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Abstract 

Texting on mobile devices is usually achieved by tapping both thumbs on the built-in 

on-screen virtual keyboard. However, the small form factor of mobile devices has 

made typing difficult. Therefore, there is need for intuitive, flexible, and efficient 

alternative text input method for mobile devices. In this project, a virtual keyboard 

Android app using computer vision technique will be developed to allow users to type 

like typing on a physical keyboard. The front facing camera of the mobile device will 

be utilized to track users’ finger gestures of typing on a flat surface in front of the 

mobile device. The app will be developed in Android Studio using Kotlin as the 

programming language. The Hand landmark detection solution from MediaPipe will 

be used as the machine learning solution for hand landmark detection. Algorithm and 

solutions for detecting finger tapping motion and transferring the projection of 

tapping position to key input in the keyboard layout is introduced. Several challenges 

and limitations are identified, such as the difficulties in building relationship between 

the tapping finger and the tapping surface, the limitation of motion tracking by a 

single camera and the requirement for high device performance. It is expected that 

this project will be beneficial to virtualization of other controllers using computer 

vision techniques. 
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1. Introduction 

1.1. Background and motivation 

The emergence of mobile devices has revolutionized the way we communicate, work 

and access information. As mobile networking and microprocessor technologies 

progress, mobile devices such as smartphones are becoming powerful enough to 

replace desktop computers [1]. In 2019, mobile users accounted for 53% of all web 

traffic [2]. People are more likely to use a smartphone instead of a desktop computer 

to perform tasks like online shopping, video streaming and browsing social media 

sites. Moreover, there is an growing trend of people using their smartphones for work-

related tasks, such as emailing, calling and appointment scheduling [3].  

 

Despite the convenience offered by mobile devices, their compact form factor makes 

text typing difficult. For instance, texting on smartphones usually involves tapping on 

the virtual on-screen keyboard with both thumbs. In contrast to a standard physical 

keyboard that enables users to type with all ten fingers, a virtual on-screen keyboard 

has considerably smaller keys that makes it hard for users to use multiple fingers for 

typing. The small keystroke size on an on-screen keyboard would also reduce the 

typing speed and increase the chance of making a typo. To improve the typing 

experience on mobile devices, new features like autocorrect, SwiftKey [4], and 

speech-to-text input are currently added to mobile virtual keyboard apps. These 

features allow users to type on mobile devices without tapping on individual keys on a 

virtual on-screen keyboard and reduces typing errors. 

 

Inspired by the new features on mobile virtual keyboard apps, it is believed that 

alternative text input methods are needed on mobile devices. The new text input 

method should overcome the limitation of the small form factor and provide good 

user experience. With the increase in computation power and resolution on mobile 

devices, we are motivated to explore an innovative solution by leveraging computer 

vision and machine learning techniques. We seek to provide users with a more natural 

and intuitive way to interact with their mobile devices, ultimately enhancing their 

typing experience and overall satisfaction. 
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In the Consumer Electronics Show 2020 (CES2020), Samsung introduced a 

conceptual product called “SelfieType”, which uses the front-facing camera as a 

keyboard for mobile devices. The proprietary SelfieType AI engine will analyze user’s 

finger movements and convert them into keyboard inputs on the smart phone. No 

additional hardware is required. This technology provides a portable and user-friendly 

typing experience on smart phones. [5] 

 

With this idea, the project aims to build an innovative input method by developing an 

application with similar idea to “SelfieType” and explores the possibility of building a 

keyboard using computer vision techniques and finger motion tracking on mobile 

devices. 

 

1.2. Objectives and deliverables 

The objective of the project is to develop a system level virtual keyboard app on the 

Android platform that provides user with similar typing experiences on a standard 

keyboard by leveraging Computer Vision and motion tracking techniques. Instead of 

tapping on the screen of mobile devices, users can type by tapping on any flat surfaces 

as tapping on a real keyboard in front of the device camera. The virtual keyboard app 

utilizes the device camera to track users’ finger movements and gestures to determine 

the text input. No external hardware is required. 

 

1.3. Report content 

The remainder of this paper proceeds as follows. Chapter 2 explains the detailed 

methodologies for developing a vision-based virtual keyboard app. Chapter 3 reports 

the observations and findings during the app development process. Chapter 4 

introduces the app interface. Chapter 5 describes the challenges and limitations in 

developing the app. Chapter 6 outlies the future plan. Chapter 7 summarizes the 

report. 
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2. Methodologies 

2.1. IDEs and programming languages 

The app is developed using Android Studio. It is the official IDE developed by 

Google particularly for development of Android applications [6]. Comparing to other 

IDEs, Android Studio offers Graphical UI for drag-and-drop components on the app 

interface.  

 

Kotlin is used as the programming language for the app. It is a modern programming 

language used by over 60% of professional Android developers [7]. In addition to its 

compatibility with Java, Kotlin has a more concise syntax than Java. With the great 

community support, developing the app using Kotlin would be quicker and easier. 

 

2.2 Android Input Method Service 

To create a system level input method, an input method editor (IME) is created in the 

app. A service class that extends the InputMethodService class is implemented to 

handle key input events, send text inputs, and manage the keyboard UI in different 

states. The states sequence follows the IME lifecycle (see Figure 1). Each state in the 

lifecycle is responsible for a single task, such as inflating the keyboard layout and 

creating the candidate view for showing word suggestions. 
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Figure 1. The lifecycle of an IME [8] 

 

2.3. Image Capture 

The typing actions of user fingers are captured using the front camera of users’ mobile 

devices. CameraX, a jetpack library developed by Google, is used to manage the 

camera usage of the app, including frame capturing, frame previewing and frame 

processing in background. CameraX also maintains the consistency of camera 

behavior across various devices with different Android versions (Android 5.0+).  



 5 

2.4. Hand detection 

Hand detection is done using the Hand landmark detection solution provided by 

MediaPipe. MediaPipe is an open-sourced framework developed by Google Research 

for building custom on-device ML solutions [9]. It abstracts the complexity of running 

on-device ML solutions, such as CPU/GPU acceleration and deploying the ML 

solutions on different platforms. It also supports well-known programming languages 

such as JavaScript, Python and C++, and running on mobile environment such as iOS 

and Android [9]. 

 

Mediapipe provides 14 pretrained solutions of common ML use cases, such as hand 

gesture recognition and face detection. The hand landmark detection solution will be 

used for hand detection in this project. The solution detects the existence of hand in 

static or continuous stream of image data. If one or more hands exists, the model will 

return the handedness (left or right hand) and the world coordinates of the 21 hand 

knuckles (landmarks) on the hand in real time (see Figure 1 for details of the 

landmark). Figure 2 shows a example of using the land landmark detection solution in 

actual. 

 

 
Figure 2. 21 hand landmarks detected by MediaPipe hand landmark detection solution [10]. 

Coordinates of the landmarks of user’s hand on the captured image frame can be retrieved. 
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Figure 3. Actual example of using the MediaPipe hand landmark detection model. The key points on 

both hands are shown in red dots. 

 

There are several advantages for utilizing the hand landmark detection solution by 

MediaPipe as the hand detection method in this project. First, the model is already 

well-trained with approximately 30K real-world images and several rendered 

synthetic hand models imposed over various background [10]. The effort of 

developing and training a custom ML model for hand recognition can be eliminated. 

Second, the latency of the model is acceptable for typing. According to the benchmark 

test done by Google on Pixel 6, the latency of the ML model is 17.12ms and 12.27ms 

on CPU and GPU acceleration respectively [10]. 

 

2.5. Reference Position Construction 

Before typing, users need to place their hand in a stable position for a few seconds for 

the app to record the reference positions after the initialization of the camera and the 

hand landmark detection model. The reference position of the index finger, the middle 

finger, the ring finger and the pinky finger will be constructed. The coordinates of the 

reference positions are used as reference for key input determination on the virtual 

keyboard. 

 

When the hand landmark detection model first detects the presence of both hands 

after the user starts the keyboard, the coordinates of fingertip landmarks of each frame 

will be recorded in a queue. It is assumed that the variation of each recorded 

coordinates will not be great, as the user’s fingers are staying stable on the tapping 

surface. Therefore, the reference position of each fingertip is calculated as the mean 

coordinates of the records in the queue.  
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To improve the accuracy of the reference position, outliers will be removed from the 

queue after the queue size exceeds a certain value. It is assumed that the recorded 

coordinates in the queue of each fingertip are normally distributed. To remove outliers 

in the queue of a fingertip, two temporary lists are constructed to store the horizontal 

and vertical projected coordinates in the record queue respectively. The mean and the 

standard deviation for both lists are then calculated. After that, the z-score of each 

record in both lists are checked to be within the range of two standard deviations of 

the corresponding list. If a record is out of the range, the corresponding coordinate 

record in the queue is removed. 

 

After the queue size for all required fingertips reached a certain value, it is confident 

to adopt the mean coordinate from the queue of each fingertip as the reference 

position. The projected coordinates of all reference positions constructed will be 

shown on the screen. 

 

2.6. Tap detection 

Tap detection is to detect whether the user has pressed on a key on the virtual 

keyboard or not. Since there are no external sensors installed, the fingertip tapping 

can only be determined based on the finger joint movements when a user press a key. 

 

The current algorithm of tap detection is based on the vertical motion tracking of 

fingertips. In general, a fingertip is considered as tapping when its fingertip keeps 

moving down towards the tapping surface across a period, and then moves up from 

the surface. This V-shaped motion is tracked by recording the coordinates of the 

fingertips returned by the hand landmark detection model in each frame into a queue. 

The records in the queue can be then split into two parts. The first part checks if the 

vertical projected coordinate of each record is greater than that of the previous record. 

The second part checks if the vertical projected coordinate of each record is smaller 

than that of the previous record. In the actual implementation, the queue is split in the 

(n-1) frames, letting n to be the size of the queue. The first part of the queue has size 

of (n-1) and the second part of the queue has size (n-(n-1)+1) = 2. Note that the (n-1)th 

frame is presented in both the first and the second part of the split queue. 
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Algorithm 1a. Procedure to find candidate tapping fingers 

 

Algorithm 1a shows the actual implementation of finding candidate tapping fingers 

based on the coordinates record queue. Line 6-10 checks if a fingertip in a hand is 

moving towards the tapping surface by checking the vertical projected coordinate 

records in the first part in the queue with (n-1) entries. Line 11-14 checks if the extent 

of downward movement of a fingertip has exceeded a certain threshold. The threshold 

value will be discussed in the Chapter 3.2. This check prevents false detection for tiny 

fingertip movements. Line 15-19 checks if a fingertip in a hand has moved up 

between the second last frame and the last frame in the record queue. If all three 

conditions are satisfied, the fingertip is added to the candidate tapping finger list. 

 

There may exist more than one finger detected as tapping at the same time. It is 

because when a user taps with a finger, the neighboring finger may move together. It 
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is hard for a user to tap with only one finger moving while other fingers staying still. 

Therefore, if a finger is checked for performing the V-shaped tapping motion, it is 

added to the candidate tapping finger list of the corresponding hand.  

 

To find the actual finger that is tapping, the candidate fingertips are passed to the 

second function (Algorithm 1b). The second function outputs the candidate fingertip 

with the greatest vertical projected coordinate. It is assumed that when a user is 

typing, only the finger pressing a key is touching the tapping surface, while other 

fingertips are located above the tapping surface. The output of the second function is 

the actual tapping finger of both hands. 

 

 
Algorithm 1b. Procedure to find the actual tapping finger from candidate tapping fingers 

 

2.7. Key input determination 

Key input determination is done by examining the relationship between the projected 

coordinates of the tapping fingertip (retrieved by the hand detection model) and the 

reference position of all fingertips. When a finger is detected as tapping a key, the 

projected coordinates of the tapping fingertip will be compared to the reference 

positions for determining the key tapped on the keyboard layout. 

 

The relationship between the projected coordinates of the tapping fingertip and the 

reference position are generalized by observations. The details about the relationship 

will be described in the Chapter 3.3. 
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2.8. Key input generation 

The determined key input is generated as text input in the text input field with the help 

of InputMethodService. The determined key input will be passed to the service class 

which extends the InputMethodService class. The InputConnection instance of the 

service class, which is the communication channel from the input method to the 

application that is receiving the text, is responsible to deliver the key input. 

 

In addition, key input is also determined by a fixed finger positioning on the keyboard 

layout. Each finger of a user is responsible for only a limited set of keys. Figure 4 

shows the finger positioning on the keyboard. For the left hand, the pinky finger is 

responsible for the keys “q”, “a” and “z”. The ring finger is responsible for the keys 

“w”, “s” and “x”. The middle finger is responsible for the keys “e”, “d” and “c”. The 

index finger is responsible for the keys “r”, “f”, “v”, “t”, “g”, and “b”. For the right 

hand, the pinky finger is responsible for the keys “p”, “enter” and “backspace”. The 

ring finger is responsible for the keys “o”, “l” and “period”. The middle finger is 

responsible for keys “i”, “k” and “comma”. The index finger is responsible for keys 

“y”, “h”, “n”, “u”, “j” and “m”. 

 

 
Figure 4. Finger Positioning on the keyboard layout 

 

2.9. Word Suggestions 

A Natural Language Processing model is used to provide suggested words while the 

user is inputting text. The model is adopted from an open-source GitHub repository. 

When a user has enabled the word suggestion preference and he / she is typing on a 

general text input field that does not contains sensitive information like passwords and 

addresses, the characters input by the user are feed into the model, and the suggestions 

from the model will be shown on the candidate view of the keyboard (see the Chapter 

4.3 for detail). 
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3. Observations and Findings 
This chapter reports the observations and findings over the app development process.  
 

3.1. Tap Detection Threshold 
Described in line 11 -14 of Algorithm 1a in Chapter 2.6, The downward movement 
extent of the fingertip of a tapping finger must exceed a certain threshold to prevent 
false tap detection. This eliminates the noise due to fluctuation of the hand landmark 
detection model result, and the small movements of fingertips.  
 
The tap detection threshold is the minimum decrease in vertical projected coordinates 
of tapping fingertip. By observations, the extent of movement of each fingertip is 
different on a hand. The value represents the length portion of the height of the 
captured frame and are determined throughout app testing. 

 

Figure 5. Illustration of tap detection threshold 

 

3.2. Coordinates Queue Size 
The projected coordinates of hand landmarks in each frame returned by the hand 
landmark detection model are stored into queues for motion tracking. The size of the 
coordinates queue is the number of recent records of projected landmark coordinates 
stored, which represents the length of the time period the motion of the hand 
landmarks is tracked.  
 
Before the reference positions of fingertips are constructed, the projected coordinates 
of each fingertip (except the thumb tip) will be recorded in a set of queues. The size of 
this set of queues represents the confidence required for constructing the reference 
positions, as the reference positions are retrieved by the mean of coordinates in the 
queues. If a smaller queue size is set, the time required for constructing the reference 
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positions will be shorter as a smaller number of frames are required. However, the 
probability of constructing skewed reference position will be higher due to fluctuation 
in the hand landmark detection model results and the possible movements of user’s 
hand during the period. If a greater queue size is set, the time taken for constructing 
the reference positions will be longer. User experience will be affected because of the 
long initialization time before the user can start typing. To provide a better user 
experience, a shorter queue size for this set of queues is set in the actual 
implementation. The method to overcome the shortcoming of skewed reference 
position is to remove outliers in the queues, as described in Chapter 2.5.  
 
After the reference positions are constructed, all the hand landmarks in the afterward 
frames will be stored to another set of queues for tracking the tapping motion. The 
size of this set of queues represents the time period a fingertip needs to move 
downward continuously to be considered as tapping on a key. If a small key size is 
set, tapping will be detected easily with the fingertip only moves downward in a short 
period of time. The probability of false tap detection is higher due to the fluctuation in 
the hand landmark detection model results. If a larger key size is set, the tapping 
finger would have to move downward continuously in a longer consecutive period, 
resulting in omitted detection for fast tapping motion. In the actual implementation, a 
short queue size is set for this set of queues to detect all possible tapping. To decrease 
the number of false tapping detected by noise, the tapping finger must also move 
downward to an extent greater than the tap detection threshold, as described in the 
previous chapter. Note that a finger is considered tapping on a key if the fingertip 
moves downwards in a continuous number of frames and the extent of downward 
displacement must exceed the corresponding tap detection threshold. The queue size 
for this set of queues and the tap detection threshold are closely related. 
 
Although the two queue sizes represents the time period for hand motion tracking, 
they are dependent on the frames per second (fps) of the front camera of the user’s 
mobile device. For the same queue sizes set, the time period will be shorter if the fps 
of the camera is higher, and vice versa.  
 

3.3. Key Input Determination 
Since only the front facing camera of a smart phone is used, the camera’s depth 
information cannot be retrieved. The world coordinates of the fingertips cannot be 
determined by stereo vision or camera calibration. When using the app, the smart 
phone must be placed perpendicularly on the tapping surface in front of the user in the 
landscape orientation. The front facing camera will be viewing a plane that is 
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perpendicular to the tapping surface. Although the horizontal position on the keyboard 
can be obtained from the projected coordinates easily, the depth information of the 
camera cannot be determined, which represents the row on the keyboard layout. 
Therefore, an alternative solution is needed to determine the row of the keyboard 
layout the user’s finger is tapping to generate a correct text input. 
 
This chapter explains the alternative methods to determine the correct text input on 
detecting a tapping finger. Chapter 3.3.1 introduces the initial proposed solutions and 
the experimental result. Chapter 3.3.2 to Chapter 3.3.6 describes the method adopted 
in the actual application to determine the key input for each finger based on the 
relationship between the projected coordinates of the tapping fingertip and the 
reference positions. 
 

3.3.1. Initial Proposed Solutions 

The first proposed solution is to determine the row of the keyboard by the projected 
size of hands on the captured image. It is suggested that the projected size of the hand 
will be larger if the user is tapping on the top row of the keyboard, as the top row of 
the keyboard is closer to the front facing camera. It is assumed that the reference 
positions are representing the position of keys on the middle row of the keyboard. The 
reference size of the hands tapping on the middle row of the keyboard row is 
recorded. Then, on a tap detected, the projected size of the tapping hand is compared 
against the reference size. 
 
However, in actual testing, it is found that the change in projected size of hand is too 
small when fingers of the hand is tapping on keys on different rows on the keyboard. 
It is because the difference in distance between the rows on the keyboard layout is 
small. In addition, the palms would be staying stable on the tapping surface. Thus, the 
size of hand does not change significantly throughout the typing process.  
 
An improved method to determine the tapping row on the keyboard is by comparing 
the projected size of individual fingers instead of comparing the size of the hand. The 
size of a finger can be retrieved by calculating the distance between the landmarks. 
Yet, the change in size of fingers tapping on different rows on the keyboard is still too 
small, because of the small distance between different rows on the keyboard. In 
addition, the orientation of the fingers are not constant when tapping on different 
keyboard rows. For instance, the index fingers are more flattened when tapping on the 
top row and are more upright when tapping on the bottom row. The different 
orientation of fingers would make distance comparison inconsistent. 
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By observing the difference in the orientation of fingers when tapping on different 
keys, another method for determining the tapping row on the keyboard is suggested. 
This method checks the orientation of fingers (flattened or upright) by comparing the 
slope between the projected landmarks on the finger. A flattened finger would have a 
smaller slope and an upright finger would have a greater slope. However, since the 
fingers are perpendicular to the camera’s viewing plane, the actual distance between 
landmarks in the finger cannot be projected on the captured frame. The connection 
line between the projected finger landmarks will appear to be straight lines in the 
captured frame, especially for the fingers near to the center of the frame. The 
orientation of fingers cannot be distinguished. 
 

3.3.2. Thumb Input Determination 

According to the finger positioning, the thumbs on both hands are only responsible for 
the spacebar on the keyboard. Thus, when the thumb is detected as tapping, the key 
input will be determined as spacebar directly.  
 

3.3.3. Index Finger Input Determination 

The key input determination for the index finger is the most complex, as the index 
fingers are responsible for two columns of keys on the keyboard layout. The left index 
finger is responsible for the keys on the fourth and fifth column in the keyboard 
layout, including the keys “r”, “f”, and “v” on the forth column, and keys “t”, “f” and 
“b” on the fifth column. The right index finger is responsible for the keys on the sixth 
and seventh column in the keyboard layout, including the keys “y”, “h” and “n” on 
the sixth column, and keys “u”, “j” and “m” on the seventh column. Thus, in addition 
to determining the keyboard row the index finger is tapping, it is also needed to 
determine the keyboard column the index finger is tapping. 
 
The first step is to determine the keyboard column the index finger is tapping on. It is 
done by comparing the horizontal projection of the tapping index finger with a certain 
value. For the left index finger, if the horizontal projection of the fingertip is less than 
the value, the tapping keyboard column will be the fourth column. For the right index 
finger, if the horizontal projection of the fingertip is greater than the value, the tapping 
keyboard column will be the seventh column. In the actual implementation, the value 
is set as the horizontal coordinate of the left index finger’s reference position plus 3% 
of the image width for the left index finger, and is the horizontal coordinate of the 
right index finger’s reference position minus 3% of the image width for the right 
index finger. 
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Figure 6. Index finger tapping on different keyboard columns. The upper picture shows the index 

finger tapping on the fourth and the seventh column. The bottom image shows the index fingers 

tapping on the fifth and the sixth column 

 
When the index finger is tapping on the fourth or the seventh column (the inner 
column), the tapping keyboard row is determined by the comparison of the horizontal 
distance between the projected fingertip of the middle finger and the reference 
position to the index finger, the middle finger, and the ring finger. It is observed that 
when the index finger is tapping on the top keyboard row, the fingers will become 
more spread on the projection. And when the index finger is tapping on the bottom 
keyboard row, the fingers will become more congregate on the projection. Therefore, 
comparing the horizontal distance between the projected fingertip of the middle finger 
and the reference positions for neighboring fingers is a valid measure of the spread of 
the fingers. 
 
If the horizontal distance between projection of the fingertip of the middle finger to 
the reference position of the ring finger is the shortest, the index finger is determined 
as tapping on the top row, which is the “r” key for the left index finger and the “u” 
key for the right index finger. 
 

 
Figure 7. Index finger tapping on the top row of the inner column 
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If the horizontal distance between projection of the fingertip of the middle finger to 
the reference position of the index finger is the shortest, the index finger is determined 
as tapping on the bottom row, which is the “v” key for the left index finger and the 
“m” key for the right index finger. 
 

 

Figure 8. Index fingertip tapping on the bottom keyboard row of the inner column 

 
If both conditions are not satisfied, the index finger is defined as tapping on the keys 
on the middle keyboard row, which is the “f” key for the left index finger and the “j” 
key for the right index finger. 
 

 
Figure 9. Index finger tapping on the middle row in the inner column 

 
When the index finger is tapping on the fifth or the sixth column (the outer column), 
the tapping keyboard row is determined by the relationship between the projected 
fingertip of the pinky finger and the reference position of the pinky finger and the ring 
finger. 
 
When the horizontal projection of the pinky fingertip is outside the range of all 
reference coordinates (projected to the left of left pinky’s reference coordinate and 
projected to the right of the right pinky’s reference coordinate), the index finger is 
considered tapping on the top keyboard row. That is, the “t” key for the left index 
finger and the “y” key for the right index finger. 
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Figure 10. Index finger tapping on the top keyboard row of the outer column 

 
Otherwise, the horizontal distance between the projection of the pinky fingertip and 
the reference position of the ring finger and the pinky finger are compared. If the 
horizontal distance between the projection of the pinky fingertip and the reference 
position of the ring finger is shorter, the index finger is considered as tapping on the 
bottom row, which is the “b” key of the left index finger and the “n” key of the right 
index finger. 
 

 
Figure 11. Index fingertip tapping on the bottom keyboard row of the outer column 

 
The decision tree below shows the decision of the tapping keyboard row of the index 
finger.
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Figure 12. Decision tree to determine the tapping keyboard row of index finger 

 

3.3.4. Middle Finger Input Determination 

The middle finger on the left hand is responsible for the keys on the third column in 
the keyboard layout, including the “e”, “d” and “c” key. The right middle finger is 
responsible for the keys on the third last column in the keyboard layout, including the 
“i”, “k” and “comma” key. 
 
By observation, the horizontal projection of the tapping position of the middle finger 
varies when it taps on different keyboard rows, due to the trapezoid layout of the 
alphabet keys on a traditional keyboard layout. Thus, the projection of the tapping 
position of the middle finger can be compared with the reference position of the index 
finger, the middle finger, and the ring finger.  
 
If the horizontal distance between the projection of the tapping position of middle 
finger to the reference position of the ring finger is the shortest, the middle finger is 
determined as tapping on the top row, which is the “e” key for the left middle finger 
and the “i” key for the right middle finger. 
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Figure 13. Middle finger tapping on the top keyboard row 

 
If the horizontal distance between the projection of the tapping position of middle 
finger to the reference position of the index finger is the shortest, the middle finger is 
determined as tapping on the bottom row, which is the “c” key for the left middle 
finger and the “comma” key for the right middle finger. 
 

 
Figure 14. Middle finger tapping on the bottom keyboard row 

 
If both conditions are not satisfied, the middle finger is defined as tapping on the keys 
on the middle keyboard row, which is the “d” key for the left middle finger and the 
“k” key for the right middle finger. 
 

 
Figure 15. Middle finger tapping on the middle keyboard row 

 
The decision tree below shows the decision of the tapping keyboard row of the middle 
finger. 
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Figure 16. Decision tree to determine the tapping keyboard row of middle finger 

 

3.3.5. Ring Finger Input Determination 

The ring finger on the left hand is responsible for the keys on the second column in 
the keyboard layout, including the “w”, “s” and “x” key. The right ring finger is 
responsible for the keys on the second last column in the keyboard layout, including 
the “o”, “l” and “period” key. 
 
Similar to the middle finger, the determination of the tapping keyboard row for the 
ring finger depends on the horizontal distance between the projection of tapping 
position and the reference positions of the middle finger, the ring finger and the pinky 
finger. 
 
If the horizontal distance between the projection of the tapping position of ring finger 
to the reference position of the pinky finger is the shortest, the ring finger is defined 
as tapping on the keys on the top keyboard row, which is the “w” key for the left ring 
finger and the “o” key for the right ring finger. 
 

 
Figure 17. Ring finger tapping on the top keyboard row 

 
If the horizontal distance between the projection of the tapping position of ring finger 
to the reference position of the middle finger is the shortest, the ring finger is defined 
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as tapping on the keys on the bottom keyboard row, which is the “x” key for the left 
ring finger and the “period” key for the right ring finger. 
 

 
Figure 18. Ring finger tapping on the bottom keyboard row 

 
If both conditions are not satisfied, the ring finger is defined as tapping on the keys on 
the middle keyboard row, which is the “s” key for the left ring finger and the “l” key 
for the right ring finger. 
 

 
Figure 19. Ring finger tapping on the middle keyboard row 

 
The decision tree below shows the decision of the tapping keyboard row of the ring 
finger. 
 

 
Figure 20. Decision tree to determine the tapping keyboard row for ring finger 
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3.3.6. Pinky Finger Input Determination 

The pinky finger on the left hand is responsible for the keys on the first column in the 
keyboard layout, including the “q”, “a” and “z” key. The right pinky finger is 
responsible for the keys on the last column in the keyboard layout, including the “p”, 
“enter” and “backspace” key. 
 
When the pinky finger is tapping on the top keyboard row (key “q” on the left hand 
and key “p” on the right hand), it is observed that the pinky tip will exceed the 
boundary of all the reference positions. Thus, if the projection of left pinky’s tapping 
position is on the left of the left pinky finger’s reference position, the key input will 
be determined as the “q” key on the top row. Similarly, if the projection of the right 
pinky’s tapping position is on the right of the right pinky finger’s reference position, 
the key input will be determined as the “p” key. In addition, the distance between the 
projection of the tapping pinky tip and the pinky’s reference position must exceed a 
certain threshold. The current value of the threshold is 5% of the image width. 
 

 
Figure 21. Pinky finger tapping on the top keyboard row 

 
When the pinky finger is tapping on the bottom keyboard row (key “z” on the left 
hand and key “backspace” on the right hand), it is observed that the nearest reference 
position to the projected pinky tip is the ring finger’s reference position for both 
hands. Therefore, if the pinky of either hand taps on a position which its projection is 
horizontally nearer to the ring finger’s reference position than the pinky finger’s 
reference position, the row of key input will be determined as the bottom row. The 
key input will be the “z” key for the left pinky and the “backspace” key for the right 
pinky finger.  
 

 
Figure 22. Pinky finger tapping on the bottom keyboard row 
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If neither of the two conditions are satisfied, the tapping position of the pinky must be 
nearest to the reference position of the pinky finger, which represents the pinky finger 
is tapping on the middle row of the keyboard. 
 
 

 
Figure 23. Pinky finger tapping on the middle keyboard row 

 
The decision tree below shows the decision of the tapping keyboard row of the pinky 
finger. 
 

 
Figure 24. Decision tree to determine the tapping keyboard for pinky finger 
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4. Results 

4.1. Welcome Page 

 
Figure 25. Welcome page and functions of buttons 

 
After a user has installed and opened the app, a welcome page is shown on the screen. 
Users can set up the keyboard in their device according to the step-by-step guide. 
Firstly, users need to enable the cv keyboard service on their device. The button in 
step 1 will direct user to the settings page of on-screen keyboard. Secondly, users need 
to set the cv keyboard service as current input method on their device by clicking on 
the button in step 2. The button on step 3 will direct users to another page with text 
input fields for testing the keyboard. 
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4.2. Preference Page 

 

Figure 26. Preference Page 

 
Users can adjust the configuration of the hand detection model and the keyboard. The 
configuration options for the hand detection model are the parameters used to setup 
the model. The configuration options for the keyboard includes the keyboard height, 
enabling / disabling word suggestions and auto capitalization. 
 

4.3. Keyboard Layout 
Before using the keyboard, users need to ensure that the orientation of their device is 
in landscape. It is because the front facing camera can hardly include both the users’ 
hands and the tapping surface to the scope of vision due to the long distance between 
the camera and the tapping surface. Because of the limitation on the device 
orientation, this keyboard app can only be used for input fields that the parent activity 
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supports landscape orientation. Users need to ensure the current app satisfy this 
requirement. 
 

 

Figure 27. Keyboard layout with camera preview 

 

 

Figure 28. Keyboard layout with keyboard view 

 
There are two layouts for the keyboard. The first one is the default layout with camera 
preview (Figure 8). The camera preview will be shown once the hand landmark 
detection model is initialized. The status bar below the camera preview indicates the 
status of the camera and the status of reference positions construction. Before the 
camera is ready, the text on the status bar will be “initializing camera”. After the 
camera is ready and the app requires to construct the reference positions, the text on 
the status bar will become “Generating Keyboard. Please stay your fingers still”. After 
the reference positions are constructed, the text on the status bar will become 
“Keyboard ready. Please start typing”. Users can start typing at this moment.  
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The second layout comes with the keyboard view instead of the camera preview. It 
can be shown when the user press the “switch keyboard layout view” button on the 
right bottom corner (shown in Figure 8). This layout enables users to check the finger 
positioning and the position of keys on the keyboard. When this layout is enabled, the 
camera and the hand landmark detection model are still running in the background. 
The camera preview and the results of the hand landmark detection are set to 
invisible. 
 

4.4. Candidate View 

 
Figure 29. Candidate View 

 
When a user enables the “word suggestions” preference, word suggestions will be 
provided if the user is inputting text in a general text field. Note that for security 
reason, word suggestions will not be provided if the input field contains sensitive 
information like passwords. The characters input by the user will be passed to the 
natural language processor model. If the model returns any word suggestions, the first 
three suggestions will appear in the candidate view, which is located above the 
keyboard layout (see Figure 29). If the user would like to pick the suggested word, 
they have to touch on the suggested word on the screen. If there is no word suggestion 
or word suggestion is disabled, the candidate view is invisible. 
 

5. Challenges and Limitations 
This section introduces some challenges encountered during the development of the 
app, and discuss the limitations on using the app. 
 

5.1. Tap Detection Algorithm 
As described in Chapter 2.5, the current tap detection algorithm only depends on the 
vertical motion of fingertips. The short coming of this algorithm is that it is 
independent to the tapping surface. Current algorithm cannot tell if a moving down 
finger has touched the tapping surface or not. False tapping are detected when user 
moves the hands in the air.  
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There are difficulties in building a relationship between the fingertips and the tapping 
surface, as the front camera of the user’s device is not perfectly aligned with the 
tapping surface. The front camera is at a certain distance above the tapping surface. 
Thus, the tapping surface is projected as an area on the captured image. There is no 
reference level for determining the touch event on the tapping surface. 
 
The current solution is to add an additional check to the distance between the 
projected coordinates of the tapping fingertip and the average vertical coordinate of 
the reference positions of the corresponding hand in tap detection. As a result, tapping 
is only detected when the tapping position of a fingertip is around the level of the 
hand’s reference position. This helps to reduce the false tapping detected for moving 
the hand in the air. However, this check still cannot prevent the false tap detection at 
the position which its projection is near the reference positions. 
 

5.2. Key Input Determination Method 
As mentioned in Chapter 3.4, the key input cannot be determined directly from the 
projected coordinates of the tapping fingertip. The current alternative method was 
deduced by generalizing the observations by the author. It may not work satisfactory 
for some parties, as the typing behavior is different among individuals. For instance, a 
strict rule on finger positioning is set for this vision-based keyboard app, but it is 
believed that not every individual would follow this finger positioning exactly in daily 
typing tasks.  
 
In addition to the challenge of single camera, an additional challenge is to deduce a 
generalized key input determination method that is satisfied by most people on the 
vision-based keyboard. Unlike an on-screen virtual keyboard that contains a definite 
boundary for keys on the keyboard, an invisible vision-based keyboard requires the 
user to memorize the relative positions and order of keys, as well as to type according 
to muscle memories of typing on a traditional physical keyboard. A suggested solution 
to overcome the challenge is to build a machine learning model which learns the 
typing behavior of a specific user. As a result, the keyboard would be optimized 
custom keyboard app for each user. This solution would be one of the future work of 
this project. 
 

5.3. Device Performance 
Due to the variety of Android devices, the hardware performance difference across 
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devices can be large. The vision-based keyboard requires a high-level hardware 
performance, including the front facing camera and CPU/GPU. Since the keyboard 
app mainly uses the front-facing camera to capture finger movements, the resolution 
of the front camera must be high enough for the hand detection model to detect the 
presence of hands. In addition, the frames per second (fps) of the front facing camera 
is also important for motion tracking. For the calculation unit, a great number of 
operations to the CPU/GPU will be required by the hand landmark detection model. 
Since both the front facing camera and the CPU/GPU are demanding throughout the 
typing process, the power consumption of the app is expected to be large. Therefore, 
although there are no restrictions set for running the keyboard app on low-end 
Android devices, the performance of the keyboard app is expected to be poor on those 
devices. Therefore, devices with high hardware performances and good quality 
camera are preferred. 
 

6. Future Work 
Most proposed features are implemented in the app. However, there are still possible 
improvements to improve the user experience of the keyboard app. First, auto 
correction and spell-checking can be added to the app. This would greatly reduce the 
compact of inaccurate tap detection and key input determination. Second, a better 
word suggestion model can be developed. The word suggestion model provides 
customized word suggestions by building a custom dictionary for each user. 
 
Moreover, the model used for hand detection can be replaced by a better model that is 
designated for detecting hands in typing gesture, so that the performance of hand 
detection can be improved. Furthermore, addition models can be added to detect hand 
gestures like finger tapping, finger swiping and open palm. Not only the accuracy for 
tap detection can be increased, but the additional supported gestures can be utilized 
for additional keyboard control, such as choosing the word suggestions presented in 
the candidate view and clear all text in the text input field. 
 

7. Conclusion 

This paper has presented a method to solve the difficulty of texting on small mobile 

devices by developing a virtual keyboard app using CV on the Android platform. The 

app generates text input by analyzing users’ finger movements captured by the front 

facing camera on their mobile devices. It provides an intuitive and convenient text 

input method on mobile devices. 
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The major challenge of the project is detecting finger tap detection and translating the 

projection of tap position into correct key input on the keyboard layout. As only the 

front facing camera of the user’s device is used as sensor for finger motion tracking, it 

is hard to determine the row on the keyboard the user’s finger is tapping on. 

Alternative methods on determining the key input introduced in this paper was 

deduced from observations by the author. However, there are limitations on the 

accuracy of the alternative methods. Furthermore, there are limitations on the 

requirement of hardware performance of the running device. 

 

Despite the strict limitations of the project, it is believed that vision-based controllers 

still transcend traditional hardware controllers on the extent of customizability, 

extendibility and portability. Therefore, an important avenue for future work is to 

rebuild the app with using more cameras. The limitations in this project can be 

resolved by more advanced computer vision technologies such as stereo vision. It is 

hoped that there will be more innovative vision-based controllers in the future. 
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