

COMP4801 Final Year Project [2023-24]

Interim Report

Virtual Keyboard App Using Computer Vision

Supervisor: Dr Pan Jia (jpan@cs.hku.hk)

Student: Mak Tsz Shing (3035685914) (u3568591@connect.hku.hk)

Data of Submission: 21 January 2024

mailto:jpan@cs.hku.hk
mailto:u3568591@connect.hku.hk

 i

Abstract

Texting on mobile devices is usually achieved by tapping both thumbs on the built-in

on-screen virtual keyboard. However, the small form factor of mobile devices has

made typing difficult. Therefore, there is need for intuitive, flexible, and efficient

alternative text input method for mobile devices. In this project, a virtual keyboard

Android app using computer vision technique will be developed to allow users to type

like typing on a physical keyboard. The front camera of the mobile device will be

utilized to track users’ finger gestures of typing on a flat surface in front of the mobile

device. The app will be developed in Android Studio using Kotlin as the programming

language. The Hand landmark detection solution from MediaPipe will be used as the

machine learning solution for hand landmark detection. Several challenges and

limitations are identified, such as accuracy of tap detection and camera orientation.

This project is currently on schedule. A demo application with the hand detection and

tap detection using basic algorithm is developed. The next phrase will be developing

the actual keyboard application. It is expected that this project will be beneficial to

virtualization of other controllers using computer vision techniques.

 ii

Acknowledgement

I would also like to express gratitude to Dr. Pan Jia for supervising this final year

project and providing advice.

 iii

Table of Contents

Abstract ... i

Acknowledgement ... ii

List of Figures ... iv

Abbreviations ... v

1. Introduction .. 1

1.1. Background and motivation .. 1

1.2. Objectives and deliverables .. 2

1.3. Report content ... 2

2. Methodologies .. 3

2.1. IDEs and programming languages .. 3

2.2. Image Capture ... 3

2.3. Hand detection .. 4

2.4. Tap detection ... 5

2.5. Key input determination ... 6

3. Current Progress and Proposed Schedule .. 7

3.1. Current Progress ... 7

3.2. Proposed Schedule .. 7

4. Challenges and Limitations .. 8

4.1. Tap Detection Algorithm ... 8

4.2. Performance of the Hand landmark detection model ... 8

5. Conclusion ... 9

6. References .. 10

 iv

List of Figures
Figure 1. 21 hand landmarks detected by MediaPipe hand landmark detection
solution [6]. .. 4
Figure 2. Actual example of using MediaPipe Hand Landmarker.. 5
Figure 3. Demo Application Screenshot. ... 7

 v

Abbreviations

CV Computer Vision

ML Machine Learning

UI User Interface

 1

1. Introduction

1.1. Background and motivation

The emergence of mobile devices has revolutionized the way we communicate, work

and access information. As mobile networking and microprocessor technologies

progress, mobile devices such as smartphones are becoming powerful enough to

replace desktop computers [1]. In 2019, mobile users accounted for 53% of all web

traffic [2]. People are more likely to use a smartphone instead of a desktop computer

to perform tasks like online shopping, video streaming and browsing social media

sites. Moreover, there is an growing trend of people using their smartphones for work-

related tasks, such as emailing, calling and appointment scheduling [3].

Despite the convenience offered by mobile devices, their compact form factor makes

text typing difficult. For instance, texting on smartphones usually involves tapping on

the virtual on-screen keyboard with both thumbs. In contrast to a standard physical

keyboard that enables users to type with all ten fingers, a virtual on-screen keyboard

has considerably smaller keys that makes it hard for users to use multiple fingers for

typing. The small keystroke size on an on-screen keyboard would also reduce the

typing speed and increase the chance of making a typo. To improve the typing

experience on mobile devices, new features like autocorrect, SwiftKey [4], and

speech-to-text input are currently added to mobile virtual keyboard apps. These

features allow users to type on mobile devices without tapping on individual keys on a

virtual on-screen keyboard and reduces typing errors.

Inspired by the new features on mobile virtual keyboard apps, it is believed that

alternative text input methods are needed on mobile devices. The new text input

method should overcome the limitation of the small form factor and provide good

user experience. With the increase in computation power and resolution on mobile

devices, we are motivated to explore an innovative solution by leveraging computer

vision and machine learning techniques. We seek to provide users with a more natural

and intuitive way to interact with their mobile devices, ultimately enhancing their

typing experience and overall satisfaction.

 2

1.2. Objectives and deliverables

This paper introduces an Android virtual keyboard app that provides user with similar

typing experiences on a standard keyboard. Computer Vision techniques are leveraged

to track hand movements and gestures. Instead of tapping on the screen of mobile

devices, users can type by tapping on any flat surfaces as tapping on a real keyboard

in front of the device camera. The virtual keyboard app utilizes the device camera to

track users’ finger movements and gestures to determine the text input.

1.3. Report content

The remainder of this paper proceeds as follows. Section 2 explains the

methodologies for developing a vision-based virtual keyboard app. Section 3 reports

current progress and the proposed schedule. Section 4 discusses the challenges and

limitations in developing the app. Section 5 summarizes the report.

 3

2. Methodologies

This section introduces the methodologies of the project. Section 2.1 introduces the

IDEs and programming languages used. Section 2.2 introduces the library used to

capture user finger motions using the front camera. Section 2.3 – 2.5 introduces the 3

main stages to transforming typing actions into text input, including hand detection

(section 2.3), tap detection (section 2.4), and key input determination (section 2.5).

2.1. IDEs and programming languages

The app is developed using Android Studio. It is the official IDE developed by

Google particularly for development of Android applications [7]. Comparing to other

IDEs, Android Studio offers Graphical UI for drag-and-drop components on the app

interface.

Kotlin is used as the programming language for the app. It is a modern programming

language used by over 60% of professional Android developers [8]. In addition to its

compatibility with Java, Kotlin has a more concise syntax than Java. With the great

community support, developing the app using Kotlin would be quicker and easier.

2.2. Image Capture

The typing actions of user fingers are captured using the front camera of users’ mobile

devices. CameraX, a jetpack library developed by Google, is used to manage the

camera usage of the app, including frame capturing, frame previewing and frame

processing in background. CameraX also maintains the consistency of camera

behavior across various devices with different Android versions (Android 5.0+).

 4

2.3. Hand detection

Hand detection is done using the Hand landmark detection solution provided by

MediaPipe. MediaPipe is an open-sourced framework developed by Google Research

for building custom on-device ML solutions [5]. It abstracts the complexity of running

on-device ML solutions, such as CPU/GPU acceleration and deploying the ML

solutions on different platforms. It also supports well-known programming languages

such as JavaScript, Python and C++, and running on mobile environment such as iOS

and Android [5].

Mediapipe provides 14 pretrained solutions of common ML use cases, such as hand

gesture recognition and face detection. The hand landmark detection solution will be

used for hand detection in this project. The solution detects the existence of hand in

static or continuous stream of image data. If one or more hands exists, the model will

return the handedness (left or right hand) and the world coordinates of the 21 hand

knuckles (landmarks) on the hand in real time (see Figure 1 for details of the

landmark). Figure 2 shows a example of using the land landmark detection solution in

actual.

Figure 1. 21 hand landmarks detected by MediaPipe hand landmark detection solution [6]. Coordinates

of the landmarks of user’s hand on the captured image frame can be retrieved.

 5

Figure 2. Actual example of using MediaPipe Hand Landmarker. The key points on both hands are

shown in red dots.

There are several advantages for utilizing the hand landmark detection solution by

MediaPipe as the hand detection method in this project. First, the model is trained on

approximately 30K real-world images [6]. The effort of developing and training a

custom ML model for hand recognition can be eliminated. Second, the latency of the

model is acceptable for typing. According to the benchmark test done by Google on

Pixel 6, the latency of the ML model is 17.12ms and 12.27ms on CPU and GPU

acceleration respectively [6].

2.4. Tap detection

Tap detection is to detect whether the user has pressed a key on the virtual keyboard

or not. Since there are no sensors installed on the tapping surface, the tap detection

can only be determined based on the finger joint movements when a user press a key.

The current algorithm of tap detection is tracking the vertical motion of fingertips. A

finger is considered as tapping when its fingertip keeps moving down towards the

tapping surface and then moves up. The motion tracking is done by recording the

coordinates of fingertips returned by the hand landmark detection model over a period

of time. To eliminate errors, the downward displacement of fingertips must exceed a

certain threshold.

 6

2.5. Key input determination

Key input determination is done with reference to the coordinates of hand landmarks.

Before typing with the app, users need to place their hand in a reference position. For

instance, users need to place their left index finger on the “F” key and their right

index finger on the “J” key. The coordinates of these position are used as reference for

other keys on the virtual keyboard. A set of coordinates are rendered to map to other

keys on the virtual keyboard.

After a tap is detected, the coordinates of fingertips (landmark number 4, 8, 12, 16

and 20 on Figure 1) are retrieved by the hand Landmarker. The key input is

determined by comparing the fingertips coordinates with the reference coordinates

rendered in previous step.

To generate a key input as a keyboard, the Android TextService API will be utilized.

The input method service will be used to generate key input on the input field, and the

spell checker framework will be used to enhance typing experience by providing

predictions of word input.

 7

3. Current Progress and Proposed Schedule
This section reports the current progress and the proposed schedule of the project.

3.1. Current Progress

The project has proceeded on target as proposed on the project plan. Studies on image

processing techniques using OpenCV, Android app development using Android Studio

and MediaPipe libraries implementation in the Android platform are conducted in the

first semester.

A demo application with part of the features is developed after the studies. The demo

application introduces the hand landmark detection solution from MediaPipe and

perform basic tap detection using the current algorithm.

Figure 3. Demo Application Screenshot. A red line and dot are drawn on the right index finger when it

is tapping

3.2. Proposed Schedule

The immediate next step is to finish the demo application by adding more features

described in Section 2. It is expected that the actual virtual keyboard application will

be developed from January 2024 to the end of March 2024 with reference to the demo

application. Optimization and testing of the app will be carried in early April 2024.

Phase 3 is expected to be delivered before 23 April 2024 with the finalized virtual

keyboard app and the final report.

 8

4. Challenges and Limitations
This section introduces some challenges and limitations encountered during the
development of the app.

4.1. Tap Detection Algorithm
As described in Section 2.4, the current tap detection algorithm only involves the
vertical motion of fingertips. The algorithm does not determine whether the finger has
tapped on the tapping surface. False tapping may be detected when user moves the
hands in the air.

The current solution is to study the relations between fingertips and the tapping
surface when tapping. Possible methods including edge detection of fingers and the
tapping surface using image processing techniques. Tests will be conducted in finding
the intersection point between the fingertips and the tapping surface.

4.2. Performance of the Hand landmark detection model
As described in Section 2.3, the hand landmark detection model is already well-
trained with more than 30K real world images. However, the performance of the
model fluctuates when testing with the demo application. One possible reason is that
the palms are usually not visible to the camera when a user is typing. Only the fingers
are visible to the camera. Therefore, the model may have lower confidence of the
landmark coordinates compared to open palm.

One solution is to adjust the camera orientation. The camera angle can be set to a
higher position to capture the palms. However, it may affect the accuracy of the tap
detection algorithm. Also, the adjusted camera orientation may affect users’ sight to
the screen of the device. If it is unfeasible, alternatives will be stabilizing the
coordinates of hand landmarks by filtering out the frames with low confidence of
hand detection.

 9

5. Conclusion

This paper has presented a method to solve the difficulty of texting on small mobile

devices by developing a virtual keyboard app using CV on the Android platform. The

app generates text input by analyzing users’ finger movements captured by the front

camera on their mobile devices. It provides an intuitive and convenient text input

method on mobile devices.

An important avenue for future work is to develop a customizable CV-based virtual

controller app. Limited by the visible range of the front camera of mobile devices, the

virtual keyboard app developed in this project has limited number of virtual keys. If a

camera with wider visible area is used, there will be more room for users to customize

their own virtual keyboard. For instance, users can add self-defined macro keys or

change the key layout of the virtual keyboard. This will enhance user experience and

their efficiency in typing on the virtual keyboard.

Another possibility for future work will be adding more recognizable hand gestures to

the virtual keyboard app. Besides tapping on keys, users may also choose to control

their mobile device with other hand gestures like swiping their hands in air or swiping

their hands on the tapping surface. This also helps to increase the flexibility of the

virtual keyboard app and provide better user experience.

 10

6. References

[1] “A Computer In Your Pocket: The Rise of Smartphones”. Science Museum UK.

Accessed: Jan 21, 2024 [Online]. Available:

https://www.sciencemuseum.org.uk/objects-and-stories/computer-your-pocket-

rise-smartphones

[2] I. Bouchrika. “Mobile vs Desktop Usage Statistics for 2023”. Research.com.

Accessed: Jan 21, 2024 [Online]. Available:

https://research.com/software/mobile-vs-desktop-usage

[3] R. Lay and A. Stanford. “More and more people are using their smartphones for

work”. Deloitte. Accessed: Jan 21, 2024 [Online]. Available:

https://www2.deloitte.com/ch/en/pages/technology-media-and-

telecommunications/articles/immer-mehr-menschen-arbeiten-auf-dem-

smartphone.html

[4] “Microsoft SwiftKey Keyboard”. Microsoft. Accessed: Jan 21, 2024 [Online].

Available:

https://www.microsoft.com/en-us/swiftkey?activetab=pivot_1:primaryr2

[5] “MediaPipe | Google For Developers”. Google. Accessed: Jan 21, 2024

[Online]. Available: https://developers.google.com/mediapipe

[6] “Hand landmarks detection guide”. Google. Accessed: Jan 21, 2024 [Online].

Available:

https://developers.google.com/mediapipe/solutions/vision/hand_landmarker

[7] “Download Android Studio & App Tools – Android Developers”. Google.

Accessed: Jan 21, 2024 [Online]. Available: https://developer.android.com/studio

[8] “Kotlin and Android | Android Developers”. Google. Accessed: Jan 21, 2024

[Online]. Available: https://developer.android.com/kotlin

https://www.sciencemuseum.org.uk/objects-and-stories/computer-your-pocket-rise-smartphones
https://www.sciencemuseum.org.uk/objects-and-stories/computer-your-pocket-rise-smartphones
https://research.com/software/mobile-vs-desktop-usage
https://www2.deloitte.com/ch/en/pages/technology-media-and-telecommunications/articles/immer-mehr-menschen-arbeiten-auf-dem-smartphone.html
https://www2.deloitte.com/ch/en/pages/technology-media-and-telecommunications/articles/immer-mehr-menschen-arbeiten-auf-dem-smartphone.html
https://www2.deloitte.com/ch/en/pages/technology-media-and-telecommunications/articles/immer-mehr-menschen-arbeiten-auf-dem-smartphone.html
https://www.microsoft.com/en-us/swiftkey?activetab=pivot_1:primaryr2
https://developers.google.com/mediapipe
https://developers.google.com/mediapipe/solutions/vision/hand_landmarker
https://developer.android.com/studio
https://developer.android.com/kotlin

