

COMP4801 Final Year Project [2023-24]

FinalReport

Virtual Keyboard App Using Computer Vision

Supervisor: Dr Pan Jia (jpan@cs.hku.hk)

Student: Mak Tsz Shing (3035685914) (u3568591@connect.hku.hk)

Data of Submission: 26 April 2024

mailto:jpan@cs.hku.hk
mailto:u3568591@connect.hku.hk

 i

Abstract

Texting on mobile devices is usually achieved by tapping both thumbs on the built-in

on-screen virtual keyboard. However, the small form factor of mobile devices has

made typing difficult. Therefore, there is need for intuitive, flexible, and efficient

alternative text input method for mobile devices. In this project, a virtual keyboard

Android app using computer vision technique will be developed to allow users to type

like typing on a physical keyboard. The front facing camera of the mobile device will

be utilized to track users’ finger gestures of typing on a flat surface in front of the

mobile device. The app will be developed in Android Studio using Kotlin as the

programming language. The Hand landmark detection solution from MediaPipe will

be used as the machine learning solution for hand landmark detection. Algorithm and

solutions for detecting finger tapping motion and transferring the projection of

tapping position to key input in the keyboard layout is introduced. Several challenges

and limitations are identified, such as the difficulties in building relationship between

the tapping finger and the tapping surface, the limitation of motion tracking by a

single camera and the requirement for high device performance. It is expected that

this project will be beneficial to virtualization of other controllers using computer

vision techniques.

 ii

Acknowledgement

I would like to express a great gratitude to Dr. Pan Jia for supervising this final year

project and providing advice.

 iii

List of Contents

Abstract ... i

Acknowledgement ... ii

List of Figures .. v

List of Algorithms ... vi

Abbreviations ... vii

1. Introduction .. 1

1.1. Background and motivation .. 1

1.2. Objectives and deliverables .. 2

1.3. Report content ... 2

2. Methodologies .. 3

2.1. IDEs and programming languages .. 3

2.2 Android Input Method Service .. 3

2.3. Image Capture ... 4

2.4. Hand detection .. 5

2.5. Reference Position Construction .. 6

2.6. Tap detection ... 7

2.7. Key input determination ... 9

2.8. Key input generation ... 10

2.9. Word Suggestions ... 10

3. Observations and Findings ... 11

3.1. Tap Detection Threshold ... 11

3.2. Coordinates Queue Size .. 11

3.3. Key Input Determination .. 12
3.3.1. Initial Proposed Solutions ... 13
3.3.2. Thumb Input Determination .. 14
3.3.3. Index Finger Input Determination ... 14
3.3.4. Middle Finger Input Determination .. 18
3.3.5. Ring Finger Input Determination .. 20
3.3.6. Pinky Finger Input Determination ... 22

 iv

4. Results .. 24

4.1. Welcome Page ... 24

4.2. Preference Page ... 25

4.3. Keyboard Layout .. 25

4.4. Candidate View ... 27

5. Challenges and Limitations .. 27

5.1. Tap Detection Algorithm ... 27

5.2. Key Input Determination Method ... 28

5.3. Device Performance .. 28

6. Future Work ... 29

7. Conclusion ... 29

8. References .. 31

 v

List of Figures
FIGURE 1. THE LIFECYCLE OF AN IME [8] ... 4
FIGURE 2. 21 HAND LANDMARKS DETECTED BY MEDIAPIPE HAND LANDMARK DETECTION SOLUTION

[10]. COORDINATES OF THE LANDMARKS OF USER’S HAND ON THE CAPTURED IMAGE FRAME CAN

BE RETRIEVED. .. 5
FIGURE 3. ACTUAL EXAMPLE OF USING THE MEDIAPIPE HAND LANDMARK DETECTION MODEL. THE KEY

POINTS ON BOTH HANDS ARE SHOWN IN RED DOTS. ... 6
FIGURE 4. FINGER POSITIONING ON THE KEYBOARD LAYOUT .. 10
FIGURE 5. ILLUSTRATION OF TAP DETECTION THRESHOLD ... 11
FIGURE 6. INDEX FINGER TAPPING ON DIFFERENT KEYBOARD COLUMNS. THE UPPER PICTURE SHOWS THE

INDEX FINGER TAPPING ON THE FOURTH AND THE SEVENTH COLUMN. THE BOTTOM IMAGE SHOWS

THE INDEX FINGERS TAPPING ON THE FIFTH AND THE SIXTH COLUMN .. 15
FIGURE 7. INDEX FINGER TAPPING ON THE TOP ROW OF THE INNER COLUMN .. 15
FIGURE 8. INDEX FINGERTIP TAPPING ON THE BOTTOM KEYBOARD ROW OF THE INNER COLUMN 16
FIGURE 9. INDEX FINGER TAPPING ON THE MIDDLE ROW IN THE INNER COLUMN 16
FIGURE 10. INDEX FINGER TAPPING ON THE TOP KEYBOARD ROW OF THE OUTER COLUMN 17
FIGURE 11. INDEX FINGERTIP TAPPING ON THE BOTTOM KEYBOARD ROW OF THE OUTER COLUMN 17
FIGURE 12. DECISION TREE TO DETERMINE THE TAPPING KEYBOARD ROW OF INDEX FINGER 18
FIGURE 13. MIDDLE FINGER TAPPING ON THE TOP KEYBOARD ROW ... 19
FIGURE 14. MIDDLE FINGER TAPPING ON THE BOTTOM KEYBOARD ROW ... 19
FIGURE 15. MIDDLE FINGER TAPPING ON THE MIDDLE KEYBOARD ROW .. 19
FIGURE 16. DECISION TREE TO DETERMINE THE TAPPING KEYBOARD ROW OF MIDDLE FINGER 20
FIGURE 17. RING FINGER TAPPING ON THE TOP KEYBOARD ROW .. 20
FIGURE 18. RING FINGER TAPPING ON THE BOTTOM KEYBOARD ROW .. 21
FIGURE 19. RING FINGER TAPPING ON THE MIDDLE KEYBOARD ROW ... 21
FIGURE 20. DECISION TREE TO DETERMINE THE TAPPING KEYBOARD ROW FOR RING FINGER 21
FIGURE 21. PINKY FINGER TAPPING ON THE TOP KEYBOARD ROW .. 22
FIGURE 22. PINKY FINGER TAPPING ON THE BOTTOM KEYBOARD ROW .. 22
FIGURE 23. PINKY FINGER TAPPING ON THE MIDDLE KEYBOARD ROW ... 23
FIGURE 24. DECISION TREE TO DETERMINE THE TAPPING KEYBOARD FOR PINKY FINGER 23
FIGURE 25. WELCOME PAGE AND FUNCTIONS OF BUTTONS .. 24
FIGURE 26. PREFERENCE PAGE .. 25
FIGURE 27. KEYBOARD LAYOUT WITH CAMERA PREVIEW .. 26
FIGURE 28. KEYBOARD LAYOUT WITH KEYBOARD VIEW ... 26
FIGURE 29. CANDIDATE VIEW ... 27

 vi

List of Algorithms
ALGORITHM 1A. PROCEDURE TO FIND CANDIDATE TAPPING FINGERS .. 8

 vii

Abbreviations

CV Computer Vision

UI User Interface

 1

1. Introduction

1.1. Background and motivation

The emergence of mobile devices has revolutionized the way we communicate, work

and access information. As mobile networking and microprocessor technologies

progress, mobile devices such as smartphones are becoming powerful enough to

replace desktop computers [1]. In 2019, mobile users accounted for 53% of all web

traffic [2]. People are more likely to use a smartphone instead of a desktop computer

to perform tasks like online shopping, video streaming and browsing social media

sites. Moreover, there is an growing trend of people using their smartphones for work-

related tasks, such as emailing, calling and appointment scheduling [3].

Despite the convenience offered by mobile devices, their compact form factor makes

text typing difficult. For instance, texting on smartphones usually involves tapping on

the virtual on-screen keyboard with both thumbs. In contrast to a standard physical

keyboard that enables users to type with all ten fingers, a virtual on-screen keyboard

has considerably smaller keys that makes it hard for users to use multiple fingers for

typing. The small keystroke size on an on-screen keyboard would also reduce the

typing speed and increase the chance of making a typo. To improve the typing

experience on mobile devices, new features like autocorrect, SwiftKey [4], and

speech-to-text input are currently added to mobile virtual keyboard apps. These

features allow users to type on mobile devices without tapping on individual keys on a

virtual on-screen keyboard and reduces typing errors.

Inspired by the new features on mobile virtual keyboard apps, it is believed that

alternative text input methods are needed on mobile devices. The new text input

method should overcome the limitation of the small form factor and provide good

user experience. With the increase in computation power and resolution on mobile

devices, we are motivated to explore an innovative solution by leveraging computer

vision and machine learning techniques. We seek to provide users with a more natural

and intuitive way to interact with their mobile devices, ultimately enhancing their

typing experience and overall satisfaction.

 2

In the Consumer Electronics Show 2020 (CES2020), Samsung introduced a

conceptual product called “SelfieType”, which uses the front-facing camera as a

keyboard for mobile devices. The proprietary SelfieType AI engine will analyze user’s

finger movements and convert them into keyboard inputs on the smart phone. No

additional hardware is required. This technology provides a portable and user-friendly

typing experience on smart phones. [5]

With this idea, the project aims to build an innovative input method by developing an

application with similar idea to “SelfieType” and explores the possibility of building a

keyboard using computer vision techniques and finger motion tracking on mobile

devices.

1.2. Objectives and deliverables

The objective of the project is to develop a system level virtual keyboard app on the

Android platform that provides user with similar typing experiences on a standard

keyboard by leveraging Computer Vision and motion tracking techniques. Instead of

tapping on the screen of mobile devices, users can type by tapping on any flat surfaces

as tapping on a real keyboard in front of the device camera. The virtual keyboard app

utilizes the device camera to track users’ finger movements and gestures to determine

the text input. No external hardware is required.

1.3. Report content

The remainder of this paper proceeds as follows. Chapter 2 explains the detailed

methodologies for developing a vision-based virtual keyboard app. Chapter 3 reports

the observations and findings during the app development process. Chapter 4

introduces the app interface. Chapter 5 describes the challenges and limitations in

developing the app. Chapter 6 outlies the future plan. Chapter 7 summarizes the

report.

 3

2. Methodologies

2.1. IDEs and programming languages

The app is developed using Android Studio. It is the official IDE developed by

Google particularly for development of Android applications [6]. Comparing to other

IDEs, Android Studio offers Graphical UI for drag-and-drop components on the app

interface.

Kotlin is used as the programming language for the app. It is a modern programming

language used by over 60% of professional Android developers [7]. In addition to its

compatibility with Java, Kotlin has a more concise syntax than Java. With the great

community support, developing the app using Kotlin would be quicker and easier.

2.2 Android Input Method Service

To create a system level input method, an input method editor (IME) is created in the

app. A service class that extends the InputMethodService class is implemented to

handle key input events, send text inputs, and manage the keyboard UI in different

states. The states sequence follows the IME lifecycle (see Figure 1). Each state in the

lifecycle is responsible for a single task, such as inflating the keyboard layout and

creating the candidate view for showing word suggestions.

 4

Figure 1. The lifecycle of an IME [8]

2.3. Image Capture

The typing actions of user fingers are captured using the front camera of users’ mobile

devices. CameraX, a jetpack library developed by Google, is used to manage the

camera usage of the app, including frame capturing, frame previewing and frame

processing in background. CameraX also maintains the consistency of camera

behavior across various devices with different Android versions (Android 5.0+).

 5

2.4. Hand detection

Hand detection is done using the Hand landmark detection solution provided by

MediaPipe. MediaPipe is an open-sourced framework developed by Google Research

for building custom on-device ML solutions [9]. It abstracts the complexity of running

on-device ML solutions, such as CPU/GPU acceleration and deploying the ML

solutions on different platforms. It also supports well-known programming languages

such as JavaScript, Python and C++, and running on mobile environment such as iOS

and Android [9].

Mediapipe provides 14 pretrained solutions of common ML use cases, such as hand

gesture recognition and face detection. The hand landmark detection solution will be

used for hand detection in this project. The solution detects the existence of hand in

static or continuous stream of image data. If one or more hands exists, the model will

return the handedness (left or right hand) and the world coordinates of the 21 hand

knuckles (landmarks) on the hand in real time (see Figure 1 for details of the

landmark). Figure 2 shows a example of using the land landmark detection solution in

actual.

Figure 2. 21 hand landmarks detected by MediaPipe hand landmark detection solution [10].

Coordinates of the landmarks of user’s hand on the captured image frame can be retrieved.

 6

Figure 3. Actual example of using the MediaPipe hand landmark detection model. The key points on

both hands are shown in red dots.

There are several advantages for utilizing the hand landmark detection solution by

MediaPipe as the hand detection method in this project. First, the model is already

well-trained with approximately 30K real-world images and several rendered

synthetic hand models imposed over various background [10]. The effort of

developing and training a custom ML model for hand recognition can be eliminated.

Second, the latency of the model is acceptable for typing. According to the benchmark

test done by Google on Pixel 6, the latency of the ML model is 17.12ms and 12.27ms

on CPU and GPU acceleration respectively [10].

2.5. Reference Position Construction

Before typing, users need to place their hand in a stable position for a few seconds for

the app to record the reference positions after the initialization of the camera and the

hand landmark detection model. The reference position of the index finger, the middle

finger, the ring finger and the pinky finger will be constructed. The coordinates of the

reference positions are used as reference for key input determination on the virtual

keyboard.

When the hand landmark detection model first detects the presence of both hands

after the user starts the keyboard, the coordinates of fingertip landmarks of each frame

will be recorded in a queue. It is assumed that the variation of each recorded

coordinates will not be great, as the user’s fingers are staying stable on the tapping

surface. Therefore, the reference position of each fingertip is calculated as the mean

coordinates of the records in the queue.

 7

To improve the accuracy of the reference position, outliers will be removed from the

queue after the queue size exceeds a certain value. It is assumed that the recorded

coordinates in the queue of each fingertip are normally distributed. To remove outliers

in the queue of a fingertip, two temporary lists are constructed to store the horizontal

and vertical projected coordinates in the record queue respectively. The mean and the

standard deviation for both lists are then calculated. After that, the z-score of each

record in both lists are checked to be within the range of two standard deviations of

the corresponding list. If a record is out of the range, the corresponding coordinate

record in the queue is removed.

After the queue size for all required fingertips reached a certain value, it is confident

to adopt the mean coordinate from the queue of each fingertip as the reference

position. The projected coordinates of all reference positions constructed will be

shown on the screen.

2.6. Tap detection

Tap detection is to detect whether the user has pressed on a key on the virtual

keyboard or not. Since there are no external sensors installed, the fingertip tapping

can only be determined based on the finger joint movements when a user press a key.

The current algorithm of tap detection is based on the vertical motion tracking of

fingertips. In general, a fingertip is considered as tapping when its fingertip keeps

moving down towards the tapping surface across a period, and then moves up from

the surface. This V-shaped motion is tracked by recording the coordinates of the

fingertips returned by the hand landmark detection model in each frame into a queue.

The records in the queue can be then split into two parts. The first part checks if the

vertical projected coordinate of each record is greater than that of the previous record.

The second part checks if the vertical projected coordinate of each record is smaller

than that of the previous record. In the actual implementation, the queue is split in the

(n-1) frames, letting n to be the size of the queue. The first part of the queue has size

of (n-1) and the second part of the queue has size (n-(n-1)+1) = 2. Note that the (n-1)th

frame is presented in both the first and the second part of the split queue.

 8

Algorithm 1a. Procedure to find candidate tapping fingers

Algorithm 1a shows the actual implementation of finding candidate tapping fingers

based on the coordinates record queue. Line 6-10 checks if a fingertip in a hand is

moving towards the tapping surface by checking the vertical projected coordinate

records in the first part in the queue with (n-1) entries. Line 11-14 checks if the extent

of downward movement of a fingertip has exceeded a certain threshold. The threshold

value will be discussed in the Chapter 3.2. This check prevents false detection for tiny

fingertip movements. Line 15-19 checks if a fingertip in a hand has moved up

between the second last frame and the last frame in the record queue. If all three

conditions are satisfied, the fingertip is added to the candidate tapping finger list.

There may exist more than one finger detected as tapping at the same time. It is

because when a user taps with a finger, the neighboring finger may move together. It

 9

is hard for a user to tap with only one finger moving while other fingers staying still.

Therefore, if a finger is checked for performing the V-shaped tapping motion, it is

added to the candidate tapping finger list of the corresponding hand.

To find the actual finger that is tapping, the candidate fingertips are passed to the

second function (Algorithm 1b). The second function outputs the candidate fingertip

with the greatest vertical projected coordinate. It is assumed that when a user is

typing, only the finger pressing a key is touching the tapping surface, while other

fingertips are located above the tapping surface. The output of the second function is

the actual tapping finger of both hands.

Algorithm 1b. Procedure to find the actual tapping finger from candidate tapping fingers

2.7. Key input determination

Key input determination is done by examining the relationship between the projected

coordinates of the tapping fingertip (retrieved by the hand detection model) and the

reference position of all fingertips. When a finger is detected as tapping a key, the

projected coordinates of the tapping fingertip will be compared to the reference

positions for determining the key tapped on the keyboard layout.

The relationship between the projected coordinates of the tapping fingertip and the

reference position are generalized by observations. The details about the relationship

will be described in the Chapter 3.3.

 10

2.8. Key input generation

The determined key input is generated as text input in the text input field with the help

of InputMethodService. The determined key input will be passed to the service class

which extends the InputMethodService class. The InputConnection instance of the

service class, which is the communication channel from the input method to the

application that is receiving the text, is responsible to deliver the key input.

In addition, key input is also determined by a fixed finger positioning on the keyboard

layout. Each finger of a user is responsible for only a limited set of keys. Figure 4

shows the finger positioning on the keyboard. For the left hand, the pinky finger is

responsible for the keys “q”, “a” and “z”. The ring finger is responsible for the keys

“w”, “s” and “x”. The middle finger is responsible for the keys “e”, “d” and “c”. The

index finger is responsible for the keys “r”, “f”, “v”, “t”, “g”, and “b”. For the right

hand, the pinky finger is responsible for the keys “p”, “enter” and “backspace”. The

ring finger is responsible for the keys “o”, “l” and “period”. The middle finger is

responsible for keys “i”, “k” and “comma”. The index finger is responsible for keys

“y”, “h”, “n”, “u”, “j” and “m”.

Figure 4. Finger Positioning on the keyboard layout

2.9. Word Suggestions

A Natural Language Processing model is used to provide suggested words while the

user is inputting text. The model is adopted from an open-source GitHub repository.

When a user has enabled the word suggestion preference and he / she is typing on a

general text input field that does not contains sensitive information like passwords and

addresses, the characters input by the user are feed into the model, and the suggestions

from the model will be shown on the candidate view of the keyboard (see the Chapter

4.3 for detail).

 11

3. Observations and Findings
This chapter reports the observations and findings over the app development process.

3.1. Tap Detection Threshold
Described in line 11 -14 of Algorithm 1a in Chapter 2.6, The downward movement
extent of the fingertip of a tapping finger must exceed a certain threshold to prevent
false tap detection. This eliminates the noise due to fluctuation of the hand landmark
detection model result, and the small movements of fingertips.

The tap detection threshold is the minimum decrease in vertical projected coordinates
of tapping fingertip. By observations, the extent of movement of each fingertip is
different on a hand. The value represents the length portion of the height of the
captured frame and are determined throughout app testing.

Figure 5. Illustration of tap detection threshold

3.2. Coordinates Queue Size
The projected coordinates of hand landmarks in each frame returned by the hand
landmark detection model are stored into queues for motion tracking. The size of the
coordinates queue is the number of recent records of projected landmark coordinates
stored, which represents the length of the time period the motion of the hand
landmarks is tracked.

Before the reference positions of fingertips are constructed, the projected coordinates
of each fingertip (except the thumb tip) will be recorded in a set of queues. The size of
this set of queues represents the confidence required for constructing the reference
positions, as the reference positions are retrieved by the mean of coordinates in the
queues. If a smaller queue size is set, the time required for constructing the reference

 12

positions will be shorter as a smaller number of frames are required. However, the
probability of constructing skewed reference position will be higher due to fluctuation
in the hand landmark detection model results and the possible movements of user’s
hand during the period. If a greater queue size is set, the time taken for constructing
the reference positions will be longer. User experience will be affected because of the
long initialization time before the user can start typing. To provide a better user
experience, a shorter queue size for this set of queues is set in the actual
implementation. The method to overcome the shortcoming of skewed reference
position is to remove outliers in the queues, as described in Chapter 2.5.

After the reference positions are constructed, all the hand landmarks in the afterward
frames will be stored to another set of queues for tracking the tapping motion. The
size of this set of queues represents the time period a fingertip needs to move
downward continuously to be considered as tapping on a key. If a small key size is
set, tapping will be detected easily with the fingertip only moves downward in a short
period of time. The probability of false tap detection is higher due to the fluctuation in
the hand landmark detection model results. If a larger key size is set, the tapping
finger would have to move downward continuously in a longer consecutive period,
resulting in omitted detection for fast tapping motion. In the actual implementation, a
short queue size is set for this set of queues to detect all possible tapping. To decrease
the number of false tapping detected by noise, the tapping finger must also move
downward to an extent greater than the tap detection threshold, as described in the
previous chapter. Note that a finger is considered tapping on a key if the fingertip
moves downwards in a continuous number of frames and the extent of downward
displacement must exceed the corresponding tap detection threshold. The queue size
for this set of queues and the tap detection threshold are closely related.

Although the two queue sizes represents the time period for hand motion tracking,
they are dependent on the frames per second (fps) of the front camera of the user’s
mobile device. For the same queue sizes set, the time period will be shorter if the fps
of the camera is higher, and vice versa.

3.3. Key Input Determination
Since only the front facing camera of a smart phone is used, the camera’s depth
information cannot be retrieved. The world coordinates of the fingertips cannot be
determined by stereo vision or camera calibration. When using the app, the smart
phone must be placed perpendicularly on the tapping surface in front of the user in the
landscape orientation. The front facing camera will be viewing a plane that is

 13

perpendicular to the tapping surface. Although the horizontal position on the keyboard
can be obtained from the projected coordinates easily, the depth information of the
camera cannot be determined, which represents the row on the keyboard layout.
Therefore, an alternative solution is needed to determine the row of the keyboard
layout the user’s finger is tapping to generate a correct text input.

This chapter explains the alternative methods to determine the correct text input on
detecting a tapping finger. Chapter 3.3.1 introduces the initial proposed solutions and
the experimental result. Chapter 3.3.2 to Chapter 3.3.6 describes the method adopted
in the actual application to determine the key input for each finger based on the
relationship between the projected coordinates of the tapping fingertip and the
reference positions.

3.3.1. Initial Proposed Solutions

The first proposed solution is to determine the row of the keyboard by the projected
size of hands on the captured image. It is suggested that the projected size of the hand
will be larger if the user is tapping on the top row of the keyboard, as the top row of
the keyboard is closer to the front facing camera. It is assumed that the reference
positions are representing the position of keys on the middle row of the keyboard. The
reference size of the hands tapping on the middle row of the keyboard row is
recorded. Then, on a tap detected, the projected size of the tapping hand is compared
against the reference size.

However, in actual testing, it is found that the change in projected size of hand is too
small when fingers of the hand is tapping on keys on different rows on the keyboard.
It is because the difference in distance between the rows on the keyboard layout is
small. In addition, the palms would be staying stable on the tapping surface. Thus, the
size of hand does not change significantly throughout the typing process.

An improved method to determine the tapping row on the keyboard is by comparing
the projected size of individual fingers instead of comparing the size of the hand. The
size of a finger can be retrieved by calculating the distance between the landmarks.
Yet, the change in size of fingers tapping on different rows on the keyboard is still too
small, because of the small distance between different rows on the keyboard. In
addition, the orientation of the fingers are not constant when tapping on different
keyboard rows. For instance, the index fingers are more flattened when tapping on the
top row and are more upright when tapping on the bottom row. The different
orientation of fingers would make distance comparison inconsistent.

 14

By observing the difference in the orientation of fingers when tapping on different
keys, another method for determining the tapping row on the keyboard is suggested.
This method checks the orientation of fingers (flattened or upright) by comparing the
slope between the projected landmarks on the finger. A flattened finger would have a
smaller slope and an upright finger would have a greater slope. However, since the
fingers are perpendicular to the camera’s viewing plane, the actual distance between
landmarks in the finger cannot be projected on the captured frame. The connection
line between the projected finger landmarks will appear to be straight lines in the
captured frame, especially for the fingers near to the center of the frame. The
orientation of fingers cannot be distinguished.

3.3.2. Thumb Input Determination

According to the finger positioning, the thumbs on both hands are only responsible for
the spacebar on the keyboard. Thus, when the thumb is detected as tapping, the key
input will be determined as spacebar directly.

3.3.3. Index Finger Input Determination

The key input determination for the index finger is the most complex, as the index
fingers are responsible for two columns of keys on the keyboard layout. The left index
finger is responsible for the keys on the fourth and fifth column in the keyboard
layout, including the keys “r”, “f”, and “v” on the forth column, and keys “t”, “f” and
“b” on the fifth column. The right index finger is responsible for the keys on the sixth
and seventh column in the keyboard layout, including the keys “y”, “h” and “n” on
the sixth column, and keys “u”, “j” and “m” on the seventh column. Thus, in addition
to determining the keyboard row the index finger is tapping, it is also needed to
determine the keyboard column the index finger is tapping.

The first step is to determine the keyboard column the index finger is tapping on. It is
done by comparing the horizontal projection of the tapping index finger with a certain
value. For the left index finger, if the horizontal projection of the fingertip is less than
the value, the tapping keyboard column will be the fourth column. For the right index
finger, if the horizontal projection of the fingertip is greater than the value, the tapping
keyboard column will be the seventh column. In the actual implementation, the value
is set as the horizontal coordinate of the left index finger’s reference position plus 3%
of the image width for the left index finger, and is the horizontal coordinate of the
right index finger’s reference position minus 3% of the image width for the right
index finger.

 15

Figure 6. Index finger tapping on different keyboard columns. The upper picture shows the index

finger tapping on the fourth and the seventh column. The bottom image shows the index fingers

tapping on the fifth and the sixth column

When the index finger is tapping on the fourth or the seventh column (the inner
column), the tapping keyboard row is determined by the comparison of the horizontal
distance between the projected fingertip of the middle finger and the reference
position to the index finger, the middle finger, and the ring finger. It is observed that
when the index finger is tapping on the top keyboard row, the fingers will become
more spread on the projection. And when the index finger is tapping on the bottom
keyboard row, the fingers will become more congregate on the projection. Therefore,
comparing the horizontal distance between the projected fingertip of the middle finger
and the reference positions for neighboring fingers is a valid measure of the spread of
the fingers.

If the horizontal distance between projection of the fingertip of the middle finger to
the reference position of the ring finger is the shortest, the index finger is determined
as tapping on the top row, which is the “r” key for the left index finger and the “u”
key for the right index finger.

Figure 7. Index finger tapping on the top row of the inner column

 16

If the horizontal distance between projection of the fingertip of the middle finger to
the reference position of the index finger is the shortest, the index finger is determined
as tapping on the bottom row, which is the “v” key for the left index finger and the
“m” key for the right index finger.

Figure 8. Index fingertip tapping on the bottom keyboard row of the inner column

If both conditions are not satisfied, the index finger is defined as tapping on the keys
on the middle keyboard row, which is the “f” key for the left index finger and the “j”
key for the right index finger.

Figure 9. Index finger tapping on the middle row in the inner column

When the index finger is tapping on the fifth or the sixth column (the outer column),
the tapping keyboard row is determined by the relationship between the projected
fingertip of the pinky finger and the reference position of the pinky finger and the ring
finger.

When the horizontal projection of the pinky fingertip is outside the range of all
reference coordinates (projected to the left of left pinky’s reference coordinate and
projected to the right of the right pinky’s reference coordinate), the index finger is
considered tapping on the top keyboard row. That is, the “t” key for the left index
finger and the “y” key for the right index finger.

 17

Figure 10. Index finger tapping on the top keyboard row of the outer column

Otherwise, the horizontal distance between the projection of the pinky fingertip and
the reference position of the ring finger and the pinky finger are compared. If the
horizontal distance between the projection of the pinky fingertip and the reference
position of the ring finger is shorter, the index finger is considered as tapping on the
bottom row, which is the “b” key of the left index finger and the “n” key of the right
index finger.

Figure 11. Index fingertip tapping on the bottom keyboard row of the outer column

The decision tree below shows the decision of the tapping keyboard row of the index
finger.

 18

Figure 12. Decision tree to determine the tapping keyboard row of index finger

3.3.4. Middle Finger Input Determination

The middle finger on the left hand is responsible for the keys on the third column in
the keyboard layout, including the “e”, “d” and “c” key. The right middle finger is
responsible for the keys on the third last column in the keyboard layout, including the
“i”, “k” and “comma” key.

By observation, the horizontal projection of the tapping position of the middle finger
varies when it taps on different keyboard rows, due to the trapezoid layout of the
alphabet keys on a traditional keyboard layout. Thus, the projection of the tapping
position of the middle finger can be compared with the reference position of the index
finger, the middle finger, and the ring finger.

If the horizontal distance between the projection of the tapping position of middle
finger to the reference position of the ring finger is the shortest, the middle finger is
determined as tapping on the top row, which is the “e” key for the left middle finger
and the “i” key for the right middle finger.

 19

Figure 13. Middle finger tapping on the top keyboard row

If the horizontal distance between the projection of the tapping position of middle
finger to the reference position of the index finger is the shortest, the middle finger is
determined as tapping on the bottom row, which is the “c” key for the left middle
finger and the “comma” key for the right middle finger.

Figure 14. Middle finger tapping on the bottom keyboard row

If both conditions are not satisfied, the middle finger is defined as tapping on the keys
on the middle keyboard row, which is the “d” key for the left middle finger and the
“k” key for the right middle finger.

Figure 15. Middle finger tapping on the middle keyboard row

The decision tree below shows the decision of the tapping keyboard row of the middle
finger.

 20

Figure 16. Decision tree to determine the tapping keyboard row of middle finger

3.3.5. Ring Finger Input Determination

The ring finger on the left hand is responsible for the keys on the second column in
the keyboard layout, including the “w”, “s” and “x” key. The right ring finger is
responsible for the keys on the second last column in the keyboard layout, including
the “o”, “l” and “period” key.

Similar to the middle finger, the determination of the tapping keyboard row for the
ring finger depends on the horizontal distance between the projection of tapping
position and the reference positions of the middle finger, the ring finger and the pinky
finger.

If the horizontal distance between the projection of the tapping position of ring finger
to the reference position of the pinky finger is the shortest, the ring finger is defined
as tapping on the keys on the top keyboard row, which is the “w” key for the left ring
finger and the “o” key for the right ring finger.

Figure 17. Ring finger tapping on the top keyboard row

If the horizontal distance between the projection of the tapping position of ring finger
to the reference position of the middle finger is the shortest, the ring finger is defined

 21

as tapping on the keys on the bottom keyboard row, which is the “x” key for the left
ring finger and the “period” key for the right ring finger.

Figure 18. Ring finger tapping on the bottom keyboard row

If both conditions are not satisfied, the ring finger is defined as tapping on the keys on
the middle keyboard row, which is the “s” key for the left ring finger and the “l” key
for the right ring finger.

Figure 19. Ring finger tapping on the middle keyboard row

The decision tree below shows the decision of the tapping keyboard row of the ring
finger.

Figure 20. Decision tree to determine the tapping keyboard row for ring finger

 22

3.3.6. Pinky Finger Input Determination

The pinky finger on the left hand is responsible for the keys on the first column in the
keyboard layout, including the “q”, “a” and “z” key. The right pinky finger is
responsible for the keys on the last column in the keyboard layout, including the “p”,
“enter” and “backspace” key.

When the pinky finger is tapping on the top keyboard row (key “q” on the left hand
and key “p” on the right hand), it is observed that the pinky tip will exceed the
boundary of all the reference positions. Thus, if the projection of left pinky’s tapping
position is on the left of the left pinky finger’s reference position, the key input will
be determined as the “q” key on the top row. Similarly, if the projection of the right
pinky’s tapping position is on the right of the right pinky finger’s reference position,
the key input will be determined as the “p” key. In addition, the distance between the
projection of the tapping pinky tip and the pinky’s reference position must exceed a
certain threshold. The current value of the threshold is 5% of the image width.

Figure 21. Pinky finger tapping on the top keyboard row

When the pinky finger is tapping on the bottom keyboard row (key “z” on the left
hand and key “backspace” on the right hand), it is observed that the nearest reference
position to the projected pinky tip is the ring finger’s reference position for both
hands. Therefore, if the pinky of either hand taps on a position which its projection is
horizontally nearer to the ring finger’s reference position than the pinky finger’s
reference position, the row of key input will be determined as the bottom row. The
key input will be the “z” key for the left pinky and the “backspace” key for the right
pinky finger.

Figure 22. Pinky finger tapping on the bottom keyboard row

 23

If neither of the two conditions are satisfied, the tapping position of the pinky must be
nearest to the reference position of the pinky finger, which represents the pinky finger
is tapping on the middle row of the keyboard.

Figure 23. Pinky finger tapping on the middle keyboard row

The decision tree below shows the decision of the tapping keyboard row of the pinky
finger.

Figure 24. Decision tree to determine the tapping keyboard for pinky finger

 24

4. Results

4.1. Welcome Page

Figure 25. Welcome page and functions of buttons

After a user has installed and opened the app, a welcome page is shown on the screen.
Users can set up the keyboard in their device according to the step-by-step guide.
Firstly, users need to enable the cv keyboard service on their device. The button in
step 1 will direct user to the settings page of on-screen keyboard. Secondly, users need
to set the cv keyboard service as current input method on their device by clicking on
the button in step 2. The button on step 3 will direct users to another page with text
input fields for testing the keyboard.

 25

4.2. Preference Page

Figure 26. Preference Page

Users can adjust the configuration of the hand detection model and the keyboard. The
configuration options for the hand detection model are the parameters used to setup
the model. The configuration options for the keyboard includes the keyboard height,
enabling / disabling word suggestions and auto capitalization.

4.3. Keyboard Layout
Before using the keyboard, users need to ensure that the orientation of their device is
in landscape. It is because the front facing camera can hardly include both the users’
hands and the tapping surface to the scope of vision due to the long distance between
the camera and the tapping surface. Because of the limitation on the device
orientation, this keyboard app can only be used for input fields that the parent activity

 26

supports landscape orientation. Users need to ensure the current app satisfy this
requirement.

Figure 27. Keyboard layout with camera preview

Figure 28. Keyboard layout with keyboard view

There are two layouts for the keyboard. The first one is the default layout with camera
preview (Figure 8). The camera preview will be shown once the hand landmark
detection model is initialized. The status bar below the camera preview indicates the
status of the camera and the status of reference positions construction. Before the
camera is ready, the text on the status bar will be “initializing camera”. After the
camera is ready and the app requires to construct the reference positions, the text on
the status bar will become “Generating Keyboard. Please stay your fingers still”. After
the reference positions are constructed, the text on the status bar will become
“Keyboard ready. Please start typing”. Users can start typing at this moment.

 27

The second layout comes with the keyboard view instead of the camera preview. It
can be shown when the user press the “switch keyboard layout view” button on the
right bottom corner (shown in Figure 8). This layout enables users to check the finger
positioning and the position of keys on the keyboard. When this layout is enabled, the
camera and the hand landmark detection model are still running in the background.
The camera preview and the results of the hand landmark detection are set to
invisible.

4.4. Candidate View

Figure 29. Candidate View

When a user enables the “word suggestions” preference, word suggestions will be
provided if the user is inputting text in a general text field. Note that for security
reason, word suggestions will not be provided if the input field contains sensitive
information like passwords. The characters input by the user will be passed to the
natural language processor model. If the model returns any word suggestions, the first
three suggestions will appear in the candidate view, which is located above the
keyboard layout (see Figure 29). If the user would like to pick the suggested word,
they have to touch on the suggested word on the screen. If there is no word suggestion
or word suggestion is disabled, the candidate view is invisible.

5. Challenges and Limitations
This section introduces some challenges encountered during the development of the
app, and discuss the limitations on using the app.

5.1. Tap Detection Algorithm
As described in Chapter 2.5, the current tap detection algorithm only depends on the
vertical motion of fingertips. The short coming of this algorithm is that it is
independent to the tapping surface. Current algorithm cannot tell if a moving down
finger has touched the tapping surface or not. False tapping are detected when user
moves the hands in the air.

 28

There are difficulties in building a relationship between the fingertips and the tapping
surface, as the front camera of the user’s device is not perfectly aligned with the
tapping surface. The front camera is at a certain distance above the tapping surface.
Thus, the tapping surface is projected as an area on the captured image. There is no
reference level for determining the touch event on the tapping surface.

The current solution is to add an additional check to the distance between the
projected coordinates of the tapping fingertip and the average vertical coordinate of
the reference positions of the corresponding hand in tap detection. As a result, tapping
is only detected when the tapping position of a fingertip is around the level of the
hand’s reference position. This helps to reduce the false tapping detected for moving
the hand in the air. However, this check still cannot prevent the false tap detection at
the position which its projection is near the reference positions.

5.2. Key Input Determination Method
As mentioned in Chapter 3.4, the key input cannot be determined directly from the
projected coordinates of the tapping fingertip. The current alternative method was
deduced by generalizing the observations by the author. It may not work satisfactory
for some parties, as the typing behavior is different among individuals. For instance, a
strict rule on finger positioning is set for this vision-based keyboard app, but it is
believed that not every individual would follow this finger positioning exactly in daily
typing tasks.

In addition to the challenge of single camera, an additional challenge is to deduce a
generalized key input determination method that is satisfied by most people on the
vision-based keyboard. Unlike an on-screen virtual keyboard that contains a definite
boundary for keys on the keyboard, an invisible vision-based keyboard requires the
user to memorize the relative positions and order of keys, as well as to type according
to muscle memories of typing on a traditional physical keyboard. A suggested solution
to overcome the challenge is to build a machine learning model which learns the
typing behavior of a specific user. As a result, the keyboard would be optimized
custom keyboard app for each user. This solution would be one of the future work of
this project.

5.3. Device Performance
Due to the variety of Android devices, the hardware performance difference across

 29

devices can be large. The vision-based keyboard requires a high-level hardware
performance, including the front facing camera and CPU/GPU. Since the keyboard
app mainly uses the front-facing camera to capture finger movements, the resolution
of the front camera must be high enough for the hand detection model to detect the
presence of hands. In addition, the frames per second (fps) of the front facing camera
is also important for motion tracking. For the calculation unit, a great number of
operations to the CPU/GPU will be required by the hand landmark detection model.
Since both the front facing camera and the CPU/GPU are demanding throughout the
typing process, the power consumption of the app is expected to be large. Therefore,
although there are no restrictions set for running the keyboard app on low-end
Android devices, the performance of the keyboard app is expected to be poor on those
devices. Therefore, devices with high hardware performances and good quality
camera are preferred.

6. Future Work
Most proposed features are implemented in the app. However, there are still possible
improvements to improve the user experience of the keyboard app. First, auto
correction and spell-checking can be added to the app. This would greatly reduce the
compact of inaccurate tap detection and key input determination. Second, a better
word suggestion model can be developed. The word suggestion model provides
customized word suggestions by building a custom dictionary for each user.

Moreover, the model used for hand detection can be replaced by a better model that is
designated for detecting hands in typing gesture, so that the performance of hand
detection can be improved. Furthermore, addition models can be added to detect hand
gestures like finger tapping, finger swiping and open palm. Not only the accuracy for
tap detection can be increased, but the additional supported gestures can be utilized
for additional keyboard control, such as choosing the word suggestions presented in
the candidate view and clear all text in the text input field.

7. Conclusion

This paper has presented a method to solve the difficulty of texting on small mobile

devices by developing a virtual keyboard app using CV on the Android platform. The

app generates text input by analyzing users’ finger movements captured by the front

facing camera on their mobile devices. It provides an intuitive and convenient text

input method on mobile devices.

 30

The major challenge of the project is detecting finger tap detection and translating the

projection of tap position into correct key input on the keyboard layout. As only the

front facing camera of the user’s device is used as sensor for finger motion tracking, it

is hard to determine the row on the keyboard the user’s finger is tapping on.

Alternative methods on determining the key input introduced in this paper was

deduced from observations by the author. However, there are limitations on the

accuracy of the alternative methods. Furthermore, there are limitations on the

requirement of hardware performance of the running device.

Despite the strict limitations of the project, it is believed that vision-based controllers

still transcend traditional hardware controllers on the extent of customizability,

extendibility and portability. Therefore, an important avenue for future work is to

rebuild the app with using more cameras. The limitations in this project can be

resolved by more advanced computer vision technologies such as stereo vision. It is

hoped that there will be more innovative vision-based controllers in the future.

 31

8. References

[1] “A Computer In Your Pocket: The Rise of Smartphones”. Science Museum UK.

Accessed: Apr 26, 2024 [Online]. Available:

https://www.sciencemuseum.org.uk/objects-and-stories/computer-your-pocket-

rise-smartphones

[2] I. Bouchrika. “Mobile vs Desktop Usage Statistics for 2023”. Research.com.

Accessed: Apr 26, 2024 [Online]. Available:

https://research.com/software/mobile-vs-desktop-usage

[3] R. Lay and A. Stanford. “More and more people are using their smartphones for

work”. Deloitte. Accessed: Apr 26, 2024 [Online]. Available:

https://www2.deloitte.com/ch/en/pages/technology-media-and-

telecommunications/articles/immer-mehr-menschen-arbeiten-auf-dem-

smartphone.html

[4] “Microsoft SwiftKey Keyboard”. Microsoft. Accessed: Apr 26, 2024 [Online].

Available:

https://www.microsoft.com/en-us/swiftkey?activetab=pivot_1:primaryr2

[5] Samsung Newsroom. “How C-Lab is Preparing for a Future Full of Potential –

Part 1: C-Lab Inside”. Accessed Apr 26, 2024 [Online]. Available:

https://news.samsung.com/global/how-c-lab-is-preparing-for-a-future-full-of-

potential-part-1-c-lab-inside

[6] “Download Android Studio & App Tools – Android Developers”. Google.

Accessed: Apr 26, 2024 [Online]. Available:

https://developer.android.com/studio

[7] “Kotlin and Android | Android Developers”. Google. Accessed: Apr 26, 2024

[Online]. Available: https://developer.android.com/kotlin

[8] Google Developers. “Create an input method”. Google. Accessed: Apr 26, 2024

https://www.sciencemuseum.org.uk/objects-and-stories/computer-your-pocket-rise-smartphones
https://www.sciencemuseum.org.uk/objects-and-stories/computer-your-pocket-rise-smartphones
https://research.com/software/mobile-vs-desktop-usage
https://www2.deloitte.com/ch/en/pages/technology-media-and-telecommunications/articles/immer-mehr-menschen-arbeiten-auf-dem-smartphone.html
https://www2.deloitte.com/ch/en/pages/technology-media-and-telecommunications/articles/immer-mehr-menschen-arbeiten-auf-dem-smartphone.html
https://www2.deloitte.com/ch/en/pages/technology-media-and-telecommunications/articles/immer-mehr-menschen-arbeiten-auf-dem-smartphone.html
https://www.microsoft.com/en-us/swiftkey?activetab=pivot_1:primaryr2
https://news.samsung.com/global/how-c-lab-is-preparing-for-a-future-full-of-potential-part-1-c-lab-inside
https://news.samsung.com/global/how-c-lab-is-preparing-for-a-future-full-of-potential-part-1-c-lab-inside
https://developer.android.com/studio
https://developer.android.com/kotlin

 32

[Online]. Available: https://developer.android.com/develop/ui/views/touch-and-

input/creating-input-method#GeneralDesign

[9] “MediaPipe | Google For Developers”. Google. Accessed: Apr 26, 2024

[Online]. Available: https://developers.google.com/mediapipe

[10] “Hand landmarks detection guide”. Google. Accessed: Apr 26, 2024 [Online].

Available:

https://developers.google.com/mediapipe/solutions/vision/hand_landmarker

[11] mccorby. “Machine Learning”. Github repository. Accessed Apr 26, 2024

[Online]. Available:

https://github.com/mccorby/MachineLearning/tree/master?tab=readme-ov-file

https://developer.android.com/develop/ui/views/touch-and-input/creating-input-method#GeneralDesign
https://developer.android.com/develop/ui/views/touch-and-input/creating-input-method#GeneralDesign
https://developers.google.com/mediapipe
https://developers.google.com/mediapipe/solutions/vision/hand_landmarker
https://github.com/mccorby/MachineLearning/tree/master?tab=readme-ov-file

