federated Averaging sends 

updated models [11]. 
 

 

Therefore, this project will use Federated Averaging (FA) to combine models received 

from participating nodes to form a global model. The system architecture design for FA is shown 

below (Figure 6). The training is conducted in three key steps: 

1. The central server chooses an initial global model and broadcasts the model to 

participating client nodes. 

2. Nodes receive a model that has common initialization across all nodes but are 

trained using local data that results in an updated model. 
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3. The updated models are sent back to the central server to create an aggregated 

global model for the next round of iteration. 

 

 

3. Project Development 
 Section 3.1 describes the current back-end development progress. Section 3.2 illustrates 

the current front-end module of the application. Section 3.2 describes the current implementation 

of Federated Machine Learning on the platform and the user flow of the entire system.  

 

3.1 Back End Development 

The back end oversees fetching data from the Google Cloud server, distributing data to node 

providers to train, upload models and weights to the user, and manage rewards according to the 

model's accuracy. The report will depict three major functionalities in the back end which are 

interaction with blockchain, API requests handler, and database management.  

 

3.1.1 Interaction with Blockchain 

 The role of blockchain in the project is to provide a clear and transparent payment system 

where users do not have to pay by entering banking details. The project first picked Proof of 

Stake chain which was Polygon Amoy testnet. Proof of stake is currently the most energy-

efficient chain with the fastest transaction time; hence, for development purposes, the project 

decided to pick this chain. Utilizing Oppenzeppelin’s framework, the project managed to create a 

token contract in Solidity. The project followed the standard ERC-20 token contract with 

ownable functionality and coined the name of the token as “Distributed Machine Learning 

Token” (DML). After creating the token contract, we deployed our token through the hardhat 

framework on Node.js.  

 

From the front end side, payment of user and node providers are managed through the integration 

with meta mask. Users or node providers can sign the transaction and make payment through 

MetaMask. Payment is based on data size where 10Mb of data is 1 DML token. However, in the 

back end the role differs. 
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The server has a wallet address that is kept outside the code level. This wallet will 

manage rewarding tokens to node providers according to rating weight, distribute native tokens, 

which is ETH for the project scope, when malicious node providers are detected, and refund 

tokens if machine learning fails. 

 

Unlike the front end’s interaction, the back end cannot use a meta mask to sign the 

transaction. Instead, we directly use the hard wallet’s private key and conduct the signature at the 

code level. Hence, it is important to keep the wallet’s private key details safe and make sure the 

wallet’s details for not hard coded in programming. The project has used .env files to manage 

private data such as the wallet’s private key. Unless the hacker has direct access to the main 

server physically or via SSH, it is almost impossible to acquire the private key of the wallet at 

the network level. 

 

Payment done in code level differs from front end too. First we need to grab token’s 

Application Binary Interface (ABI). Since the project utilized ERC-20 token, we can utilized the 

standard ABI for ERC-20. Moreover, the project needs token’s address. Given both information 

the team can now access function in the token contract such as transfer. To create a sign 

transaction the project need to create transaction Object which includes information such as gas 

limit, gas price, recipient, sender, nonce, and encoded transfer function of given token’s ABI. 
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After creating transaction object it will be signed and send with wallet’s private key. The logic of 

the code is given in Figure 7 below. 

	

 

Figure 7 Screenshot of the transferring ERC-20 token in back-end level. Note that after creating sing 
transaction with transaction object, transaction are signed and send with private key unlike front end where sign and 
send is done on MetaMask. 
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Other than the wallet’s security concern, the imperative part is the algorithm for token 

distribution to node providers who have done the machine learning. To formulate a natural 

competitive market the project has adopted the following mathematical formula. 

 

𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑	𝑡𝑜𝑘𝑒𝑛	𝑓𝑜𝑟	𝑥 =
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	𝑜𝑓	𝑁𝑜𝑑𝑒	𝑥
∑𝑁𝑜𝑑𝑒	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 × 𝑇𝑜𝑘𝑒𝑛	𝑃𝑎𝑖𝑑 × 0.98 

 

It is a simple equation that distributes 98% of the token users paid to train data according 

to the weight of one’s accuracy from the total group. 2% is taken as a commission fee from DML 

platform. It is a sample business scenario the project has adopted to test if the platform can be 

further improved in the business model in the future hand. 

 

To put it into an example let’s look at Figure 7, 4 node providers have finished training 

the data successfully. the user paid 0.13 DML tokens, 0.11 DML (round down up to the second 

decimal place) tokens will be distributed after taking out the commission fee. 

Node A has accuracy of 75%, node B 55%, node C 55%, and node D 95%. Then through 

the formula, node A will have: 

𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑	𝑡𝑜𝑘𝑒𝑛	𝑓𝑜𝑟	𝐴 =
0.75

∑(0.75 + 0.55 + 0.55 + 0.95) × 0.11 = 0.03	𝐷𝑀𝐿	𝑡𝑜𝑘𝑒𝑛𝑠 

Figure 8 Screenshot of the log text with successful training. Note that a total 4 nodes were 
utilized during the training and received tokens according to their accuracy. 
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The project understands that accuracy is not enough to truly measure computational power 

usage. The project plans to integrate more criteria into account to accurately reflect 

computational power usage and reward tokens accordingly. Further details will be discussed on 

future steps later in the report. 

 

 Note that the final deliverable for this project was not able to formulate WSS connections 

with other node providers mainly due to number limitations in Google Cloud Storage. The 

project was not able to set up more than one virtual machine with GPU and due to lack of supply, 

the connection towards that VM was extremely unstable. The team has requested 3 virtual 

machines with GPU but all requests have been denied. Hence, the project had no option but to 

simulate node providers in the local environment through multithreading. The project 

understands the deliverables are not as the team planned in methodology. However, the project 

understands such implementation can be done quickly once given the virtual machines with 

GPU. Framework for WSS connection training has been already set up. Such limitations will be 

discussed further in future steps later in the report. 

 

 Another aspect back end that needs to be considered is when one of the node providers 

performs malicious action. For instance, the node provider tries to access the user’s training data 

or alter some training parameters to result in a higher accuracy model through overfitting. Within 

this project's scope, methods to detect such malicious activities have not been implemented. 

During the development, the team soon realized detection of such security issues requires 

additional hardware configuration to simulate a Trusted Execution Environment (TEE). Such 

limitations will be discussed further in future steps. Yet, the project managed to implement the 

after steps. If malicious activities have been detected in one of the node providers, such node 

providers will get banned permanently and will not be able to perform any more training. 

Moreover, the deposit ETH that the node providers have paid to register will be distributed to 

non-malicious node providers as they have done their training. The above figure is the log from 

the main server when malicious activities are detected in one of the nodes. 
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Here, nodeA and nodeB had conducted malicious activities. Hence, the returned model has a 

chance of contamination where the model can be overfitted. As the model is unreliable, the main 

server will not return the model to the user instead will fully refund the token he or she has paid. 

Then nodeA and nodeB will be permanently banned and their deposited ETH has been 

distributed accordingly to nodeC and nodeD who have performed training accordingly. As 

nodeC and nodeD need to get rewards for training, rewards will be given from malicious nodes. 

Note that the above cases are simulation cases. The value of ETH is 0.001, which is very small. 

As the project utilized a Polygon test net, the generation of faucet tokens where limited to 0.2 

ETH per account; hence, a small ETH value had to be used for testing purposes.  However, the 

project expects to have a higher staked amount as a deposit to ensure node providers are not 

motivated to perform malicious activities.  

 

3.1.2 API Requests 

 The project manages API requests to provide interaction for the front end. API requests 

can be divided into 3 sections: user login, node provider registration, and ticket creation. 

 

 Firstly, the user login has two API requests one is GET and the other is POST. When the 

user creates an account, a POST request with JSON body including user email, encrypted 

password, and username will be sent to the back end. Once received, the back end will create an 

Figure 9 Screenshot the log text of malicious activities conducted in nodes from the main 
server. Logs depicts once malicious activities are detected the server will automatically ban 
malicious nodes, and fully refund tokens to user. 
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object under the user schema. When the platform checks whether it is a registered account or not, 

a GET request is made with the path variable key and value pair. The value will be used to check 

the object in the user schema. Password validation takes an extra step as in the database the 

platform only holds encrypted passwords to ensure security. Encryption is done utilizing SHA-

256. SHA-256 is one function encryption meaning that no one can decrypt a user’s password 

given the hash. This ensures that only the user can log in and the platform and the DML platform 

do not know the password of the user. 

 

 Secondly, the API request is for the registration of node providers. Like that of User 

login, it has one GET request and one POST request. POST request is used to create node 

providers information with status on Mongo database and GET request is used to check existing 

node providers. 

 

 Lastly, after the user makes a successful payment and data has been successfully 

uploaded to Google Cloud Storage, the front end requests to create a ticket in the database. The 

ticket holds information about the user's email, pay amount, transaction hash, uploaded data, and 

status. Once a ticket is created in the database listener in the back end will trigger the machine 

learning process. After the completion of the machine learning and if the training is successful, 

the back end will upload the created model to Google Cloud Storage and the user will get the 

downloadable link in his or her email. Also, rewards will be given to the node providers 

according to accuracy. If it was unsuccessful due to malicious activities in one of the node 

providers, the user will get a full token refund and the deposited amount from malicious node 

providers will be distributed to other nodes who have successfully trained as a reward. 
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3.1.3 Database Schema 

 The database holds three schemas also known as collection in Mongo database. The 

template for the 3 collections is shown in Figure 10.  

 

Note that the current key and value pairs for each schema are for this first production model. In 

the future development for concise and suitable key-value pairs will be added and modified. 

 Other than the implementation of schema there has been an additional feature the team 

has utilized. The team has opened an additional listener port where the project monitors changes 

in the ticket schema. If any objects are added, deleted, or modified, the database will give an 

update directly to the back-end server. If the notification is related to the addition of a new object 

in the collection, the back end will trigger the machine learning process after downloading user 

data in Google Cloud Storage.  Databases listener also known as .watch() allowed the whole 

process in the back end to be conducted automatically. During the whole process error handling 

process has been managed. If there is any error encountered in machine learning, payment in 

blockchain, or sending model via email, such process will notify both back-end user admin. 

Figure 10 Screenshots of the schema layouts for ticket, user, and node providers. One on the left is for a 
ticket, the top right is for the user, and the bottom right is for node providers. 
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3.2 Front End Development 

 

3.2.1 Overview of Front End Development 

This section explains the front-end features of the current version of the platform and 

who it ties into the entire user flow. The front-end application aims to provide both customers 

and node providers with a centralized website to access the platform. To accomplish this, the 

web application is built using HTML/CSS for the client side and JavaScript for dynamic content. 

The current version of the platform offers three key features, namely transferring of data across 

servers, machine learning of datasets, and payout based on accuracy. 

 

3.2.2 Authentication Flow 

When a user first accesses the web page, they are greeted by a login page. 

 
Figure 11 Login page 

 

If the user already has either a customer or provider account, the user can provide the email 

account that they used to register with and the password. If the user has not yet registered, 

clicking the hyperlink below the login button takes the user to a separate page for registration. 
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Figure 12 Registration page 

 

The user inputs four fields as shown in Figure 12: 

1. Type of User 

2. Email 

3. Password 

4. Confirm password 

Once the user clicks on the register button, the ‘register()’ function inside the Javascript code is 

called using a POST request which checks the database for any duplicate email. If not, the 

information is passed on to the database to be inserted and the user is taken to a page according 

to the user type he or she has selected. 

 

If the user already has registered before and after logging in did not close out the browser, the 

login session is recorded inside the session variables. Once the user logs in, the application sets a 

‘user’ session variable with the user’s email to make sure that the particular user is authenticated. 

So, whenever the user needs to create a new tab, the user is already logged in with that particular 

account. 

 

When the user clicks the logout button inside the web page, the ‘logout()’ function will be called 

and the session variables will be reset so that the user cannot access additional private web pages 

without being authenticated again. The user will be then redirected to the login page. 
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3.2.3 Node Provider Page 

For node providers who wish to join the platform, they will be redirected to the node provider 

page after successfully creating an account and logging in. 

 

 
Figure 13 Page for node providers to join the platform 

 

Figure 13 shows the page for node providers. There is one input field for users to put their 

username in. The application recommends that users put their email address into the username to 

make sure that the platform has unique usernames. The current version of the application 

requires users to manually type in their email address and this is for the application to test 

whether there are duplicate usernames. 

 

 
Figure 14 An alert shows up if the user tries to register for duplicate usernames 

 

Once the user types in a username and clicks the Join button, two functions mainly 

‘getUserFunction()’ and ‘joinFunction()’ will be triggered. The ‘getUserFunction()’ fetches the 

data from the text input field and the ‘joinFunction()’ calls this to then pass the result through an 

API. This GET request checks if there is an existing entry with the same username. Figure 14 

shows that if a user looks to register multiple times with the same username, an alert will show 

up signaling an error. However, if there is no username of the same name on the database, the 

‘joinFunction()’ will move on to insert the user into the system. 
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Figure 15 A MetaMask alert instructs how much MATIC is needed to join the platform 

 

To ensure that node providers who register into the system understand that there are 

repercussions if they act maliciously, the platform takes a deposit from the node providers when 

they register. A MetaMask notification will be shown to let the users know about the deposit and 

only when they pay the deposit will the application register the information to the back end. 

 

 
Figure 16 An alert tells the node provider that it has been successfully registered 
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The registration process is complete for node providers once they see the alert saying that they 

have been registered. Now, node providers can wait for customers to upload data and start using 

their compute services to perform machine learning. 

 

3.2.4 Customer Page 

Once the user selects to log in or register as a customer, ‘display_customer_page()’ function will 

be called to bring up the dedicated customer page to the user. 

 

 
Figure 17 Customer page before data upload 

 

 

The email account of the customer will be displayed on the top along with the log-out 

button. Below, there are three buttons, Choose File, Pay, and Upload. At this stage, the customer 

can select a file to run machine learning on. Notice that the Upload button cannot be clicked, and 

the Pay button has to be pressed first before moving on to data upload. Once the data has been 

selected by clicking on the Choose File button, the user will have to press the pay button which 

will trigger the function ‘payFunction()’ in the script.js JavaScript file. This file serves as the 

code needed for communicating with the main server and MetaMask. MetaMask is needed for 

recording the transaction onto the blockchain and for fetching the information from the 

blockchain. The ‘payFunction()’ calculated the amount of DML tokens, tokens that the project 

uses to pay for transactions, needed to upload the specified amount of data. Here, we use the 

logic of 1 DML token per 10 Megabytes of data. So, for example, once we upload data of file 

size 23.1 MB, we are required to pay 2.26 DML plus any additional gas fees. Because the project 

is currently using the Polygon Amoy testnet, the gas fees are paid using MATIC. 
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Figure 18 MetaMask notification of a pending transaction 

 

A notification like Figure 18 will appear in the top right-hand corner and the customer will be 

able to pay using his or her account. Once the user presses confirm, the function moves on by 

recording the transaction onto the blockchain and the DML tokens will be released from the 

account to the deployed contract. 

 

 
Figure 19 Alert describing that the transaction is successful along with the transaction hash 
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Once the alert like in Figure 19 shows up, the user will now be able to click the Upload button on 

the main page.  

 

 
Figure 20 Code example of using POST request for Google Cloud Storage 

 

Once the customer clicks on the Upload button, the following code in Figure 20 will execute. 

Using HTTP POST requests and the API provided by Google Cloud, the project uploads the file 

to the predefined bucket in Google Cloud Storage. Authorization of the request is through a 

bearer token unique to the project and user while the body content is defined through a function 

called ‘readFileSyncBrowser()’ which takes the selected file and reads the contents through a 

buffer. The uploaded data will keep the name of the file and details of the user, wallet address, 

and status of the transaction as ‘Uploaded’, will be sent to the back end server through a POST 

request. This collection of data is called a ticket and it ensures that the transactions and data from 

the front end module are communicated to the back end server and eventually recorded in the 

database. 
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Figure 21 Alert that indicates uploading of data has been completed 

 

Once the data has been uploaded and a ticket sent to the back end, the alert shown in Figure 21 

pops up. This indicates that the process for uploading data and paying for the machine learning 

service has been finished and the user now should wait for an email to download the model and 

weights. 

 

3.3 Distributed Machine Learning Development 

 

3.3.1 Overview of Distributed Machine Learning Development 

The machine learning process for the application uses Python and TensorFlow to 

streamline the entire operation. Once data is uploaded to the cloud server, the back end fetches 

the data and stores it into the main server. The project consists of multiple Python files including, 

‘emnist_fedavg_main.py’ which is comprised of the machine learning execution logic of the 

server (main server), ‘simple_fedavg_tf.py’ which handles computation as clients (node 

providers), and ‘simple_fedavg_tff.py’ which handles the orchestration strategy of the server and 

clients. The code here is based on a TensorFlow Federated resource provided by Google and 

changes were made to the code to fit the project [10]. 

 

3.3.2 Node Providers 

 The node providers are represented in the ‘simple_fedavg_tf.py’ file which consists of 

functions that a client is expected to execute. The most important function is ‘client_update()’ 

which takes in a local model and a dataset specified by the main server to perform machine 

learning. The function returns the weights delta, client weights, and model outputs. 
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3.3.3 Main Server 

The ‘emnist_fedavg_main.py’ file acts as the main server. This file collects the data, 

splits the data according to the number of node providers, and runs iterations to collect the model 

outputs from the node providers. The file relies on functions defined in the 

‘simple_fedavg_tff.py’ file to collect model outputs and weights from the clients. The function 

‘build_federated_averaging_process()’ takes in a Keras model and server and client optimizers 

as arguments to create a TensorFlow Federated iterative process. This process forms the basis of 

the server and subsequent iterative processes across the client model outputs increase the 

accuracy of the server state. It is in this function that ‘client_update()’ from the client server gets 

executed to produce model outputs. 

 
 

Figure 22 displays the process for federated averaging, an algorithm that combines the model 

parameters from the node providers and aggregates them to form a global model. 

 

Figure 22 The system architecture and data flow for Federated Averaging.  Federated 
Averaging sends updated models. Figure adapted from [11]. 
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Figure 23 Code to run multiple iterations of federated machine learning 

 

Figure 23 shows part of the code where the dataset for clients is separated and through the 

iterative process, the server state is updated, and model outputs are returned. At the final 

iteration, the server state’s weights are assigned to the original model to create an updated model. 

This model is the result that customers will be able to download and can later use TensorFlow to 

load back the model. 

 

3.3.4 Uploading Model and Notifying Customers 

 For customers to get the model, the application uses Google Cloud Storage and SMTP to 

email the customers. After saving the model as a JSON file and the weights as an H5 file, the 

program uses the Google Cloud Storage Python library to upload both files into a bucket. 
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Figure 24 If machine learning is successful, customers receive an email with links to download the model and 

weights 

 

 

 
Figure 25 If machine learning is not successful, then the entire amount the customer initially paid is refunded 

 

The final process after uploading the files to Google Cloud Storage is to notify the customers 

with the links to the model and weights. The main server uses a function called ‘sendEmail()’ 

which uses SMTP and sends an email to the client. The parameters of the function will be 

defined by the result of the machine learning process. If the process is completed, then, an email 

like Figure 24 will be sent to the customer. The customer will have to click on the link to 

download the content at which point the customer can locally load the model using TensorFlow 

to perform additional machine learning. If the process fails due to malicious activity in the 

workflow, then an email like Figure 25 will be sent. The email describes that there has been data 

mishandling by node providers and that the application will refund the entire amount back to the 

customer. 
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3.3.5 Summary 

To conclude the description of machine learning, the Decentralized Machine Learning platform 

utilizes Python and TensorFlow to perform federated averaging across different node providers. 

It provides an alternative solution for block miners to utilize their computing power to provide 

machine learning services for different customers. 

 

4. Project Schedule and Future Work 
Section 4.1 discusses the project schedule that has been accomplished so far. Section 4.2 

discusses the future work and improvements of the project. The project can be further developed 

by improving security, deploying cloud servers, and experimenting with different algorithms. 

 

4.1 Project Schedule 

Objective Deadline Details Status 

Preliminary Blockchain 

Network Setup 

November 

15th 2023 

Set up blockchain network along with 

servers 

Completed 

Integration of Distributed 

Machine Learning system 

Dec 31st 

2023 

Integrate Google Cloud Platform with 

TensorFlow 

 

Completed 

Peer to Peer Network 

Implementation 

February 

15th 2024 

Develop a fully functional network 

layer that allows large data to set to be 

transferred at high-speed rate 

Completed 

Pivot to develop dApp February 

28th 2024 

Build application architecture and 

customize previously built servers for 

dApp 

Completed 

Development of Back-end March 

15th  2024 

Build back end server to integrate the 

database and machine learning code 

Completed 

Development of Front-

end 

March 

20th 2024 

Build front end for the user interface Completed 
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Testing of the platform April 7th 

2024 

Testing entire platform and automating 

entire process 

Completed 

Deployment April 15th 

2024 

Deploy the platform Completed  

Table 1 Project Time Schedule. It outlines the objective, deadline, and status of the tasks required 

to finish the project. 

 

Although the project had to be shifted and deviated from the original plan, the new project has 

been entirely completed with the website able to be used in localhost and the back-end APIs 

deployed on render. Shifting from constructing a blockchain with a new consensus layer to 

developing a dApp platform seems like a different project, yet the motivation of the project 

remains the same. Simulate an environment where node providers can earn tokens as a reward 

for performing machine learning as proof of useful work and users can train data utilizing our 

services. 

 
4.2 Future Work 

 

4.2.1 Overview of Future Work 

The following section describes further plans to improve and develop the project. Section 4.2.2 

describes further work needed for efficient communication between node providers and the 

server, Section 4.2.3 mentions the further work needed for data security and encryption, 4.2.4 

talks about the work needed for cloud deployment, and lastly, 4.2.5 discusses further work 

needed for improvement of federated machine learning. 

 

4.2.2 Back End  

The major limitation faced by the current back-end server is the lack of GPU power from 

the deployment platform. Currently, the back end is deployed on render.com. However, with the 

current plan we subscribe to we are given limited computational power and storage. Most 

importantly they did not provide GPU in the deployed server. Training machine learning in such 

an environment was not enough to run a federated averaging model in the deployed server. 

Therefore, the project deployed only the API management in the server and utilized our 
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computational power to perform machine learning. This was possible as we only needed to open 

the port and listen to changes in the database. Such limitations can be easily overcome by 

purchasing better deployment servers with GPU and storage devices. The team will look more at 

cloud server providers such as Lambda labs which provides servers with GPU, especially for 

machine learning purposes. 

 

Moreover, another limitation was the setup of WSS connections with the node providers. The 

first limitation was that Google Cloud Platform did not provide up to 2 or more virtual machines 

with GPU. They limited the quota by one and due to high demand, SSH connection to that 

virtual machine was extremely unstable. Hence the project has simulated 4 nodes in the local 

environment through multithreading. As the sample dataset did not require high specification 

training was able to be performed. In the future, the team plans to set up multiple virtual 

machines with GPU, establish WSS connections, and train data in a distributed manner. 

 

4.2.3 Security Measurements 

During the development of the project, the team realized that implementation of detecting 

“malicious activities” in node provider's server remains a difficult challenge. For instance, how 

can the main server know that the node provider tries to read or modify data sets or training? 

How can such detection happen without having the authority over physical computational 

power?  

 

Identifying such limitations, the project has researched two major aspects: secure 

federated averaging and a trusted execution environment. One way to ensure the security of data 

is by passing encrypted or non-readable data to the node providers. As such data has no value for 

node providers, they have no motivation to intercept the data sets. Such a method is done through 

a differential privacy technique which obfuscates the exchanged messages by properly adding 

Gaussian noise to Stochastic Gradient Descent (SGD) and allows it to maintain a convergence 

rate of 1/t where t is the total number of SGD from worker nodes [13].  A detailed algorithm for 

secure federated averaging is shown below in the figure. 
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By adding extra noise and keeping the convergence rate to 1/t, it allows training to be 

done on encrypted data and returned parameters can be used for model prediction for original 

datasets.  

However, such a method does not reveal the fact that node providers read the datasets, 

which remains a vulnerability point. Such areas can be checked from the main server by setting 

Trusted Execution Environment (TEE) on node providers. TEE is an environment to execute 

code in an isolated environment through hardware setup providing the confidentially and 

integrity of code and data [14]. As shown in the figure below, the application will run in a trusted 

environment that has limited access to the hardware. Data applications sent to TEE can only be 

trained within that environment and cannot be breached for reading or writing. 

Figure 26 Algorithm of Secure FedAvg. Illustrates the process of adding Gaussian noise for data that has been send 
from main server. Allows worker nodes to have noised data where it itself does not reveal original data of the user [15]. 
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Through TEE, the main server can now know whether the node providers try to read or 

write the user’s dataset. Yet, the major problem with TEE is that the project needs extra 

hardware configuration such as Intel SGX or AMD SEV. Without such hardware, TEE cannot be 

implemented. This limits the joiners of node providers which might lead to supply and demand 

problems of the platform. If there are not a lot of node providers, competition will not be 

performed, and users will not be encouraged to use the platform. There are other ways to perform 

isolated environments for the execution of code, yet detection of such malicious activities 

remains a main challenge to be studied and researched. 

 

4.2.4 Reward & Payment System 

 The major limitation of the reward and payment system for the current platform is that it 

does not accurately reflect the value to be paid and rewarded. For instance, as shown in the table 

below. 

 

 

Figure 27 Sample diagram showing the architecture design of TEE. 
Left is the application API request, and such is process in TEE with internal 
API. Note that TEE has it’s own limitation of hardware spaces allowing a 
secure environment for code execution [14]. 



36 

Current Scheme 

Payment Scheme Reward Scheme 

1 Token per 10Mb Accuracy weighting system 

Table 2 Outlines the current payment and reward schema for DML platform. 

 
 

The user pays according only to the size of the training data set and the reward is given solely 

based on the accuracy of the node providers. However, the objective of the project is to reward 

tokens based on computational power usage; hence, payment should be an estimate of how much 

computational power will be used and the reward should be the reflection of the computational 

power. As the size of data and accuracy are not enough to reflect computational power the 

project plans to change the scheme accordingly in the future.  

 

Improved Scheme 
Payment Scheme Reward Scheme 

Calculated based on Data size + Complexity 
of the model 

Weighting system based on: 
• Energy usage 
• Duration 
• Accuracy 
• F1 score 
• GPU usage 
• Number of process data 

 

Table 3 Outlines the improved scheme for the payment and reward system in the future of the DML 

platform. 

 
The team is still conducting heavy research on what criteria should be chosen to effectively 

estimate computational power in payment schemes and reflect on reward schemes. The key goal 

is to create a competitive market nature that motivates node providers to have better 

computational setups to get more tokens so that users can train data sets in a high computational 

environment.  
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4.2.5 Message Transfer 

 Current implementation of data transfer relies on Secure Copy Protocol (SCP) that is 

inside the Google Cloud Storage library. While transferring files using SCP does have 

advantages such as security and simplicity, however, it lacks interactivity which is especially 

important when transferring messages and not data across multiple node providers. Especially 

when only model parameters need to be shared, SCP lacks speed. Another alternative can be the 

Pub/Sub protocol provided by Google Cloud. Considering that Pub/Sub provides topics that any 

server can subscribe to presents a cost-effective and scalable solution for many more node 

providers. 

 

4.2.6 Improved Security 

 Data that is currently uploaded to the cloud server and then distributed to the different 

node providers does not have any security mechanism that prohibits node providers from 

maliciously modifying or retrieving customers’ data. The project can be further developed by 

implementing homomorphic encryption into federated learning. There are clear benefits to this. 

By using public and private keys for node providers, the main server, and customers, customers 

would have the utmost confidentiality of their data. Encryption would allow the full trust of 

customers and customers would be able to upload sensitive data to perform machine learning. 

There are multiple studies including an IBM study [12] where it states that there would be 

minimal disruption to the training time using encrypted data. However, because there has not yet 

been any commercial application of federated learning on homomorphically encrypted data, 

potential breakthroughs can significantly improve the security of the project. 

 

4.2.7 Cloud Servers 

In our current version of the project, all the machine learning files are stored on one 

server and handle distributed computation in a simulated environment. While 

‘emnist_fedavg_main.py’, which provides the code to iterate through multiple rounds of 

federated learning, can be stored locally in the main server, files that need to be executed by the 

client would be hosted in a cloud server that acts as a node provider. To truly replicate an 

environment where actual node providers register to the system, changing the code so that 



38 

machine learning can take place either on private data or public data is needed. In the case of 

private data, sharing of large amounts of data will be a bottleneck so developing an efficient data 

pipeline would be needed while for public data, exchanging model parameters securely through 

Pub/Sub would have to be developed as well. 

 

4.2.8 Distributed Machine Learning 

The current version of machine learning utilizes datasets the customer has uploaded to 

perform machine learning. However, due to the abundance of public datasets on the Internet, 

applying different sources of datasets that are similar in context can bring increased diversity and 

a bigger sample size for training. 

 

 

 
 

This also works in conjunction with a different optimization algorithm called Federated 

Distillation. The way the algorithm works is as follows: 

1.  The central server chooses an initial subset of soft-labels from the public dataset 

and broadcasts it to the participating client nodes. 

2.  Nodes receive the soft-labels and update the local model by putting 

through/distilling the soft-labels according to the model parameters. 

3.  The model is then trained using the local data to produce an improved model. 

4.  The public data is then used against the updated model. This results in a newly 

Figure 28 The system architecture and data flow for Federated Averaging.  Federated 
Averaging sends updated models. Figure adapted from [11]. 
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created set of soft-labels to send back to the central server. 

5.  The soft-labels are aggregated, and the global model is updated according to the 

soft-labels. This process is iterated until the central server decides the model is 

accurate enough. 

While the algorithm had been researched at the start of the project, due to the scope of the 

project being focused on private data, federated distillation was not implemented into the project. 

However, should the customer look to utilize public datasets along with private data, then 

federated distillation can be used to improve the federated learning process. 

  

The challenge would be to convert the existing machine learning pipelines to 

accommodate the public datasets. Once the customer has selected a public dataset to train with 

the private data, the platform would have to consider data compatibility, data quality, and biases 

inherent with the public dataset so that it does not significantly affect the model in one direction 

or another. 

 

Another modifiable component would be to provide a customizable option for customers. 

While current development has certain parameters defined in the program, adding this feature 

would provide users the flexibility to produce even more accurate models. As such, the user 

interface would have to be developed to receive extra inputs for machine learning such as 

learning rate, batch size, and number of rounds. 

 

5. Conclusion  
 To tackle the problem of high energy consumption in blockchain with the Proof of Work 

consensus algorithm, the project aims to convert the wasted energy to perform machine learning 

tasks. The project is expected to manage and convert wasted energy to useful energy via a 

decentralized application. The project consists of three components. First, the project includes a 

front-end interface for both user and node providers. Users can freely register and log in as both 

customers and node providers. Second, the project has a main server that accepts API requests 

from both the user interface and node providers. The project’s server accepts these API requests 

for data transfer and communication. Lastly, participating nodes are simulated in a cloud 
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environment. Using Google Cloud Platform (GCP), servers are set up to receive training data and 

models. 

 

The project introduces a new form of decentralized application that provides machine 

learning services to customers. Formulated from the mixture of Proof of Work, Proof of Stake, 

and computational power rating system, the blockchain allows the user to train custom data using 

the system, and node providers receive tokens based on accuracy as a reward. Development of 

the platform has been fully completed and the entire process from uploading data to notifying the 

customer of the results has been fully automated. The Decentralized Machine Learning platform 

provides machine learning services to a wide range of customers while preserving the market for 

computer power providers to earn tokens. 
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